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Dementia of the eye:
the role of amyloid
beta in retinal
degeneration
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Abstract

Age-related macular degeneration (AMD) is
one of the most common causes of irreversible
blindness affecting nearly 50 million indivi-
duals globally. The disease is characterised by
progressive loss of central vision, which has
significant implications for quality of life
concerns in an increasingly ageing population.
AMD pathology manifests in the macula,
a specialised region of the retina, which is
responsible for central vision and perception
of fine details. The underlying pathology of
this complex degenerative disease is incom-
pletely understood but includes both genetic
as well as epigenetic risk factors. The recent
discovery that amyloid beta (Aβ), a highly toxic
and aggregate-prone family of peptides, is
elevated in the ageing retina and is associated
with AMD has opened up new perspectives
on the aetiology of this debilitating blinding
disease. Multiple studies now link Aβwith key
stages of AMD progression, which is both
exciting and potentially insightful, as this
identifies a well-established toxic agent that
aggressively targets cells in degenerative
brains. Here, we review the most recent
findings supporting the hypothesis that
Aβ may be a key factor in AMD pathology.
We describe how multiple Aβ reservoirs, now
reported in the ageing eye, may target the
cellular physiology of the retina as well as
associated layers, and propose a mechanistic
pathway of Aβ-mediated degenerative change
leading to AMD.
Eye (2015) 29, 1013–1026; doi:10.1038/eye.2015.100;
published online 19 June 2015

Introduction

Age-related macular degeneration (AMD) is a
complex ocular disorder affecting a critical
region of the retina known as the macula, which
is crucial for central vision and perception of fine
detail. The disease is the primary cause of

irreversible blindness in societies with
demographics favouring increasing age. The
aetiology of this degenerative disorder is poorly
understood, but contains both genetic as well as
environmental risk factors.1–3 Central to
degenerative pathology is the loss of visual
function, which is associated with atrophy of
photoreceptors and the underlying retinal
pigment epithelium (RPE) that forms the blood–
retinal barrier.4,5 Retinal ganglion cells (RGC)
and the RPE monolayer were recently identified
as a major source of amyloid beta (Aβ) synthesis
and secretion in the posterior eye.6 Aβ is a
remarkably penetrative and highly toxic protein
that aggressively targets neurons and is a key
feature of neurodegenerative disease.7,8 In the
eye, multiple Aβ reservoirs were discovered in
the retinal environment, while elevated
Aβ levels were found in the ageing retina and
linked with key stages of AMD progression.6

These findings support the hypothesis that
Aβ has a crucial though previously
uncharacterised role in driving degenerative
processes in the ageing macula.
Here, we bring together the most recent

findings emerging from the literature
investigating AMD, neurodegeneration, as well
as Aβ-structural biology, which support our
hypothesis, and offer insights into fundamental
degenerative events that could impair the
senescent retina. A better understanding of how
Aβ might target the retinal function may help in
designing novel therapies to treat AMD in the
future.

Age-related macular degeneration

AMD is the most common cause of irreversible
blindness in ageing societies, globally affecting
~ 50 million individuals with the direct cost
estimated at nearly US$ 255 billion.9 The disease
affects ~ 3% of adults,10 and notably increases to
a quarter of the population by the eighth decade
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of life.11 A key process in vision loss is the gradual
impairment of the RPE monolayer, which maintains
photoreceptors on its apical surface and basally preserves
the blood–retinal barrier.1 Early AMD is often
asymptomatic, but is typified by the presence of sub-RPE
deposits known as drusen consisting of cellular debris
and lipids (including extracellular matrix constituents and
inflammatory components).12,13 Formation of hard
drusen, which typically occur in the peripheral retina has
well-defined borders, and is regarded to be a normal part
of the ageing process. In contrast, the formation of
macular soft drusen that is characterised by larger size, a
diffuse nature with poorly-defined borders that rarely
occurs before the age of 55 years is the first clinical
indicator of increased risk of disease susceptibility.5

Late AMD is characterised by loss of central vision
due to significant RPE/photoreceptor atrophy, referred to
as ‘dry AMD’, and/or the breakthrough of invasive
blood vessels through the blood–retinal barrier referred
to as ‘wet AMD’. Currently, the more prevalent dry form
of the disease is untreatable, while several clinical
strategies are used to treat the less common but
more aggressive wet AMD, with varying degrees of
success.4

Although AMD has been characterised clinically, the
underlying mechanisms, especially during early disease,
remain incompletely understood. The lack of molecular
characterisation between dry and wet AMD has therefore
limited our understanding and definition of the disease to
largely clinical observations and terminology. The recent
discovery of Aβ in the ageing retina and its link with
AMD presents an exciting opportunity to view AMD
from a new perspective, and to better understand disease
onset and progression in novel molecular terms.

Aβ—prevalence, structure, and dynamic assembly

The amyloid precursor protein (APP) gene located on
chromosome 21q21 encodes a ubiquitously expressed
integral type I membrane glycoprotein in several
alternatively spliced forms, of which the most
predominate isoforms include APP751, APP770, and
APP695. APP transcripts and proteins are reported to be
abundantly expressed in mouse, rat, as well as human
RGC and RPE cells,14,15 with APP695 being the principal
isoform expressed in the brain.16 The function(s) of APP
remain incompletely understood, with most studies
suggesting signalling via several pathways in the brain.17

