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Abstract

Objective: Brain tumor grade is an important aspect of brain tumor diagnosis and helps to plan for treatment. Traditional
methods of diagnosis, including biopsy and manual examination of medical images, are either invasive or may result in
inaccurate diagnoses. This study proposes a brain tumor grade classification technique using a modern convolutional neural
network (CNN) architecture called ConvNext that inputs magnetic resonance imaging (MRI) data.

Methods: Deep learning-based techniques are replacing invasive procedures for consistent, accurate, and non-invasive
diagnosis of brain tumors. A well-known challenge of using deep learning architectures in medical imaging is data scarcity.
Modern-day architectures have huge trainable parameters and require massive datasets to achieve the desired accuracy and
avoid overfitting. Therefore, transfer learning is popular among researchers using medical imaging data. Recently, trans-
former-based architectures have surpassed CNNs for image data. However, recently proposed CNNs have achieved superior
accuracy by introducing some tweaks inspired by vision transformers. This study proposed a technique to extract features
from the ConvNext architecture and feed these features to a fully connected neural network for final classification.

Results: The proposed study achieved state-of-the-art performance on the BraTS 2019 dataset using pre-trained ConvNext.
The best accuracy of 99.5% was achieved when three MRI sequences were input as three channels of the pre-trained CNN.

Conclusion: The study demonstrated the efficacy of the representations learned by a modern CNN architecture, which has a
higher inductive bias for the image data than vision transformers for brain tumor grade classification.
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Introduction
A tumor is a tissue collection that grows abnormally and
may become life-threatening. They become even more dan-
gerous when they appear inside the brain, constrained by a
limited space inside the skull.1 The statistics show that
brain tumor is found among patients belonging to almost
all demographic groups.2,3 Therefore, researchers from
diverse domains strive to develop methods to diagnose
and cure cancer. Like many other diseases, early diagnosis
is crucial for diagnosing brain tumors.3

The treatment of a brain tumor strongly depends upon its
type, which is determined by the type of brain cells from
which it originated. For example, meningioma is a type of

brain tumor that originates from a type of cells called men-
inges.4 Similarly, the tumorous mass originating from the
pituitary gland is called a pituitary tumor. The most preva-
lent type of brain tumor is the one that originates from
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within the glial cells and is called Glioma.3 This research
proposes a method for the diagnosis of Glioma.

An important aspect of brain tumor diagnosis is the
grade of a tumor. It indicates the aggressiveness of the
tumor or the rate at which it spreads itself. This rate of
spread is strongly correlated to the expected days a
patient will survive.3 Therefore, the grade of a brain
tumor is crucial to plan for the patient’s treatment.5 The
World Health Organization divides tumors into four
grades, starting from Grade 1 to Grade 4. Grade 1 tumors
are the least aggressive, while Grade 4 tumors spread them-
selves fastest to nearby tissues. A further sub-division in
this regard is low-grade Glioma (LGG) or high-grade
Glioma (HGG), where the first two grades fall into the cat-
egory of LGG, and Grades 3 and 4 are called HGG.3 The
study proposes a classification technique to classify
Glioma patients into LGG versus HGG.

A well-known problem in training machine/deep learning
models in medical imaging is the need for more labeled
data.6 Models pre-trained on generic datasets like
ImageNet allow fine-tuning the models on target tasks with
medical imaging data.7 Although several studies have used
unlabeled medical data recently for self-supervised pre-
training to achieve superior results, these methods are com-
putationally expensive.8 Compute-intensive deep learning
techniques contribute significantly to global carbon emis-
sions, and this situation will likely exacerbate if the research-
ers do not prioritize compute efficiency.9

For many years, techniques based on the convolutional
neural network (CNN) architecture have dominated the
world of computer vision tasks and achieved state-of-the-art
results.10 Several architectural innovations have been pro-
posed, from skip connections in ResNets11 to depth-wise
convolutional layers in different Inception versions and
Xception.12 Neural architecture search techniques have
allowed CNNs to perform better with optimal model
sizes.13

However, recently, transformer-based architectures ori-
ginally developed for language tasks have gained wide-
spread acceptability for vision tasks and have achieved
superior performance. Architectures like the Swin transfor-
mers have achieved better results and are scalable to higher
image resolutions.14 Because of the superior results for
many computer vision tasks, researchers have also used
them for medical imaging tasks. However, transformer-
based systems are significantly more computationally
expensive than CNNs.

