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Abstract
Macroevolutionary	patterns,	often	inferred	from	metrics	of	community	relatedness,	
are	often	used	to	ascertain	major	evolutionary	processes	shaping	communities.	These	
patterns	 have	 been	 shown	 to	 be	 informative	 of	 biogeographic	 barriers,	 of	 habitat	
suitability	and	 invasibility	 (especially	with	 regard	 to	environmental	 filtering),	and	of	
regions	that	function	as	evolutionary	cradles	 (i.e.,	sources	of	diversification)	or	mu-
seums	(i.e.,	regions	of	reduced	extinction).	Here,	we	analyzed	continental	datasets	of	
mammal	and	bird	distributions	to	identify	primary	drivers	of	community	evolution	on	
the	African	continent	for	mostly	endothermic	vertebrates.	We	find	that	underdisper-
sion	(i.e.,	relatively	low	phylogenetic	diversity	compared	to	species	richness)	closely	
correlates	with	specific	ecoregions	that	have	been	identified	as	climatic	refugia	in	the	
literature,	regardless	of	whether	these	specific	regions	have	been	touted	as	cradles	
or	museums.	Using	theoretical	models	of	identical	communities	that	differ	only	with	
respect	to	extinction	rates,	we	find	that	even	small	suppressions	of	extinction	rates	
can	 result	 in	 underdispersed	 communities,	 supporting	 the	 hypothesis	 that	 climatic	
stability	can	lead	to	underdispersion.	We	posit	that	large-	scale	patterns	of	under-		and	
overdispersion	between	regions	of	similar	species	richness	are	more	reflective	of	a	
particular	regionʼs	extinction	potential,	and	that	the	very	nature	of	refugia	can	lead	to	
underdispersion	via	the	steady	accumulation	of	species	richness	through	diversifica-
tion	within	the	same	ecoregion	during	climatic	cycles.	Thus,	patterns	of	environmental	
filtering	can	be	obfuscated	by	environments	that	coincide	with	biogeographic	refugia,	
and	considerations	of	regional	biogeographic	history	are	paramount	for	inferring	mac-
roevolutionary	processes.
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1  |  INTRODUC TION

Quantitative	 assessments	of	 community	 assembly	 and	 relatedness	
are	often	used	to	assess	macroevolutionary	patterns	of	diversifica-
tion	at	large	spatial	scales	(Crouch	et	al.,	2019;	Gerhold	et	al.,	2015).	
On	the	African	continent,	range	disjunctions	shared	at	the	commu-
nity	level	have	long	been	studied	and	interpreted	from	the	perspec-
tive	 of	 how	 climate	 can	 shape	 biogeographic	 patterns	 (Fjeldså	 &	
Bowie,	2008;	Hall	&	Moreau,	1970;	Kingdon,	1989;	Voelker,	Outlaw,	
&	Bowie,	2010;	Vrba,	1993).	In	addition,	spatial	patterns	of	species	
richness	and	diversification	across	Africa	have	led	to	the	identification	
of	evolutionary	“cradles”	such	as	mountains	that	play	a	crucial	role	in	
building	African	biodiversity	 (Fjeldså	&	Bowie,	2008;	Fjeldså	et	al.,	
2011).	Similarly,	lowland	habitats,	especially	more	stable,	tropical	en-
vironments,	have	been	referred	to	as	“evolutionary	museums”—	areas	
in	which	species	diversification	is	comparatively	older	and	tempered,	
meaning	 communities	 (and	 species	 assemblages	 themselves)	 have	
been	relatively	stable	through	time	(Figure	1)	(Azevedo	et	al.,	2020;	
Gaston	&	Blackburn,	1996;	Marks,	2010).

Whether	on	islands	or	across	continents,	local	and	regional	spe-
cies	 assemblages	 are	 created	 through	 a	 combination	 of	 diversifi-
cation	and	colonization	events,	balanced	by	extinctions	 (Lomolino,	
2016).	Truly	in	situ	diversification	(i.e.,	wholly	sympatric	speciation)	
appears	 to	be	 relatively	 rare	 in	nature	or	 requiring	 specific	 condi-
tions,	with	parapatric	and	allopatric	speciation	being	far	more	com-
mon	(Coyne	&	Price,	2000;	Smith,	1966).	Allopatric	speciation	relies	
on	geographic	isolation	of	species,	which	only	increases	the	overall	
species	richness	when	taxa	come	into	secondary	contact	and	their	
species	integrity	is	maintained	(Tobias	et	al.,	2020).	This	secondary	
contact	 results	 in	 the	 colonization	 of	 one	 or	 both	 species	 into	 an	
area	 that	 is	 ecologically	 suitable	 but	 hitherto	 inaccessible	 for	 one	
or	both	species.	Over	evolutionary	time,	the	probability	of	second-
ary	contact	 increases,	such	that	on	 large	timescales	 (i.e.,	hundreds	

of	thousands	or	millions	of	years)	increasingly	distantly	related	taxa	
overlap.	Across	shorter	evolutionary	timescales,	these	divergences	
can	result	in	evolutionary	radiations	(including	geographic	or	adap-
tive	radiations)	of	species	that	are	closely	related.	These	patterns	can	
repeat	as	evolutionary	time	increases	and	a	cladeʼs	ecological	niche	
expands.	For	example,	multiple	evolutionary	radiations	of	different	
ecologies	exist	for	Afrotherian	mammals	such	as	the	Tenricidae	(ten-
recs)	of	Madagascar,	with	more	recent	radiations	in	some	of	the	dif-
ferentiated	clades	(Everson	et	al.,	2016).