The proteolytic processing of APP occurs via two
mutually exclusive routes referred to as the
amyloidogenic and non-amyloidogenic (or constitutive)
pathway.18,19 Successive cleavage of APP in the
amyloidogenic route by enzymes β- and γ-secretase
produces the monomeric Aβ peptide with a molecular

weight of ~ 4 kDa.8,20 However, mutations in genes
encoding APP and the enzyme presenilin, a component of
the γ-secretase complex, promotes the generation of a
longer isoform of Aβ that favours the amyloidogenic
pathway, and is associated with several degenerative
disease of the brain.7,21,22 A large body of work has
focused on characterising the C-terminal cleavage of APP
by γ-secretase that creates a heterogeneous mixture of
Aβ peptides with different solubility, stability, and
biological properties.7,8,20 Additional heterogeneity of
Aβ peptides is generated by post-translational
modifications mediated by aminopeptidases, glutaminyl-
cyclase/isomerases, and by phosphorylation reactions
resulting in a mixture of more than 20 Aβ species,23,24 of
which Aβ37, Aβ38, Aβ40, Aβ42, and Aβ43 have been
reported in conditioned media of cells and in body
fluids.8 The predominant forms of Aβ peptide are those
with 40 and 42 residues, where Aβ42 generally forms
fibrils more rapidly compared with the 40-residue species.
This is considered to be due to the additional
hydrophobic isoleucine and alanine residues at positions
41 and 42 in the peptide. Experimental substitution of
these key amino acids with hydrophilic residues results in
a decrease in assembly kinetics.25 Furthermore,
hydrophobic regions of Aβ42 spanning residues 17–21 and
31–42 are considered to be important for fibril structure,26

while changes in the hydrophobicity in the sequence, for
example, in the variant Phe20Glu alters Aβ42 toxicity, as
well as the capacity to aggregate.27 Soluble, monomeric
Aβ can be composed of α-helical and/or unordered
structure, which then self-associates into low-molecular
weight dimers, trimers, and oligomers with a
conformational change to β-sheet. Further conformational
changes result in the formation of higher ordered
structures such as protofibrils and mature amyloid fibrils
with a cross-β structural core28 (Figure 1). This sequence
of events is described by the ‘nucleation-dependent
polymerisation model’, which proposes a 2-step process,
where monomeric Aβ undergoes a slow
thermodynamically unfavourable reaction to form
oligomeric nuclei, followed by a rapid elongation/growth
phase with the assembly of larger aggregates and fibril
elongation. The formation of nuclei is the critical rate-
limiting step, where further fibril formation can be
significantly accelerated by the availability of preformed
oligomers/nuclei.29 As the nucleus is the highest energy
species in this reaction, its concentration should be very
low during the aggregation time-course in contrast to
monomers and fibrils. However, many studies show
oligomer formation in the absence of detectable amyloid
fibril formation early in the Aβ amyloidogenesis time
course.30,31 This has resulted in a mechanistic revision of
the original model, and polymerisation of Aβ is proposed
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to occur via metastable intermediaries in a process
referred to as ‘nucleated conformational conversion’.32

Studies utilising oligomeric Aβ, which impairs
neurotransmission and causes neuronal death,33 as well
as a close link between soluble Aβ oligomer levels and
disease progression,34,35 has resulted in a fundamental
shift of interest from fibrillar Aβ to oligomeric Aβ.8 This
shift in focus was highlighted in experiments utilising
biomimetic unilamellar vesicles, which showed that as
Aβ assembles from an oligomeric to fibrillar state, its
ability to penetrate membranes also diminishes.36 Even
relative to the monomeric form, oligomeric Aβ was found
to preferentially interact with cellular membranes to
become immobilised on the cell surface.37 The significant
differences between oligomeric vs fibrillar Aβ has been
proposed to be due to their different capacities to access
intracellular compartments.38 This does not, however,
automatically imply that fibrillar Aβ plaques are benign,
as studies using AD mouse models show neurons in the
vicinity of plaques to have reduced synaptic density, loss
of synapses, as well as elevated resting Ca2+ levels.39 One
hypothesis considers plaques as inert sinks; consisting of
aberrantly folded proteins, lipids, and free metals, where
a dynamic equilibrium between toxic Aβ oligomers and
inert fibrils might exist, resulting in a local spillover of
cytotoxic Aβ species in the vicinity.8 Consequently, age-
related accumulation of such Aβ deposits may be
viewed as potentially pathogenic reservoirs at critical
locations in the retina and brain, which may contribute
to chronic ‘local’ Aβ-mediated toxicity, as well as
associated inflammatory events characteristic of such
degenerative tissues.

Mechanisms of Aβ action in degenerative neurons

Aβ pathology in the ageing retina is not well understood.
However, insights into Aβ-mediated mechanisms may be
gleaned from studying degenerative brains where some
mechanistic insights and pathways have been proposed
with oligomeric Aβ as a key driver of pathogenicity.
Commonly cited arguments against the role of Aβ in AD
includes the lack of a correlation between Aβ plaques in
AD brains and the extent of cognitive decline in
Alzheimer’s patients, as well as the observation that
alterations to Aβ metabolism and appearance of amyloid
plaques often occur many years before clinical
symptoms.40 Nonetheless, degenerative neurons show a
strong correlation with Aβ, a long-standing observation
that is supported by a significant body of
literature.7,8,20,23,41,42 Aβ involvement in
neurodegenerative and neurological spectrum disorders
has been shown in Alzheimer’s disease, Fragile X
syndrome, Downs syndrome, Autism, Huntington’s, and
Parkinson’s diseases.7,43 AD brains, for example, are
characterised by a marked neuronal loss and deposition
of extracellular fibrils in neuritic plaques consisting of
Aβ fibrils.7,20,41 The plethora of evidence is highly
supportive, but does not prove the hypothesis that
ill-defined soluble Aβ species are involved upstream in
the pathogenic sequence of events that cause AD.7,8 Some
of these criticisms may be addressed by studying soluble
Aβ oligomers, which demonstrate a much closer
relationship with disease progression compared with
amyloid plaques.34,35 The relative importance of
oligomeric vs fibrillar Aβ in degenerative retinas remains
to be established.