Although the Swin transformer has a higher inductive
bias than the vanilla vision transformer (ViT), it is still
less than the CNNs. This makes this ViT-based architecture
more data-hungry and computationally expensive. This
study aims to address this high computational and data
requirements challenge by utilizing ConvNext,15 which
has outperformed the Swin transformer on ImageNet
while being computationally efficient. This study proposes

a deep learning-based technique that works well with
limited labeled data while using limited computational
power available in the free tier of Google Colab using the
pre-trained ConvNext. The features were extracted from
ConvNext without fine-tuning the target data for brain
tumor grade classification. The results achieved show the
efficacy of the proposed approach.

A significant number of studies have utilized pre-trained
architectures for medical imaging tasks. To our knowledge,
studies have yet to use the pre-trained ConvNext architec-
ture for this purpose. This study addresses this gap by util-
izing the modern CNN architecture for brain tumor grade
classification. The study assesses ConvNext’s transfer per-
formance of for the target task involving medical images.

More specifically, the following is the contribution of
this study:

This study has shown that the representations learned by the
modern CNN architecture of ConvNext achieved
state-of-the-art performance for the target task of brain
tumor grade classification.

Literature review
Traditionally, conventional machine learning methods have
been used to classify medical images. However, classical
techniques are still being proposed for medical imaging
classification tasks because of the data-hungry nature of
modern architectures. Following are the studies that used
classical machine algorithms for medical imaging tasks.

The study16 proposed a pipeline to diagnose the brain
tumor grade by first segmenting the tumorous region of
the brain using a 3D architecture based on convolutional
layers. Different features based on texture and shape were
extracted from this region. Recursive feature elimination
was used on a support vector machine (SVM) to select
the most discriminating features. Finally, the extreme gradi-
ent boosting (XGBoost) classification algorithm was used
to produce an accuracy of 91.27%. Although the study uti-
lized features from only the relevant region, the handcrafted
features could not fully capture the nuances in the data to
achieve high accuracy.

The study17 used handcrafted features and an XGBoost
classifier after feature selection to grade Gliomas. The
first step was preprocessing, including wavelet transform
and Laplacian of Gaussian. The next step was manual seg-
mentation of the tumorous region. The feature extraction
was performed only from the tumorous region instead of
the whole image. Finally, the grade was classified after per-
forming feature selection to achieve an accuracy of 83%.
The study used the Shapley value to assess the contribution
of different features towards the final classification.
However, the study relied on manual segmentation, a
laborious and expensive process.
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The study18 used handcrafted feature extraction to
extract the magnetic resonance imaging (MRI) images’
intensity, shape, and texture-based features. To eliminate
redundant features, the correlation among different features
was used, and only the discriminant features were kept.
Finally, the random forest classifier was used for the final
classification into LGG versus HGG. The study achieved
an accuracy of 91.3% using BraTS 2015. The limitation
of the proposed method is that it was validated on BraTS
2015 when newer and comparatively BraTS versions
were available.

The study19 proposed a technique to classify Grade II
versus Grade II Glioma. The dataset consisted of 36 patients
and two sequences, contrast-enhanced T1-weighted (T1C)
and fluid-attenuated inversion recovery (FLAIR).
Different types of textural features were extracted from
only the tumorous parts of the MRI scans. The redundant
features were removed by calculating the correlation
among the features, and only the discriminating features
were retained. A random forest classifier was used to clas-
sify brain tumor grades. The best accuracy of 78.1% was
achieved. Although the study compared the results of the
proposed approach with the expert radiologist’s diagnosis,
the study used a tiny dataset.

The problem with classical machine learning methods is
that they use handcrafted features that require human
expertise to extract suitable features. With the ever-
increasing sizes of medical imaging datasets and the emer-
gence of unsupervised techniques that leverage unlabeled
data and generative models, deep learning methods are
now dominant among researchers. With the growing popu-
larity of deep learning-based methods in the latter half of
the previous decade, many tasks used pre-trained CNNs
for medical image classification. Most of the techniques
use pre-trained models as they cover up the limited size
of the target datasets and produce superior results compared
to the methods that train the models from scratch. The fol-
lowing studies have used deep learning-based techniques
for tasks involving medical images.

To mitigate the impact of issues arising during the cap-
turing of MRI scans, the study20 performed preprocessing,
including correcting the bias field. After that, the Gaussian
filter is passed through the image to smooth it. The prepro-
cessing is performed on a stack of four slices corresponding
to the four MRI sequences, then passed to the long short-
term memory (LSTM) model. The fully connected layer
at the end classifies images into HGG versus LGG. The
study achieved a best accuracy of 98% on BraTS 2018.
The study introduced a novelty using a sequence model
to process different MRI sequences.