From	a	meta-	community	perspective,	 an	appearance	of	 in	 situ	
diversification	 can	 be	 explained	 by	 diversification	 events	 that	 are	
limited	to	the	same	biome,	with	 limited	migration	to	other	biomes	
(Marks,	 2010;	 Nicolas	 et	 al.,	 2020).	 In	 situ	 diversification	 is	 thus	
driven	 primarily	 by	 temporary	 allopatry	 caused	 by	 climatic	 cycles	
(Prigogine,	1987;	Vrba,	1993)	or	fluctuating	geographic	boundaries	
such	as	rivers	(Crouch	et	al.,	2019;	Naka	&	Brumfield,	2018)	or,	to	a	
lesser	extent,	by	resource	allopatry	via	ecological	divergence	among	
spatially	 overlapping	 populations	 (Benkman	 et	 al.,	 2009).	 These	
diversification	 processes	 create	 communities	 that	 are	 phylogenet-
ically	underdispersed	 (i.e.,	with	 low	phylogenetic	diversity	 relative	
to	species	 richness)	compared	 to	other	biomes	 that	are	more	eas-
ily	colonizable	and	thus	more	likely	to	possess	less	related	lineages	
(Graham	et	al.,	2009).	This	process	could	be	accelerated	by	relatively	
frequent	fragmentation	of	habitats	by	environmental	cycling,	where	
repeated	 opportunities	 for	 allopatry	 arise	 and	 are	 subsequently	
followed	 by	 the	 re-	establishment	 of	 sympatry	 or	 parapatry,	 thus	
causing	underdispersion	 to	 co-	occur	with	 temporally	 unstable	 en-
vironments	 with	 low	 community	 extinction	 rates	 (Vrba,	 1993).	 In	
other	biogeographic	regions,	underdispersion	is	often	related	to	“fil-
tering,”	wherein	only	a	few	lineages	are	able	to	colonize	and	diversify	
within	a	specific	environment	(Jabot	et	al.,	2008;	Kraft	et	al.,	2015).	
However,	the	root	cause	of	the	“filtering”	has	been	called	into	ques-
tion,	and	it	is	argued	that	environmental	causes	for	filtering	cannot	
be	fully	determined	even	if	phylogenetic	underdispersion	is	found	to	
be	associated	with	specific	environments	(Cadotte	&	Tucker,	2017).

Geographic	 characteristics	 affect	 different	 lineages	 in	 similar	
ways,	such	that	diversity	hotspots	for	multiple	taxonomic	groups	are	
frequently	spatially	coincident	(Hawkins	et	al.,	2012;	Lomolino	et	al.,	
2006).	 The	ways	 in	which	 climate	 and	 geography	 have	 influenced	
evolution	(and	continue	to	do	so)	are	further	dependent	on	the	evo-
lutionary	histories	of	species	and	lineages.	Like	all	continents,	Africa	
is	 biogeographically	 complex,	 with	 northern	 Africa	 (namely,	 the	
Maghreb)	being	more	closely	allied	to	Eurasia,	and	with	sub-	Saharan	
Africa	 is	 unique	 due	 to	 its	 greater	 biogeographic	 isolation	 (Cox,	
2001;	Husemann	et	 al.,	 2014).	Furthermore,	 sub-	Saharan	Africa	 is	
associated	with	several	island	groups	that	vary	dramatically	in	their	
biogeographic	 histories,	 with	 the	 largest	 island,	Madagascar,	 pos-
sessing	endemic	incipient	evolutionary	radiations	including	Vangidae	
(vangas),	Bernieridae	(Tetrakas),	Eupleridae	(Malagasy	carnivorans),	
Tenrecidae	(tenrecs),	and	Lemuridae	(lemurs)	 (Everson	et	al.,	2016;	
Reddy	et	al.,	2012;	Yoder	et	al.,	2003;	Younger	et	al.,	2018).

The	biomes	of	 sub-	Saharan	Africa	 can	be	divided	 into	biogeo-
graphic	areas.	Two	major	rainforests	regions	exist,	the	Upper	Guinea	

F I G U R E  1 A	Northern	Double-	collared	Sunbird	Cinnyris 
reichenowi preussi	on	Pico	Basilé,	Equatorial	Guinea.	While	the	
genus	Cinnyris	is	well	known	for	its	montane	diversity	(including	the	
species	shown	here),	the	complex	is	also	diverse	and	widespread	in	
the	tropical	lowlands,	areas	often	considered	“museums.”	Photo	by	
Dr.	Oscar	Johnson,	ML269531451;	used	with	permission
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forests	 and	 the	 Congo	 Rainforest	 (here	 considered	with	 the	 con-
nected	 Lower	Guinea	Forests),	 as	well	 as	 several	 areas	of	 varying	
aridity	such	as	the	Sahel	and	the	Namib	(one	of	the	oldest	deserts	in	
the	world),	and	several	clusters	of	geographically	disparate	but	his-
torically	connected	montane	habitats	(Kingdon,	1989).	Diversity	for	
vertebrate	groups	peaks	in	the	rugged	highlands	of	the	Lacustrine	Rift	
(alternatively	known	as	the	Albertine	Rift)	(Cooper,	2021;	Plumptre	
et	al.,	2007)	where	the	Congo	Rainforest	and	more	xeric	East	African	
habitats	intersect	with	some	of	the	highest	mountains	on	the	conti-
nent.	Unlike	the	Andes,	which	are	a	highly	cohesive	mountain	chain	
bisected	by	deep	river	valleys	and	stretching	over	the	breadth	of	the	
South	American	continent,	the	mountains	of	Africa	primarily	consist	
of	scattered	clusters	of	highlands,	with	the	 largest	geological	phe-
nomenon	being	the	Rift	Valley.	This	region,	stretching	from	Malawi	
and	Mozambique	to	the	Red	Sea,	has	resulted	in	a	discontinuous	mix	
of	 mountains,	 depressions,	 and	 lakes	 that	 form	 an	 environmental	
mosaic	lacking	the	uplifted	continuity	of	the	Andes	or	the	Himalaya.	
While	it	is	difficult	to	assess	stability	comparatively	on	continental	
regions	through	time,	these	differences	in	mountain	building	across	
continents	may	greatly	 influence	comparative	climates	across	con-
tinents.	During	the	 ice	age,	 the	 lowland	rainforests	of	Africa	were	
spatially	 fragmented	 and	 restricted	 in	 distribution	 multiple	 times,	
creating	fractured	habitats	that	were	archipelagic	in	their	own	right	
between	periods	of	connectivity	 (Maley,	1996;	Voelker,	Outlaw,	&	
Bowie,	2010).	Thus,	compared	to	these	fracturing	and	reconnecting	
humid	 lowlands	and	highlands,	many	of	the	xeric	and	arid	habitats	
of	Africa	have	maintained	relative	stability,	and	are	known	for	their	
remarkable	 biodiversity	 (especially	 for	 large	 mammals,	 Alaudidae	
[larks],	 and	Cisticola	 [cisticolas;	Cisticolidae])	 (Alström	et	 al.,	 2013;	
Davies,	2014;	Kingdon,	2015).