Figure 1 (a–c) Show negative stained transmission electron micrographs depicting the self-assembly of Aβ1–42 at pH 7.4, 50 μM. (a)
Shows small spherical oligomers that are visible immediately after preparation of Aβ1-42 peptide (Soura et al50). These assemble further
by 24 h to form (b) elongated protofibrils, and finally (c) amyloid fibrils after 48 h incubation. d Shows a structural model of an amyloid
fibril composed of cross-β structure and showing a slow twisted architecture. Generation of the model is described in Morris et al.101
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Another feature of Aβ pathogenicity in AD is a critical
shift in the relative Aβ40:Aβ42 ratios towards elevated Aβ42
that is correlated with increased disease susceptibility.44

However, Aβ-driven pathology is likely to be more
complex and include both quantitative as well as
qualitative changes to the spectrum of Aβ peptides.8

Age-related changes to Aβ42 as well as post-translational
modifications, including pyroglutamate modifications,
may well alter seeding of plaques, or drive independent
cytotoxicity. Ultimately, the transient and complex nature
of Aβ assemblies is an obstacle to elucidating the ‘toxic’
Aβ species and/or conformation(s) that are detrimental to
cellular physiology and function. Such issues are likely to
arise when investigating Aβ mechanisms in the retina.
This limited understanding of how Aβ assemblies cause
pathogenicity also extends to mechanism(s) associated
with Aβ cytotoxicity. The amphipathic nature of
Aβ oligomers has been suggested to contribute to their
ability to penetrate/coat/overlie the surface of cellular
membranes, or potentially act as cell-penetrating
peptides, and has been extensively reviewed elsewhere.42

As with most complex degenerative diseases, the
impairment of cellular mechanisms is most likely to occur
before appearance of senile plaques and onset of
dementia. Indeed, a growing body of evidence supports
the idea of early changes driven by toxic Aβ oligomers,
including deterioration of long-term potentiation,33

microtubule abnormalities,45 as well as loss of synaptic
function.46 The soluble Aβ fraction is primarily composed
of Aβ monomers, dimer, trimers, and SDS-stable
Aβ oligomers,34,44 some of which has been reported in
hippocampal CA1 region and the cortex of ageing human
brains, even in the absence of senile plaques.47 The
potency of these small Aβ assembles were highlighted in a
study where introduction of soluble Aβ dimers and
trimers into rodent brains resulted in cognitive
impairment.48 Central to the idea of soluble toxic
Aβ peptides as a driver of early pathogenicity is the initial
entry of oligomeric Aβ, possibly via disruption of
membrane integrity.36,49 Our work has recently shown
that oligomeric Aβ is rapidly internalised by neurons to
accumulate in clathrin-positive endosomes,50 supporting
evidence that clathrin-mediated endocytosis may be
involved in Aβ internalisation,51 as well as findings
showing inhibition of endosomal activity partially
reduces Aβ-mediated toxicity.52 Other fundamental
cellular mechanisms impaired by oligomeric Aβ in
susceptible neurons are likely to include the impairment
of axonal transport, mitochondrial dysfunction, and
synaptic vesicle dynamics. Our ongoing studies to
understand these key pathogenic changes will provide
valuable insights into early Aβ-mediated activity in
degenerative brains, as well as inform on potential
pathways of damage in the retina.

Evidence of Aβ in the ageing retina and AMD

Constitutive Aβ generation in the normal retina

Both the retina and the central nervous system (CNS)
share a common origin as both are derived from the
developing neural tube. Both structures interface
intimately with the adjacent vasculature via the
blood–retinal and blood–brain barriers. Furthermore,
with increasing age, both the retina and the brain develop
extracellular deposits associated with degenerative
pathology, referred to as drusen and senile plaques,
respectively. It is therefore unsurprising that the many
striking similarities between drusen and senile plaques
include Aβ. Other shared components include the
following; serum amyloid P component, apolipoprotein
E, immunoglobulin, basement membrane matrices,
proteoglycans, and metal ions (Fe3+, Cu2+, and Zn2+),
acute-phase reactants, proteases/clearance-related
elements, and several complement proteins, as well as
other inflammatory mediators that are indicative of local
inflammation typically associated with sub-retinal
deposits.6 Such remarkable similarities between drusen
and senile plaques, coincident with age and poor clinical
prognosis, suggest that similar pathological mechanisms
may drive degenerative changes in the retina as well as
the brain.
Studies have now confirmed that RGC, the inner

nuclear layer of the retina,15,53 as well as the RPE54

expresses APP, and possesses the necessary cellular
machinery to generate Aβ. Retinal and RPE cells expresses
β-secretase, the four known subunits of γ-secretase, and
the three major APP isoforms APP770, APP751, and APP695,
as well as neprilysin.14,54,55 Furthermore, isolated RPE
cells from wild-type C57BL/6 mice were shown to readily
synthesise and secrete Aβ, which accumulated in
conditioned media,56 while Aβ expression levels
increased in rat RGC with age.15 This was not surprising,
as abundant Aβ40 and Aβ42 peptides have been reported
in both aqueous and vitreous humours. Aβ in ocular fluid
is thought to originate primarily from the retina and RPE,
from where it is secreted to the vitreous humour and
subsequently transported to the anterior chamber.55,57

This follows a similar pattern observed in the CNS, where
Aβ is primarily synthesised in neurons but accumulate in
cerebrospinal fluid (CSF).58 Not only does the retina and
RPE constitutively express APP,53,55 but RPE cells
overlying, flanking, or displaced by drusen also show
Aβ immunoreactivity in the cytoplasm.54,57 Current
measurements suggest that Aβ levels in the bovine
vitreous and retina are considerably lower compared
with CSF levels,53,55 but this may reflect the dynamic
behaviour of ‘local Aβ levels/species in the retina’, as well
as initial problems associated with Aβ quantification in
these tissues. It is noteworthy that the retina is not only
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continuously exposed to Aβ species, but the very high
concentrations of α-secretase cleaved soluble APP found
in the vitreous fluids is comparable only to levels in
CSF.55 Intriguingly, a recent study demonstrated that
α- and β-secretase cleaved APP levels in conditioned
media of wild-type neuronal cultures to be directly linked
to extracellular Aβ concentrations, with a 1 : 1 relationship
between β-cleavage of APP and release of Aβ.59 This
highlights some of the difficulties in accurately
quantifying Aβ, and given what is known about its
pathogenicity in degenerative brains, provides further
evidence that the retina is constitutively exposed to
Aβ under normal/healthy conditions.

The retinal Aβ burden increases with age

Growth of Aβ deposits with advancing age may be
viewed as an alteration in the balance between increased
Aβ synthesis vs a reduction in the ability to clear such
aggregates. Either or both fates may be sufficient to
elevate the Aβ burden in the ageing retina. For example,
cultured RPE cells from geriatric C57BL/6 mice displayed
elevated Aβ levels in conditioned media compared with
RPE cells from younger controls. In contrast, mRNA
levels of neprilysin (which clears Aβ) were significantly
decreased, while β-secretase activity was elevated in
senescent RPE cells, indicating the ability to clear Aβ also
diminished with age.56 Analysis of C57BL/6 mice as
young as 3 months by immunofluorescence and
immunoblotting techniques revealed Aβ accumulations in
the RPE-Bruch’s membrane interface, as well as in
retinal/choroidal blood vessels. With age,
Aβ accumulations in the critical RPE-Bruch’s region
increased in subsequent months.60 Of note, this pattern of
amyloid deposition was observed in a region where
Aβ accumulation is thought to first occur in AMD; in close
proximity to the inner collagenous layer of Bruch’s
membrane.61 Interestingly, Aβ staining in inner retinal
vessels appeared discontinuous, while Aβ positivity in the
choroidal vasculature were confined to sub-groups of
vessels suggesting a degree of selectivity in Aβ

deposition.60 Such points of vulnerability may be related
to thinning of blood vessels and reduced flow rates, as
observed in the retinal vasculature of early AD patients.62

Aβ deposition with increasing age was not restricted to
sub-RPE regions, but was unexpectedly discovered to
accumulate in photoreceptor outer segments (POS) in
older mice. Such deposits were identified as early as
3 months and by 12 months the outer segments were
completely wrapped in Aβ-containing material, which
appeared qualitatively different by 24 months.60

Although there is no direct evidence that such material
is purely Aβ, the close association between
Aβ-immunostaining patterns and scanning EM images

argue that Aβ at least constitutes an element of such age-
related deposits. Additionally, intravitreal injection of
oligomeric Aβ40 into wild-type rats produced the highest
immunostaining intensity levels in POS, supporting the
idea of preferential Aβ accumulation in the apical
proximity of RPE cells.63 Analysis of human post-mortem
samples between ages of 31 and 90 years mirrored
a similar pattern of increasing Aβ immunostaining in
POS.60 This pattern of Aβ accumulation originating at the
apical tip of POS and progressing along its length
illustrate-specific Aβ aggregation,60 and as such, agree
with other findings14,54–56 showing retinal/RPE generated
Aβ accumulating in posterior eye with advancing age
(Figure 2).

Figure 2 Schematic diagram showing multiple locations of Aβ
synthesis, secretion, and aggregation in the ageing retina (red
asterisk) that is reported in the literature to date. BrM, Bruch’s
Membrane; POS, photoreceptor outer segments; RGC, retinal
ganglion cells; RPE, retinal pigment epithelium.
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Aβ aggregation is involved in key stages of AMD

The evidence discussed thus far confirms that Aβ has a
central role in AMD, a large part of which is derived from
human post-mortem eyes,57,61,64 and provides a clinical
snapshot of Aβ involvement in key stages of disease
progression. Although such data are often based on high-
quality static images, they nonetheless portray a
tantalising picture of dynamic Aβ activity in the ageing
retina. The presence of Aβ in the retina appears to be
correlated with age as well as the extent of sub-retinal
drusen loads. For example, EM analysis of 152 human
donor eyes ranging from 9 to 91 years of age showed that
Aβ assemblies were most prevalent in retinas with
moderate-to-high drusen loads.57 Although links between
sub-RPE Aβ deposition in the macula vs peripheral retina,
or early vs late AMD, or indeed with specific disease
phenotypes were not examined, these findings suggest
that Aβmight be associated with more advanced stages of
AMD. A smaller study consisting of nine AMD retinas
and an equivalent number of control retinas found that
drusen containing Aβ were present only in patients with
AMD. Elevated Aβ reactivity was detected in four of nine
AMD retinas, with a few Aβ-positive drusen in two early
AMD retinas and numerous Aβ-positive drusen in two
retinal samples with geographic atrophy.65 Although this
study lacked sufficient sample numbers to arrive at any
firm conclusions linking Aβ-positive drusen with AMD, it
nonetheless suggests that Aβ pathogenicity is involved in
distinct stages of AMD. Confocal immunofluorescence
and ultrastructural analysis of post-mortem retinas
revealed that Aβ is localised in sub-structural vesicular
components within drusen referred to as ‘amyloid
vesicles’.54,57,61,64 These structures ranged from 2 to 10 μm
in diameter and were readily detected in both macular
and peripheral drusen from donors with/without clinical
AMD.54 Such amyloid-containing structures within
drusen have been reported by several groups using a
variety of different Aβ antibodies and appear to vary
between 0.25–10 μm,57 10–15 μm,61 and 10–20 μm in
diameter.64 In addition, the relative shapes of such
amyloid structures within drusen also varied; from
spheres to elongated forms,57,61 and to vesicles that
appear to be in the process of budding or fusing.54