The	 generation	 of	 broad	 phylogenetic	 datasets,	 coupled	 with	
documented	 distribution	 data	 in	 mammals	 and	 birds,	 offers	 the	
potential	 for	 continent-	wide	 comparisons	 that	 can	 distill	 the	 pro-
cesses	 that	skew	phylogenetic	dispersion	 in	different	habitats	and	
different	 lineages.	 The	 archipelagic	 aspects	 of	many	African	habi-
tats	through	evolutionary	time	present	an	opportunity	to	examine	
the	effects	of	environmental	history	and	geography	on	patterns	of	
richness	and	phylogenetic	diversity.	Specifically,	 the	mix	of	moun-
tains	and	 lowlands	provides	an	opportunity	 to	determine	whether	
similar	biogeographic	histories	have	led	wet	montane	forest	and	wet	
lowland	rainforest	regions	to	possess	similar	patterns	of	community	
assembly.	 The	 geographically	 large	 regional	 environmental	 fluctu-
ations	 and	 disjunctions	 are	well	 documented,	with	 evidence	 for	 a	
historically	savanna-	like	Sahara	extending	well	into	northern	Africa	
(Skonieczny	et	al.,	2019;	Tierney	et	al.,	2017)	and	it	is	possible	that	
there	have	been	repeated	disjunctions	and	reconnections	between	
different	lowland	rainforest	refugia	(Maley,	1996;	Vrba,	1993).

To	this	end,	we	coupled	a	continent-	scale	presence–	absence	ma-
trix	of	mammals	and	birds	in	Africa	with	their	respective	global	phy-
logenies.	We	performed	continental	comparisons	of	richness,	mean	
phylogenetic	distance	(MPD),	mean	nearest	taxon	distance	(MNTD),	
and	 phylogenetic	 dispersion	 (PD)	 for	 both	 mammals	 and	 birds,	
Africaʼs	most	well-	known	vertebrate	groups.	We	supplement	these	

analyses	with	a	theoretical	test	of	species	diversification	 in	similar	
sized	communities	with	different	extinction	rates	to	compare	how	
biogeographic	refugia	and	stability	may	shape	modern	communities.

2  |  METHODS

2.1  |  General programs

All	computational	analyses	were	performed	in	R	4.0.4	locally	or	with	
R	3.6.3	on	a	server	(R	Core	Team,	2021),	using	the	package	tidyverse 
and	 its	 dependencies	 for	 general	 data	 manipulation	 (Wickham	
et	al.,	2019)	and	the	packages	colourvalues	(Cooley,	2020),	ggpubr 
(Kassambara,	2020),	gridExtra	(Auguie,	2017),	rasterVis	(Perpiñán	&	
Hijmans,	2021),	and	viridis	(Garnier,	2018)	to	assist	with	plot	crea-
tion.	We	performed	spatial	manipulations	of	the	data	using	the	R 
packages	 raster	 (Hijmans,	 2020)	 and	 sf	 (Pebesma,	 2018)	 as	 well	
as	 in	QGIS	 3.18	&	3.20	 (QGIS	Development	Team,	2021).	 Image	
manipulation	further	used	the	GNU	Image	Manipulation	Program	
(Kimball	et	al.,	2020),	ImageMagick	(ImageMagick	Studio,	2019),	la-
tex2rtf	(http://latex	2rtf.sourc	eforge.net/),	and	Inkscape	(Inkscape	
Project,	2021).

2.2  |  Datasets

We	processed	mammals	and	birds	independently,	managed	by	JCC	
and	 NMAC,	 respectively.	 We	 downloaded	 global	 range	 maps	 for	
mammals	 from	 the	 International	 Union	 for	 the	 Conservation	 of	
Nature	(IUCN,	2020)	and	global	range	maps	for	birds	from	BirdLife	
International	 and	NatureServe	 (2012).	We	 generated	 a	 presence–	
absence	matrix	for	both	groups	using	a	grid	of	points	that	covered	
Africa	 and	 its	 adjacent	 offshore	 islands,	 sampling	 at	 .1°	 intervals	
using	 the	 sp	 function	 “over”	 in	R	 (Bivand	 et	 al.,	 2013;	 Pebesma	&	
Bivand,	2005).	Subsequently,	we	downloaded	 taxonomic	 trees	 for	
mammals	 and	 birds	 from	 existing	 studies	 of	 global	 diversity.	 For	
mammals,	we	downloaded	a	phylogenetic	dataset	of	all	African	taxa	
from	 <http://vertl	ife.org/phylo	subse	ts/>	 with	 100	 trees	 (Upham	
et	al.,	2019).	For	birds,	we	used	the	genetic	backbone	of	the	Jetz	tree	
(Jetz	 et	 al.,	 2012),	 placing	 species	 that	 lacked	 genetic	 information	
using	Taxonomy	Addition	for	Complete	Trees	(TACT)	(Chang	et	al.,	
2020)	and	the	taxonomic	data	of	Jetz	et	al.	(2012).	This	more	recent	
approach	 for	 placing	 species	 using	 taxonomic	 data	 enables	 more	
accurate	branch	 length	estimation	 (Chang	et	al.,	2020).	We	down-
loaded	 ecoregion	 information	 from	 the	World	Wildlife	 Federation	
website	on	5	March	2021	(Olson	et	al.,	2001).

2.3  |  Community analyses

We	 imported	our	presence–	absence	matrices	 into	R,	 and	 calcu-
lated	α	diversity	(i.e.,	richness)	as	the	number	of	species	reported	
present	at	each	sampling	point.	For	our	analyses	of	MPD,	MNTD,	

http://latex2rtf.sourceforge.net/
http://vertlife.org/phylosubsets/
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and	 phylogenetic	 dispersion,	 we	 used	 code	 from	 Crouch	 et	 al.,	
(2018,	2019)	supplemented	with	our	own	code.	We	imported	phy-
logenetic	 trees	 into	R	 using	 the	package	ape	 (Paradis	&	Schliep,	
2019).	 We	 obtained	 values	 for	 MPD,	 MNTD,	 and	 phylogenetic	
diversity	 (PD)	 using	 the	 commands	 “mpd.query,”	 “mntd.query,”	
and	 “pd.query”	 in	 the	 R	 package	 PhyloMeasures	 (Tsirogiannis	 &	
Sandel,	 2017)	 applied	 across	 our	 presence–	absence	 matrix	 and	
all	sampled	phylogenetic	trees.	From	these	outputs,	we	obtained	
average	values	for	each	metric	from	each	sampling	point	from	our	
aforementioned	 grid,	 as	well	 as	 the	 range	of	 values	obtained	 at	
each	point.	We	calculated	relative	dispersion	by	performing	a	lin-
ear	 regression	using	 the	R	 command	 “lm”	 of	mean	phylogenetic	
diversity	 (from	 the	 “pd.query”)	 and	 species	 richness	 (Chambers,	
1992;	R	Core	Team,	2021;	Wilkinson	&	Rogers,	 1973).	We	 then	
fit	a	95%	confidence	interval	around	the	regression	line	to	define	
over-		or	underdispersion.	We	assigned	a	value	of	0	to	points	that	
are	underdispersed,	1	to	points	that	are	within	the	confidence	in-
terval,	and	2	to	points	that	are	overdispersed.	We	compared	the	
counts	of	points	that	fell	 into	each	of	these	categories	for	mam-
mals	and	birds	using	a	test	called	using	the	R	function	“chisq.test”	
(R	Core	Team,	2021).

Spatial	 patterns	 between	 the	MPD,	MNTD,	 and	 phylogenetic	
diversity	of	birds	and	mammals	were	compared	using	several	meth-
ods.	First,	we	performed	simple	linear	models	of	the	relationships	
between	 each	 descriptive	 variable	 (using	 “lm”	 in	 R)	 (Chambers,	
1992;	 R	 Core	 Team,	 2021)	 and	 we	 obtained	 the	 correlation	 be-
tween	 variables	 (using	 “cor”	 in	 R)	 (Becker	 et	 al.,	 1988;	 Kendall,	
1938,	 1945;	 R	 Core	 Team,	 2021).	 To	 compare	 the	 landscapes	 of	
each	variable,	we	converted	our	sampling	points	to	raster	format	
using	 the	 R	 package	 raster	 (Hijmans,	 2020)	 and	 we	 normalized	
each	variable	between	0	and	1	using	code	adapted	 for	our	data-
set	(Appendix	S1)	(Cooper	et	al.,	2022).	We	compared	rasters	using	
two	commonly	used	metrics	of	niche	overlap	(Warren	et	al.,	2008),	
Schoenerʼs	D	statistic	and	the	similarly	performing	I	statistic	based	
on	 the	Hellinger	 distance.	 These	were	 calculated	 using	 the	 com-
mand	“nicheOverlap”	in	the	R	package	dismo	(Hijmans	et	al.,	2020),	
and	we	assessed	significance	by	comparing	the	values	of	the	real	
datasets	to	comparisons	of	the	randomized	matrices.	Differences	
between	the	statistics	obtained	from	actual	datasets	and	the	dis-
tribution	of	random	datasets	were	obtained	using	t-	tests	in	R	using	
the	command	“t.test”	(R	Core	Team,	2021).

We	imported	the	WWF	ecoregions	shapefile	into	R	using	the	
packages	rgdal	(Bivand	et	al.,	2021),	rgeos	(Bivand	&	Rundel,	2020),	
sp	 (Bivand	 et	 al.,	 2013;	 Pebesma	&	Bivand,	 2005),	 and	maptools 
(Bivand	 &	 Lewin-	Koh,	 2021)	 to	 compare	 values	 for	 each	 group	
across	 ecoregions,	 G200	 regions	 (i.e.,	 meta-	regions	 of	 multiple	
ecoregions),	 and	 user-	defined	 meta-	regions	 based	 on	 ecoregion	
type	 (e.g.,	 forest,	 savanna,	 etc.).	 Given	 that	 African	 mammals	
and	birds	have	different	diversification	histories,	we	 focused	on	
comparing	 relative	 amounts	of	phylogenetic	dispersion	between	
ecoregions.	 To	 obtain	 trends	 specific	 to	 the	 two	 classes,	we	 as-
signed	values	of	0	for	underdispersed,	1	for	no	significant	disper-
sion,	and	2	for	overdispersed	to	each	grid	cell.	We	then	averaged	

these	 values	 by	 ecoregion	 to	 assess	 spatially	 the	 distribution	 of	
over-		and	underdispersed	ecoregions	for	both	classes.	We	further	
combined	mammals	and	birds	datasets	to	determine	which	areas	
were	relatively	the	most	over-		and	underdispersed	for	both	phy-
logenetic	groups.

2.4  |  Theoretical analyses

To	test	for	the	effects	of	extinction	alone	on	MPD	and	MNTD,	we	
performed	analyses	of	theoretical	communities	that	are	identical	
in	every	regard	except	extinction	rate.	These	theoretical	commu-
nities	all	originate	from	a	single	source	species	and	then	diversify	
to	a	predetermined	richness,	either	100	species	or	10	species	to	
mimic	different	levels	of	diversity	observed	in	this	study.	In	addi-
tion	to	the	aforementioned	R	packages,	we	used	TreeSim	(Stadler,	
2019)	to	create	our	theoretical	communities.	We	created	a	custom	
function	that	would	create	two	communities	of	equal	richness	with	
different	 extinction	 regimes	 and	 return	 a	 single	 dataframe	with	
the	community	MPD	and	MNTD	recorded	(Appendix	S1)	(Cooper	
et	al.,	2022).	For	both	communities,	we	defined	three	time	periods,	
each	with	λ =	 1.75	and	μ =	 0.1.	We	defined	 survival	probability	
(x)	manually	for	unstable	(i.e.,	lacking	refugium)	communities,	and	
defined	survival	rates	for	stable	(i.e.,	possessing	refugia)	communi-
ties	manually	or	according	to	equation	(1)	to	create	a	semblance	of	
proportionality.