Although all studies were in agreement that each drusen
may contain multiple amyloid structures, descriptions of
amyloid cores and vesicles were largely defined by the
choice of Aβ antibodies used in the respective
studies.54,57,61,64 Some drusen were described as densely
packed with amyloid vesicles accounting for a significant
proportion of their total volume, while others contained
only a single large vesicle that occupied a substantial
portion of the drusen mass.54 For example, Anderson
et al57 reported a single drusen to contain 4100 spheres of

various sizes. The presence of multiple amyloid cores in
larger drusen suggested that these drusen may have
formed from a coalescence of smaller drusen,61 indicating
the evolving complexity of Aβ containing drusen over
long periods of time.
Further analysis of amyloid vesicles revealed a highly

organised interior consisting of concentric ring-like layers
with varying electron densities and bound by an electron
dense shell of ~ 100 nm thick.57 A similar description have
also been made with the vesicle interior described as
consisting of flocculent material and/or concentric ring-
like elements bound by an outer shell or vesicle rim.54

Aβ immunoreactivity was detected throughout all the
layers, signifying the apparent central role of Aβ in
amyloid vesicles within drusen.57 Despite the limited
scope of data offered by human post-mortem eyes along a
single plane, as well as a singular point in time, they
nonetheless show that Aβ antibodies specific for different
conformations localise to different parts of amyloid
structures.61,64 For example, the A11 and M204 antibodies
that specifically recognise the toxic oligomeric Aβ forms,
but not Aβ monomers or fibrils were typically found to
localise centrally within drusen in close proximity to the
inner collagenous layer of Bruch’s membrane.61,64 Hence,
the authors believe that such oligomeric cores are
different to the substructures described by Anderson
et al,57,61 but conclude that they nonetheless form the
majority of Aβ structures observed in drusen.64

Additionally, a wide spectrum of antibodies such as OC,
6E10, WO1, WO2, and 4G8, which specifically bind to
Aβ protofibrils and mature fibrils showed a propensity to
accumulate towards the outer periphery and shell of
amyloid structures within drusen.54,57,61,64 Hence, despite
the lack of a comprehensive study that systematically
investigates the full spectrum of Aβ conformations in
retinal substructures of human mort-mortem retinas, the
collective findings thus far agree that drusen contain an
abundant variety of Aβ forms and structures (Figure 3).

Aβ deposits in the retina triggers a pro-inflammatory and
pro-angiogenic microenvironment

The experimental exposure of cells in the retina, RPE, and
choroid to Aβ can induce fundamental changes associated
with local retinal inflammation. This evidence is derived
from a variety of experimental culture systems, as well as
from animal models including Zebra fish, rabbits,
rodents, and human post-mortem eyes. A systematic
review of these findings reveals a progressive pattern of
Aβ-mediated inflammatory and pro-angiogenic effects in
the ageing retina, in which we are able to discern between
early Aβ-driven changes as well as late-stage AMD
pathology associated with Aβ. Such changes are likely to
be triggered, and chronically sustained, by a toxic cocktail
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of Aβ peptides that is readily supplied by multiple
Aβ reservoirs surrounding the ageing retina, which
includes the immediate environment around the RPE,56 in
vitreous fluid,55,57 the coating of the outer segments of
photoreceptors,60 and in sub-retinal drusen.54,57

Furthermore, these early events are likely to occur well in
advance of clinical AMD and include alterations in the
expression profiles of key inflammatory genes. For
example, human foetal RPE cultures treated with
nanomolar concentrations of oligomeric Aβ40 for as little
as 24 h resulted in a significant upregulation of pro-
inflammatory cytokines IL-1β and IL-8.66 Another study
also demonstrated IL-8 as well as MMP-9 overexpression
following oligomeric Aβ40 treatment, coincident with RPE
senescence and compromised barrier properties.67 The
role of IL-1β in generating reactive oxygen species
(ROS) as well as IL-8 in RPE cells has been previously
documented, while IL-8 itself is a potent inducer of
chemotaxis, correlated with amplification of
inflammatory responses and neovascularisation.68,69

Exposure of the D407 RPE cell line to oligomeric Aβ40
resulted in elevated IL-33, which can accelerate the
production of Th2-associated cytokines and promote
tissue inflammation.70 Elevation of oxidative stress
responses in cultured ARPE-19 cells were also observed
within hours of treatment using nanomolar to micromolar
levels of the more toxic oligomeric Aβ42.

71 These
pro-inflammatory activities driven by Aβ are not limited
to cultures but are also replicated in animal models.
For example, the use of wild-type rats to investigate acute
effects of Aβ40 following intravitreal injections revealed
elevated levels of pro-inflammatory IL-1β, IL-6, IL-8, and
TNF-α in the RPE/choroid and neuroretina. In addition,
elevation of caspase-1 and NLRP3 indicated activation of