We	performed	multiple	iterations	of	these	tests,	and	varied	them	
from	having	highly	disparate	levels	of	survival	(e.g.,	0.2	for	unstable	
environments	and	0.92	for	stable	environments;	see	Appendix	S1:5)	
to	similar	rates	of	moderate	survival	(0.7	and	0.75)	and	similar	rates	
of	low	survival	(0.3	and	0.35)	(Cooper	et	al.,	2022).	We	ran	200	sim-
ulations	for	each	scenario	to	get	a	sample	distribution	for	compar-
isons	 between	 extinction	 rates.	Distributions	 of	MPD	 and	MNTD	
were	then	compared	with	t-	tests	using	the	R	function	“t.test”	(R	Core	
Team,	2021)	and	inspected	visually	using	histograms.

3  |  RESULTS

3.1  |  Richness

Our	 datasets	 included	 1,305	 species	 of	mammals	 and	 2,251	 spe-
cies	of	birds.	We	found	that	species	richness	of	birds	and	mammals	
are	 positively	 correlated	 spatially	 (p <	 .05,	 adj.	R2 =	 .85,	 correla-
tion	=	.92;	D =	.85,	p <	.05;	Figure	2).	Richness	for	both	groups	was	
highest	 in	 the	 topographically	 complex	 regions	 of	 Eastern	 Africa,	
especially	in	the	Lacustrine	Rift	and	in	the	highlands	from	Ethiopia	
south	to	Eswatini,	Lesotho,	and	South	Africa	(Figure	3).	Both	groups	
also	show	signatures	of	high	richness	across	 the	northern	edge	of	
the	 Congo	 Basin	 into	 Cameroon.	 These	 patterns	 are	 more	 easily	

(1)x. stable = 0.9 + x. unstable ∗ 0.10
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observed	in	birds,	almost	certainly	because	of	their	higher	species	
richness	 on	 the	 continent.	 A	 cluster	 of	 outlier	 points	 (n =	 202,	
0.0008%	of	total)	was	identified	with	high	mammalian	species	rich-
ness	and	low	avian	species	richness	(i.e.,	more	than	60	mammal	taxa	
and	fewer	than	125	bird	taxa).	These	areas	are	almost	entirely	from	
the	fringes	of	large	African	lakes.

3.2  |  Mean phylogenetic distance

Mean	 phylogenetic	 distance	 differed	 in	 spatial	 patterning	 be-
tween	 the	 taxonomic	 groups,	 and,	 while	 a	 positive	 relationship	
between	bird	and	mammal	MPD	exists,	the	correlation	is	relatively	
weak	 (p <	 .05,	adj.	R2 =	 .13,	correlation	= .35; D =	 .91,	p <	 .05).	
Birds	 exhibited	 a	 clear	 pattern	 of	 lower	MPD	 in	 harsh	 environ-
ments	(e.g.,	the	Sahara)	and	higher	MPD	in	species-	rich	and	mesic	
habitats	 (e.g.,	 the	 Sahel),	 where	 communities	 are	 more	 diverse	
and	 many	 phylogenetically	 basal	 species	 (i.e.,	 Common	 Ostrich	
Struthio camelus)	reside	(Figure	4a).	Mammals	had	less	clearly	de-
fined	zones	of	low	MPD,	with	parts	of	the	Sahara,	the	African	Rift,	
and	transitions	between	the	Sahel	and	the	humid	equatorial	 for-
ests	possessing	relatively	low	MPD.	Higher	mammal	MPD	values	
predominated	in	the	Sahel,	the	Congo,	and	more	mesic	habitats	of	
southern	Africa	(Figure	4b).

3.3  |  Mean nearest taxon distance

Mean	nearest	taxon	distance	was	found	to	be	more	correlated	be-
tween	birds	and	mammals	than	mean	phylogenetic	distance	(p <	.05,	
adj.	R2 =	.48,	correlation	=	.69;	D =	.90,	p <	.05).	Both	groups	showed	
lower	 MNTD	 values	 in	 the	 Sahara	 and	 Namib	 deserts,	 and	 both	
groups	also	showed	a	signal	of	relatively	lower	MNTD	in	wet	equa-
torial	forests,	specifically	the	Upper	Guinea	Forests,	Lower	Guinea	
Forests,	 Congo	 Rainforest,	 and	 Malagasy	 Rainforests.	 Relatively	
lower	values	also	were	shared	 in	 some	highland	 regions,	 including	

the	 Ethiopian	 Highlands	 and	 the	 Great	 Escarpment	 of	 Southern	
Africa.

3.4  |  Phylogenetic dispersion

Direct	comparisons	of	dispersion	between	birds	and	mammals	found	
a	weak	but	positive	correlation	between	these	two	groups	(p <	.05,	
adj.	R2 =	 .09,	correlation	= .31; D =	 .94,	p <	 .05).	After	transform-
ing	 data	 into	 categorical	 categories	 of	 dispersion,	 patterns	 were	
found	 to	 be	 significantly	 more	 similar	 than	 random	 (χ2 =	 23,717,	
df =	4,	p <	 .05).	Specifically,	both	groups	share	underdispersion	 in	
xeric	habitats	 (most	notably,	 the	Sahara)	and	 in	many	wet	equato-
rial	 habitats	 (specifically,	 Africaʼs	 large	 tropical	 rainforests).	 Other	
regions	with	 shared	underdispersion	 include	 the	higher	elevations	
of	Ethiopia,	interior	Southern	Africa,	and	the	East	African	Rift.	Some	
areas	of	discordance	 in	pattern	between	these	groups	 include	 the	
Malagasy	 Rainforests	 (underdispersed	 in	 mammals,	 overdispersed	
in	birds)	and	Atlas	Mountains	 (overdispersed	 in	mammals,	underd-
ispersed	in	birds).

When	 distilling	 patterns	 down	 to	 the	 level	 of	 ecoregion,	 we	
found	clear	associations	between	underdispersed	communities	and	
the	Central	African	rainforests,	the	highlands	of	Eastern	Africa,	and	
parts	of	the	Sahara	and	Maghreb.	Some	of	the	most	notable	regional	
differences	 between	 the	 two	 groups	 are	 lower	 phylogenetic	 dis-
persion	 in	Madagascar	 for	mammals	 (especially	 in	 the	humid	east-
ern	part	of	 the	 island)	and	 lower	phylogenetic	dispersion	 for	birds	
in	Ethiopia	and	more	broadly	within	the	Southern	African	highlands	
(Figure	4).

3.5  |  Theoretical communities

We	 found	 that,	 in	 every	 test	 performed,	 the	 average	 MPD	 and	
MNTD	 for	 “unstable”	 communities	 (i.e.,	 those	with	 higher	 extinc-
tion	rates)	exceeded	those	for	“stable”	communities	(i.e.,	with	lower	

F I G U R E  2 Linear	regression	
between	bird	and	mammal	species	
richness	across	Africa.	Note	that	the	
outliers	(circled)	denote	areas	close	to	
lakes,	where	apparent	spatial	errors	in	
mapping	exist.	The	relationship	between	
these	mammals	(m)	and	birds	(b)	can	be	
approximated	by	the	following	equation	
(with	95%	confidence	intervals	noted,	
and	all	variables	supported	by	p <	.05	and	
adjusted	R2 =	.85):	m =	3.89b + 36.58
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extinction	rates).	These	values	were	consistent,	despite	(sometimes	
broad)	overlaps	 in	 the	distribution	of	data	derived	 from	each	 sce-
nario.	We	only	observed	an	inability	to	separate	these	values	when	
species	 diversity	was	 low	 (i.e.,	 10)	 or	 extinction	was	 low	 for	 both	
communities.	Increasing	the	difference	in	extinction	rates	between	
the	two	communities	and	inflating	the	number	of	species	present	in	
a	community	exaggerated	the	disparity	between	MPD	and	MNTD	
distributions	 between	 the	 communities	 (Figure	 5,	 Appendix	 S1:5)	
(Cooper	et	al.,	2022).

4  |  DISCUSSION

African	mammals	and	birds	have	important	differences	in	their	evo-
lutionary	 histories,	 but	 they	 show	 strong	 geographic	 correlations	

across	 Africa	with	 respect	 to	 their	 community	 assembly,	 with	 re-
gions	associated	with	climatic	 “refugia”	possessing	underdispersed	
communities	and	less	climatically	stable	regions	being	more	overdis-
persed.	These	areas	include	many	regions	often	touted	as	refugia	in	
sub-	Saharan	Africa,	such	as	the	equatorial	rainforests	and	mountains	
in	the	east,	as	well	as	the	Maghreb,	an	area	that	functioned	as	a	refu-
gium	for	palearctic	taxa	(Griswold	&	Baker,	2002;	Habel	et	al.,	2011).	
Our	theoretical	models	confirm	that	reduced	extinction	is	sufficient	
for	creating	underdispersion	in	communities.

Previous	studies	on	Afrotropical	rainforest	biodiversity	have	re-
futed	the	idea	of	evolutionary	museums,	pointing	out	large	amounts	
of	 genetic	 diversity	 accumulated	 within	 continent-	spanning	 taxa,	
especially	 those	within	 lowland	humid	 forests	 (Huntley	&	Voelker,	
2016;	 Marks,	 2010).	 These	 patterns	 of	 diversification	 inherently	
point	to	the	existence	of	multiple	lowland	rainforest	refugia	within	

F I G U R E  3 Diversity	metrics	for	
mammals	and	birds	in	Africa.	a–	b:	
Cumulative	species	richness	(α	diversity);	
c–	d:	Mean	Phylogenetic	Distance	(MPD);	
e–	f:	Mean	Nearest	Taxon	Distance	
(MNTD)
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the	continent	during	past	glacial	cycles	(Voelker,	Outlaw,	&	Bowie,	
2010).	There	is	no	doubt	that	these	cycles	have	built	diversity	within	
this	region,	as	evidenced	by	locally	endemic	species,	but	large	por-
tions	 of	 lowland	 rainforest	 assemblies	 are	 part	 of	 the	 same	 large	
radiations	within	similar	habitats.	A	prime	example	of	this	 includes	

Pycnonotidae	(bulbuls)	found	throughout	the	wet	equatorial	African	
forests	(Shakya	&	Sheldon,	2017).	Montane	areas—	considered	“cra-
dles”	of	evolution	due	to	their	allopatric	habitats	and	refugia	during	
climate	cycles	(Fjeldså	et	al.,	2011)—	possess	similar	dynamics,	and	re-
search	elsewhere	has	revealed	spatial	coincidence	between	regions	

F I G U R E  4 Dispersion	in	mammals	
and	birds	shown	for	individual	grid	cells	
(a–	b,	classified	as	underdispersed	or	
overdispersed)	and	for	values	averaged	
within	ecoregions	(c–	d;	corrected	from	
text	to	−1	for	most	underdispersed,	
1	most	overdispersed).	Regional	patterns	
that	appear	in	the	individual	grid	cells	
are	accentuated	within	ecoregions,	most	
notably	the	consistent	phylogenetic	
underdispersion	in	equatorial	rainforests,	
the	Maghreb,	and	within	the	highlands	of	
Eastern	Africa.	Note	that	some	regional	
patterns	differ	between	the	two	groups,	
especially	within	Madagascar,	but	the	
continental	trends	are	similar