the retinal/RPE inflammasome,63 which has been
implicated in AMD susceptibility.72 The varying fates of
retinal/RPE cells following acute application of Aβ in vivo
may reflect a mixture of varied Aβ cytotoxicity as well as
Aβ-dosages, length of treatment as well as sites of
injection. Hence, intravitreal Aβ40 injections failed to show
significant retinal/RPE cell death,63 which is in stark
contrast to RPE hypopigmentation, disorganised
photoreceptors/RPE, and halving of photoreceptor
numbers soon after sub-retinal injections of oligomeric
Aβ42 into wild-type mice.71 Similarly, RGC cultures
acutely treated with Aβ25–35 or Aβ1–42 induced apoptosis
at micromolar concentrations, while treatment with
Aβ1–40 proved less toxic.73 The pattern of RGC apoptosis
was also observed in a mouse model of glaucoma-
associated Aβ co-localisation,74 highlighting the potential
involvement of Aβ in multiple degenerative conditions in
the eye. Taken together, these findings demonstrate that
key changes in gene expression of retinal and RPE cells
mediated by Aβ are replicated in vivo to promote a
pro-inflammatory milieu in early AMD pathogenesis.
The complement system consist of regulatory molecules

in systemic circulation, which constitute the classical,
alternative as well as the lectin pathways, and has an
important role in AMD susceptibility and risk of disease
progression.75 These distinct mechanism of the
complement system converge on a common terminal
pathway culminating in the formation of the membrane
attack complex (MAC), opsonization, and lysis of target
cells as well as the recruitment and/or activation of
inflammatory cells.75,76 The ability of Aβ peptides to
induce chronic inflammation in degenerative brains via
direct and independent activation of the complement
pathway has been well established.77,78 Evidence now

Figure 3 Aβ assemblies are prevalent in individuals with moderate-to-high levels of drusen. Aβ is organised into spherical structures
termed ‘amyloid vesicles’, which can occupy a large portion of drusen volume, and form potential sites of complement activation.
A druse may be densely packed with several amyloid vesicles or contain only a single large vesicle. The presence of distinct Aβ
structures may reflect the evolving nature of drusen with disease progression. For example, the presence of multiple oligomer cores in a
large drusen may be due to smaller drusen coalescing over time. Aβ in drusen correlates with degenerating photoreceptors and RPE.
CC, choriocapillaris; BrM, Bruch’s membrane; RPE, retinal pigment epithelium.

Dementia of the eye
JA Ratnayaka et al

1019

Eye



supports the possibility that Aβ, specifically around
drusen, can mediate early inflammatory events in
degenerative retinas in a similar manner. An insight into
such mechanisms is provided by studies of human post-
mortem eyes, showing RPE-synthesised factor H (HF1), a
major regulator of the alternative complement pathway,
co-localising with its ligand C3b/iC3b in amyloid-
containing vesicles within drusen. HF1 and MAC
accumulated along the surface of amyloid vesicles in the
RPE-choroidal interface and were prevalent in the
macular regions from donors with prior histories of
AMD.79 This association was also shown in another study
of human post-mortem retinas, which revealed iC3b, the
activated product of complement C3 in close proximity
and co-localised with Aβ deposits in amyloid vesicles.54

Aβ deposits in drusen may form a nucleus around which
chronic ‘wound-like’ events may occur (Figure 3), a model
which builds on an elegant hypothesis that chronic local
inflammatory and immune-mediated events at the level
of the RPE-Bruch’s membrane have a critical role in
drusen biogenesis, and in the pathobiology of
AMD.13,54,76,79

The RPE has a central role in maintaining the blood–
retinal barrier, an important function in sustaining the
immune-privileged status and homoeostasis of the retinal
environment.1,5 Aβ-mediated pathogenicity in early AMD
may also target the structural integrity of RPE barrier
properties. For example, acute treatment of ARPE-19
monolayers with 0.1–10 μM oligomeric Aβ42 resulted in
the disruption of RPE junctional complexes and actin
cytoskeleton, formation of actin stress fibres, impairment
of trans-epithelial permeability as well as loss of cell
attachment.71 Similar studies in human foetal RPE
cultures found that exposure to Aβ42 elevated MMP-9
secretion and shifted cells into a senescent state.67 These
findings show a systematic breakdown of ZO-1 and
occludin junctional complexes within the RPE that is
mediated by MMP-9, and suggest an early mechanism by
which chemokine gradients can be established across
barriers for subsequent migration of inflammatory cells.
Such MMP-driven mechanistic changes have been
previously documented in retinas of patients with
AMD.80 Aβ-driven structural changes in the RPE
monolayer were also observed in vivo, following sub-
retinal injections of oligomeric Aβ42, and consisted of
disorganised actin filaments and junctional complexes in
the absence of apoptosis. Further changes observed
include RPE hypopigmentation, damage to
photoreceptors including loss of outer segments, and
shorter inner segments.71 The complexities of
Aβ-mediated activities also include the capacity to
generate elevated ROS, a well-documented process in
degenerative brains.81 The retina, which is normally
subject to constantly high photoxidative stresses,82 may

be particularly prone to Aβ-induced ROS-induced
damage, in a process compounded by increasing
lipofuscin accumulation within RPE cells with age.
Furthermore, Aβ has been shown to induce cellular
senescence and impair mitochondrial activity in RPE
cells.56,67,71 The substantial impact of accumulated
mitochondrial damage in post-mitotic RPE cells has been
well documented in AMD susceptibility.83