F I G U R E  5 Comparisons	of	mean	phylogenetic	distance	with	varying	extinction	rates	between	communities	with	low	(10%/1%)	
extinction	rates	for	suitable	habitats	communities	(i.e.,	refugia;	left)	and	higher	(70%/7%)	extinction	for	habitats	more	greatly	affected	by	
perturbations	(i.e.,	areas	away	from	refugia;	right).	Differences	between	distributions	are	significant	or	near	significant	in	both	cases	(t- test; 
left:	t =	−1.96,	df =	397.89,	p = .05; right: t =	−41.52,	df =	397.99,	p <	.005).	Plots	are	from	Appendices	S1:5.2.1	and	S1:5.2.2,	respectively	
(Cooper	et	al.,	2022)
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that	would	qualify	as	both	“cradles”	and	“museums”	(Azevedo	et	al.,	
2020).	Our	findings	further	the	idea	that	refugia	create	museums	in	
the	sense	that	lineages	persist	and	relative	MPD	and	MNTD	are	de-
creased,	but	we	show	that	this	effect	does	not	negate	these	regions'	
ability	to	accumulate	diversity,	and	highlights	the	need	to	focus	on	
the	processes	building	diversity	beyond	the	scope	of	“museums”	or	
“cradles”	(Vasconcelos	et	al.,	2021).

Our	results	are	conditional	on	the	accuracy	of	the	spatial	and	tax-
onomic	data	for	both	groups.	Many	Afromontane	and	Afrotropical	
lowland	taxa	demonstrate	surprising	phylogeographic	patterns	upon	
close	examination,	yet	many	multispecies	studies	do	not	incorporate	
all	described	populations	to	determine	if	existing	taxonomic	assess-
ments	are	correct	(Cooper	et	al.,	2021;	Vaz	da	Silva,	2015;	Voelker,	
Outlaw,	 &	 Bowie,	 2010;	 Voelker,	 Outlaw,	 Reddy,	 et	 al.,	 2010).	
Taxonomic	conservatism,	a	phenomenon	that	predominates	in	birds	
more	 so	 than	mammals,	 is	 also	 potentially	 introducing	 bias	within	
these	studies	(Watson,	2005).	More	thorough	reviews	of	phylogeog-
raphy	and	species	limits	are	necessary	to	fully	understand	continen-
tal	dynamics	of	diversification,	although	these	taxonomic	revisions	
may	merely	clarify	which	 regions	are	 “contact	zones”	between	re-
fugia	 rather	 than	 change	 the	 patterns	 observed	 within	 individual	
communities	 (Crouch	 et	 al.,	 2019).	 There	 are	 documented	 issues	
with	IUCN	range	maps	(such	as	those	used	here)	(Herkt	et	al.,	2017),	
particularly	in	tropical	regions	(Ficetola	et	al.,	2014).	We	find	many	
areas	with	high	mammal	richness	and	low	bird	richness	derived	from	
these	maps	are	along	the	shorelines	of	lakes,	suggesting	spatial	in-
consistencies	in	how	range	maps	are	constructed	for	the	two	groups.	
While	such	patterns	may	represent	a	real	signal	 in	some	 localities,	
we	believe	 that	 this	 lacustrine	 signal	 is	 also	 attributable	 to	 spatial	
errors	in	regions	with	complex	topography	(i.e.,	the	presence	or	the	
absence	of	 islands,	steep	elevation	clines,	etc.),	especially	given	its	
prevalence	 across	 a	 large	 latitudinal	 range	 and	across	 a	 variety	of	
lake	sizes,	from	the	shores	of	Lake	Victoria	and	reservoirs	along	the	
Zambezi	(Appendix	S1.2.2.1)	(Cooper	et	al.,	2022).	The	coarse	detail	
of	the	taxonomic	and	spatial	sampling	of	this	study	likely	minimizes	
potential	effects	in	estimated	community	structure	regarding	the	in-
accuracy	of	range	margins.

Low	MPD	and	MNTD	are	often	inferred	to	be	the	result	of	en-
vironmental	 filtering,	with	 the	Andes	 being	 upheld	 as	 a	 particular	
example	of	“niche	expansion”	and	diversification	within	the	limited	
lineages	that	colonized	the	region	 (Graham	et	al.,	2009).	However,	
other	factors	(such	as	competition)	also	have	been	put	forward	as	al-
ternative	causes	to	the	same	patterns	as	filtering	(Cadotte	&	Tucker,	
2017).	At	the	level	of	Mammalia	and	Aves	in	Africa,	we	demonstrate	
that	reduced	rates	of	extinction	can	also	 lead	to	these	similar	pat-
terns.	 Thus,	 patterns	 of	 filtering	 (i.e.,	 underdispersion)	 can	 be	 ob-
fuscated	by	environments	that	coincide	with	biogeographic	refugia.	
It	 is,	 therefore,	 important	to	consider	the	biogeographic	history	of	
the	clade	and	species	being	studied	when	determining	the	cause	of	
underdispersion	patterns.	Underdispersion	within	specific	environ-
ments	across	multiple	families	and	classes	of	organisms	is	linked	to	
climatic	stability	and	the	persistence	of	 lineages	that	have	diversi-
fied	 in	 situ	within	 the	greater	metacommunity	during	disjunctions	

in	spatially	discrete	refugia.	Environmental	filtering	may	be	a	cause	
of	 reduced	 MPD	 and	 MNTD	 for	 certain	 regions	 and	 certain	 lin-
eages	(such	as	within	Afromontane	sunbirds	of	the	genus	Cinnyris; 
Figure	 1)	 (Bowie,	 2003),	 but	 our	 findings	 indicate	 environmental	
filtering	 may	 also	 be	 an	 illusion	 of	 specific	 environments	 having	
reduced	extinction	while	maintaining	high	 levels	of	diversification.	
Thus,	despite	Afromontane	 regions	being	 considered	hotspots	 for	
diversification	(Fjeldså	&	Bowie,	2008;	Fjeldså	et	al.,	2011;	Rahbek	
et	al.,	2019),	similar	patterns	of	diversification	will	also	occur	in	other	
geographic	regions	when	environmental	cycling	creates	similar	pat-
terns	of	habitat	fracturing	with	stable	refugia,	as	demonstrated	by	
the	Afrotropical	rainforests	(Huntley	et	al.,	2019;	Huntley	&	Voelker,	
2016;	Marks,	2010;	Voelker	et	al.,	2017),	savannas	of	southern	and	
eastern	Africa	(Aghová	et	al.,	2017,	p.	20;	McDonough	et	al.,	2015),	
and	the	Maghreb	(Griswold	&	Baker,	2002).