Late-stage Aβ-driven mechanisms in AMD may be
considered cumulative, and most likely to occur after
decades of chronic Aβ exposure in the ageing retina.
Although we do not yet fully understand the extent of
these mechanisms, a numbers of studies provide a
tantalising insight. For instance, exposure of human RPE
cultures to 1–25 μM Aβ40 for as little as 24 h resulted in a
significant increase of pro-angiogenic VEGF (vascular
endothelial growth factor) expression and a concomitant
decrease in anti-angiogenic PEDF (pigment epithelium
derived factor).14 The role of VEGF in increasing vascular
permeability and triggering endothelial cell proliferation
has been well established.1,5,14 The RPE monolayer
appears to be the only source of VEGF in the retinal
environment, and secretes several VEGF isoforms
through its basolateral surface towards the
choriocapillaris.82 VEGF has a key role in the
development of CNV, with anti-VEGF treatment
currently forming the mainstay of treatment for wet
AMD.1 The ability of Aβ peptides to elevate VEGF levels
in the vicinity of the blood–retinal barrier via direct
mechanisms14 and possibly via indirect inflammatory
triggers54,63,70,76 may help explain the as yet incompletely
understood pathology underlying VEGF elevation
preceding neovascularisation. Furthermore, conditioned
media from RPE cells exposed to Aβ40 triggered tube
formation in human umbilical vein endothelial cells,
suggesting that Aβ also has the capacity to directly
influence CNV.14 Such direct pro-angiogenic mechanisms
were further confirmed when injection of Aβ42 into Zebra
fish eyes resulted in a significant increase of retinal
capillary bed densities.84 Collectively, these findings
demonstrate that Aβ peptides have a central role in
driving early as well as late-stage degenerative
mechanisms in the ageing retina.

AMD risk factors promotes Aβ aggregation in the ageing
retina

The heterogeneous nature AMD aetiology suggests that
the most likely scenario involves a convergence of
multiple risk factors to trigger disease pathology in the
ageing retina.1,5,85 One intriguing idea is that other well-
characterised AMD/AD risk factors may have a
supportive role in exacerbating Aβ pathology in the eye.
These may include a combination of genetic as well as
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epigenetic risk factors such as diet. Studies to elucidate
the molecular basis underlying these changes illustrate
striking parallels of Aβ-mediated damage common to
both retina and brain. For example, Aβ-mediated
disruption of the blood–retinal barrier71,80 is mirrored in
the blood–brain barriers of Tg2576 mice. Specifically,
overexpression of Aβ42 in these mice resulted in
significant disruption of tight junctions in the cerebral
vasculature, long before consolidation of amyloid
plaques.86 However, it must be noted that genetic risk
factors driving pathology in one compartment may not
necessary act in an identical manner in another location.
ApoE, which encodes a glycoprotein responsible for
cholesterol transport is highly expressed in the retina and
is likely to have an important role in maintaining normal
retinal function. The frequency of ApoE alleles (ε2, ε3, and
ε4) displays a diverging story in AMD and AD. In AD, for
example, the ε4 allele confers a dose-dependent elevated
risk with a decrease in the mean age of AD onset. In
contrast, the ε2 allele has a beneficial effect on disease-free
time, and appears to impart a measure of protection.7,8

In contrast, our studies using pooled analysis of a large
data set of both published and previously unreported
studies shown that ε4 protects against late AMD. We also
reported an increased risk for late AMD in individuals
homozygous for ε2.87 Such contrasting effects may reflect
significant variations in the local structure and
physiologies in the senescent brain and retina,
respectively. For instance, the positively charged ε4
haplotype has been proposed to improve permeability of
Bruch’s membrane, which could facilitate lipid transport
and reduce sub-retinal debris accumulation associated
with drusen formation.12 Reduced transport of
lipoprotein across Bruch’s membrane is a consequence of
ageing, and has been proposed to promote drusen
deposition and impairment of the RPE.88 Furthermore,
the ε4 isoform has also been implicated in the transport of
macular pigments lutein and zeaxanthin, the reduced
dietary intake of which is associated with increased risk of
AMD.89 An important factor regulating ApoE effects is
their interaction with Aβ. In the past, distinct binding
properties of different ApoE isoforms to Aβ has been
suggested to underlie the discrepancies associated with
each genotype,90 while more recently, ApoE isoforms
were shown to affect Aβ clearance91 and/or
oligomerisation,92 which could lead to diverging
outcomes in different tissues.
Cholesterol forms a vital component of the eukaryotic

cell regulating membrane fluidity, permeability, and
electrical properties. Evidence supports the possibility
that the cholesterol content of specific anatomically
defined locations in the brain may leave some regions
particularly vulnerable in old age. For example, a
significant reduction of cholesterol levels in the temporal

gyrus of AD brains vs non-demented brains could result
in increased Aβ permeation. Furthermore, the decreased
cholesterol/phospholipid ratio in AD brains may affect
APP cleavage and elevate Aβ generation, as well as
facilitate increased Aβ permeability.42 Studies using
mouse models have previously shown that a cholesterol
enriched diet dramatically exacerbated Aβ pathology,
whereas cholesterol-lowering drugs decreased the
Aβ burden as well as AD pathology.93 Although the
precise nature of interaction(s) between cholesterol and
Aβ is not fully understood,93 there is evidence to suggest
that cholesterol has the capacity to modulate
Aβ generation and its clearance.94 Similar effects were
observed when RPE cells obtained from C57BL/6 mouse
were treated with cholesterol resulted in a significantly
increased Aβ production, while activities of Aβ-degrading
enzyme neprilysin and anti-amyloidogenic α-secretase
showed a concomitant decrease. Furthermore, senescent
C57BL/6 wild-type mice fed with a cholesterol enriched
diet developed sub-RPE deposits containing Aβ.95 This
pattern of cholesterol-driven Aβ pathology was also
observed when New Zealand white rabbits were
switched to a cholesterol enriched diet. Aβ deposition was
detected in POS, in the outer and inner nuclear layers, as
well as in RGC. This was accompanied by increased Aβ40
and Aβ42 levels in retinal samples as quantified by ELISA
measurements. Further changes include drusen-like
debris, increased generation of ROS and apoptotic retinal
cells.96 The high dietary intake of cholesterol and
saturated fat has been regarded as AMD risk factors for a
long time. This is coupled with the observation that
cholesterol forms a major component of drusen, the
ageing Bruch’s membrane and sub-retinal lesions.88 As
most drusen components are thought to be primarily
derived from the retinal environment,12,88 implications for
the interplay between Aβ and cholesterol is an intriguing
possibility.

Animal models of AMD and anti-Aβ antibody therapy

As an age-related degenerative disease with a complex
aetiology, the full spectrum of AMD pathology has been
challenging to reproduce in animal models. This,
however, has not prevented the development of
numerous rodent, rabbit, porcine, and non-human
primate animal models. The widely utilised mouse/rat
models have the benefit of lower costs, ease of
maintenance and the capacity to develop disease
symptoms in a relatively short time period, but suffers
from defects including the most glaring of which is the
lack of a macula. Critically, no single model has been
successful in reproducing the full disease spectrum of
AMD, although convincing models exist that reproduce
limited features of both geographic and exudative forms
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of the disease. In contrast, the use of non-human primates
offers the opportunity to study AMD in a system bearing
closer resemblance and physiology to humans, but carries
a number of disadvantages including considerable ethical
implications, difficulties in genetic manipulation, as well
as longer time scales prior to disease onset.
Recent findings that the Aβ burden considerably

increases in the senescent retina, and that Aβ may have a
central role in drusen formation, has revealed yet another
feature that needs to be reproduced in vivo. As with other
key milestones of disease progression, the development of
an Aβ phenotype along with drusen formation,
RPE/photoreceptor abnormalities, CNV, and progressive
visual impairment may be critical in ultimately
developing a bona fide model of AMD. Unfortunately,
only a limited number of rodent models are currently in
existence that reproduce retinal Aβ abnormalities. One of
the first animal models to place Aβ in the centre stage of
retinal pathology was a neprilysin-deficient senescent
mouse model that developed Aβ-containing drusen,
changes in the outer retina, as well as RPE
abnormalities.14 This model also exhibited elevated VEGF
expression and diminished PEDF levels suggesting a shift
into a pro-angiogenic phenotype, but surprisingly failed
to develop CNV even at the advanced age of 27 months.
The authors concluded that the lack of progression to
late-stage AMD was likely due to the insufficient Bruch’s
membrane abnormalities, differences in the role of
complement activation or that the animals were
insufficiently aged to mimic the senescent human retina.
Nonetheless, this mouse model represents a useful tool to
study Aβ-driven pathology in early disease.14

The senescent human APOE4 knock-in mouse
represents another intriguing model, which upon
switching to a high-fat cholesterol-rich (HFC) diet
develops drusen, thickened Bruch’s membrane, abnormal
RPE adjacent to degenerative photoreceptors, and in
extreme cases CNV.97 Of note, Aβ deposits were
associated with sub-RPE drusen and with neovascular
vessels, with mice developing visual impairment as
measured by electroretinogram. Although this model
represents an excellent tool to investigate Aβ-mediated
pathology in the mouse retina in its own right, the most
pertinent finding was that a dose-dependent systemic
administration of antibodies targeting the C-terminal of
both Aβ40 and Aβ42 in APOE4-HFC mice resulted in a
significant protective effect.98 Hence, immunised age-
matched animals showed reduced Aβ and activated
complement components in sub-RPE deposits, improved
structural integrity of the RPE monolayer as well as visual
protection. This follows the pattern of reduced amyloid
plaques and improved cognitive function in mouse
models of AD treated with anti-Aβ antibodies.8,20 The
importance of Aβ in driving retinal degenerative events

that manifest as different pathologies was also
demonstrated in a mouse models of glaucoma, where
Aβ-neutralising antibody treatment produced 480%
reduction in RGC apoptosis.74 Collectively, such evidence
firmly places Aβ at the centre stage of degenerative events
in the ageing retina.

Aβ and AMD—lessons from neurodegeneration and a
way forward

Developed societies are confronted with new challenges
as the numbers of older individuals gradually begin to
outstrip the younger age groups. The impact of age-
related illnesses such as dementia, AMD, cardiovascular
disease, and osteoporosis are felt at many levels; from
individuals to families and societies, and have a major
role in setting government health policy. In the UK, AMD
affects a significant proportion of the elderly, as well as
adults that are registered legally blind. For patients with
nvAMD, anti-VEGF treatment offers scope for
burdensome disease management through repeated
hospital visits consisting of monthly intravitreal
injections. However, not all respond to this therapy, while
at present, the majority of AMD patients have no effective
treatment. The complex disease aetiology of AMD poses
major challenges to devising effective solutions. Recent
advances in understanding the genetic architecture of
AMD has yet to translate to meaningful benefits for
patients. An incomplete understanding of the biological
processors underpinning disease mechanisms largely
accounts for this critical knowledge gap. Degenerative
processes in the ageing retina and brain show striking
similarities, and offers scope for identifying novel targets
as well as pathogenic mechanisms. Aβ, a highly toxic and
aggregate-prone peptide capable of eliciting local
inflammation and involved in key stages of AMD can be
considered such a candidate.
Here, we discussed the hypothesis and exciting new

findings that show Aβ has the capacity to play a key role
in AMD, the study of which may offer a better
understanding of early disease mechanisms, as well as
molecular pathways sustaining chronic retinal
degeneration. Examples of shared pathology in AD
patients include reduced thickness of the nerve fibre
layers,99 abnormal retinal blood circulation,62 as well as
reduced choroidal thickness,100 locations where
degeneration also occurs in glaucoma and AMD.1,5,74

Similarities are also found between AD senile plaques and
AMD drusen,6 as well as the pattern of selective tissue
damage, which argues for shared molecular mechanisms
in at least some stages of these diseases. Studies of Aβ and
associated pathology in the retina have the potential to
offer new insights into AMD, and approach this
debilitating blinding disease from a new perspective.
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Such investigations are already underway in our
laboratory.
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