Regional	differences	 in	phylogenetic	dispersion	 illuminate	how	
climatic	 cycles	have	 shaped	 the	bird	 and	mammal	 diversity	of	 the	
African	continent.	The	disparities	observed	between	mammals	and	
birds	highlight	the	differential	short-	term	responses	of	these	com-
munities	to	climate	change	while	also	highlighting	how	shared	refu-
gia	 result	 in	 similar	patterns	 for	both	groups	 through	evolutionary	
time	(Riddell	et	al.,	2021).	Both	birds	and	mammals	show	high	rich-
ness,	 high	MPD,	 and	 high	MNTD	 in	 Eastern	 and	 Southern	Africa.	
These	areas	are	home	to	some	of	the	most	topographically	complex	
regions	 within	 Africa,	 including	 the	 highest	 (Kilimanjaro,	 5,892	 m	
asl)	and	lowest	(Lac	Assal,	−153	m	asl)	elevations	on	the	entirety	of	
the	African	continent	(Wikipedia,	2021).	In	addition	to	hosting	large	
amounts	 of	 habitat	 variability,	 the	 African	 Rift	 region	 is	 relatively	
centrally	located	within	the	continent	(and	thus	relatively	central	for	
species	dispersing	 across	 the	 continent)	 (Cooper,	2021).	This	 vari-
ety	has	 resulted	 in	 the	persistence	of	 some	phylogenetic	 outliers,	
such	as	the	Tanzanian	partridges	(genus	Xenoperdix)	(Dinesen	et	al.,	
1994;	Fjeldså	et	al.,	2011),	but	the	overall	pattern	of	underdispersion	
is	still	maintained.	Notably,	while	locally	endemic	species	are	often	
associated	with	montane	habitats,	the	xeric	lowlands	of	East	Africa	
are	also	home	to	restricted	range	species,	such	as	Cosensʼs	Gerbil	
Gerbillus cosensis	 (Gerrie	 &	 Kennerley,	 2016)	 and	 Beesleyʼs	 Lark	
Chersomanes beesleyi	(Sinclair	&	Ryan,	2010).

Madagascar	 shows	 some	 of	 the	 clearest	 disparities	 between	
mammals	and	birds	within	our	study,	perhaps	due	to	the	nature	of	
colonization	frequency	and	pattern	by	birds	and	mammals	(Everson	
et	al.,	2016;	Reddy	et	al.,	2012)	coincident	with	the	museum-	like	
nature	of	 islands	 for	 taxonomic	groups	 that	are	no	 longer	 found	
in	continental	settings	 (Kirchman	et	al.,	2001;	McCullough	et	al.,	
2019).	Notably,	 the	 insular	nature	of	Madagascar	makes	 it	 theo-
retically	 more	 accessible	 to	 birds	 than	 to	 terrestrial	 mammals.	
Indeed,	 for	 birds,	 we	 see	 island	 wide	 overdispersion,	 undoubt-
edly	related	to	the	co-	occurrence	of	“recent”	colonists	radiations	
with	more	“ancient”	lineages	found	throughout	the	island,	such	as	
Brachypteraciidae	 (ground	rollers)	and	Mesitornithidae	 (mesites).	
Mammals,	 however,	 are	 dominated	 by	 infrequent	 colonizations	
that	can	be	quite	old,	with	contemporary	climate	patterns	work-
ing	 against	 colonization	 (Stankiewicz	 et	 al.,	 2006).	 In	 this	 group,	
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we	see	a	repeat	of	the	same	patterns	as	mainland	Africa.	Wetter	
eastern	rainforests,	areas	that	have	been	identified	as	climatic	re-
fugia	(Rakotoarinivo	et	al.,	2013;	Raxworthy	&	Nussbaum,	1995),	
possess	underdispersed	communities	relative	to	the	xeric	western	
regions.

We	found	phylogenetic	patterns	were	more	highly	structured	
for	 birds	 than	 for	 mammals.	 This	 is	 driven	 in	 part	 by	 distribu-
tions	and	taxonomy	for	birds	being	more	well	known,	with	many	
African	 mammal	 complexes	 (specifically	 shrews,	 rodents,	 and	
bats)	 still	 possessing	 large	 amounts	 of	 taxonomic	 flux	 (Hutterer	
et	al.,	2019;	Monadjem	et	al.,	2021;	Nicolas	et	al.,	2020).	It	is	also	
possibly	 attributable	 to	 differential	 responses	 to	 climate	 change	
between	 the	 two	 groups	 on	 shorter	 timescales	 (Riddell	 et	 al.,	
2021).	Nevertheless,	we	recovered	positive	correlations	between	
the	 MPD	 and	 MNTD	 of	 both	 groups,	 and	 the	 spatial	 distribu-
tion	 of	 over-		 and	 underdispersed	 regions	 overlap	 extensively.	
Overdispersed	communities	 for	both	groups	are	concentrated	 in	
xeric	and	semi-	arid	habitats	across	the	continent	(with	the	notable	
exception	of	the	Sahara),	with	underdispersed	communities	being	
concentrated	in	low-	elevation	rain	forest	and	high-	elevation	habi-
tats	across	the	continent.

5  |  CONCLUSIONS

Underdispersion	has	often	been	associated	with	environmental	fil-
tering	or	with	limited	dispersal	within	or	between	specific	environ-
ments.	An	overlooked	consideration	is	that	stability,	in	the	form	of	
refugia,	and	depressed	extinction	rates	may	result	in	these	same	pat-
terns,	and	that	both	montane	and	lowland	regions	can	exhibit	similar	
patterns	when	both	possess	 similar	patterns	of	 stability.	 In	Africa,	
underdispersion	 in	mammals	 and	birds	 is	 clearly	 linked	 to	 climatic	
refugia,	 suggesting	 that	underdispersion	at	 large	 taxonomic	 scales	
can	be	caused	by	relative	extinction	rates.
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