The study21 utilized the pre-trained InceptionV3 CNN to
extract deep features from MRI data. Before the feature
extraction, the study performed contrast enhancement in
the preprocessing phase. The proposed approach also
extracted handcrafted features by utilizing a variant of the

local binary pattern method. The deep and handcrafted fea-
tures were concatenated and inputted to the next pipeline
step, feature selection using particle swarm optimization.
The study achieved the best accuracy of 96.9% on
BraTS 2017. The study merged the deep and handcrafted
features. However, Xception architecture had a better
ImageNet accuracy by adopting the depthwise separable
convolutions.

The study22 utilized the ImageNet pre-trained
ResNet-152 for brain tumor grade classification. A
softmax classifier replaced the classifier layer of the original
architecture. The study used a deep architecture for the
BraTS 2019 dataset and achieved an accuracy of 98.85%.

The study23 proposed a novel CNN architecture modu-
lated by Gabor filter so that the proposed CNN could
extract the relevant imaging features from the MRI data.
To enhance the results’ reliability, the study utilized
the leave-one-patient approach. The results were compared
with pre-trained CNNs like AlexNet, VGG-19,
InceptionV1, and ResNet34. The proposed architecture out-
performed all the pre-trained CNNs. Although the study
proposed an innovation to the classical CNN architecture,
its reliability could be enhanced by comparing it with the
results obtained using modern CNN architectures.

The study24 proposed and compared different brain
tumor grade classification techniques using pre-trained
CNNs and a novel CNN architecture. The features extracted
from the pre-trained CNNs were fed to SVM for final clas-
sification. The datasets used to validate the proposed archi-
tecture were BraTS versions from 2017 to 2019. In addition
to the development dataset, the study validated the
approach on an external cohort to demonstrate the general-
izability of the proposed method. The proposed novel archi-
tecture achieved the best accuracy across the development
and external datasets. Although the novel architecture
achieved good accuracy, it was worth using the modern pre-
trained architectures and comparing the results with the
state-of-the-art.

The study25 used pre-trained EfficientNet architectures
to classify brain tumor types. The classifier of
EfficientNet architectures was discarded, and according to
the task, a new classifier network was attached to the con-
volution base. The MRI data was preprocessed to reduce
noise and discarding of the irrelevant image portions. The
modified architectures were fine-tuned on the MRI data
after data augmentation. The study utilized a modern
CNN architecture, and the best result was achieved using
EfficientNetB2 because of the dataset size.

The study10 proposed a novel CNN architecture to clas-
sify the abnormalities in a fetal brain using ultrasound
images. The proposed architecture comprises bottleneck
residual blocks, rectified linear unit non-linearity, batch
normalization, and a max pooling layer for feature extrac-
tion. To select the distinguishing features, an optimization
algorithm based on the modified MothFlame method was
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introduced to improve the classification accuracy and com-
putational efficiency. The hyperparameters were optimized
using the Bayesian method. The proposed approach
achieved the best accuracy of 78.5%, significantly better
than the state-of-the-art techniques. Although the study
achieved superior accuracy using the proposed novel archi-
tecture, proposed hyperparameter selection, and feature
selection method, the proposed approach may further be
validated if it is applied to similar target tasks using the
ultrasound modality.

The study26 proposed three novel CNN architectures for
diagnosing brain tumors into three types of classification:
normal versus abnormal, type classification in Glioma, pitu-
itary, and meningioma, and grade classification into Grades
I–IV. The datasets used were Kaggle brain tumor type clas-
sification for normal versus Abnormal, Figshare CE-MRI
for the type classification, and REMBRANDT for grade
classification. The study performed preprocessing by
noise removal and image quality enhancement using a
median filter. Classical data augmentation techniques like
image scaling and rotating the image by an angle were
used to increase the dataset size. The complexities of the
architecture depended upon the dataset size and the task
complexity. Optimal hyperparameters were determined
using the grid search. The study achieved the best accur-
acies of 99.4%, 97.78%, and 98.91% for the classification
of normal versus Abnormal, brain tumor type, and brain
tumor grade, respectively. The study proposed novel archi-
tectures, but better evaluation could be done by selecting a
larger dataset, such as BraTS.

The study4 proposed an approach that used a modified
ResNet50 architecture and autoencoder to extract features
from MRI images. The features extracted from both architec-
tures were fused. After performing the feature selection, a clas-
sifier network was used to classify the input data into the four
MRI sequences (T1-weighted (T1), T1C, T2-weighted (T2),
and FLAIR). The study achieved an accuracy of 99.8% on
BraTS 2020 and 99.9% on BraTS 2021 and significantly out-
performed the state-of-the-art methods. The study did not use
modern CNN architectures that have significantly outper-
formed ResNet50 on ImageNet classification.

The study1 utilized the pre-trained InceptionV3 architec-
ture to extract the deep features and feed these features to
the SVM classifier to classify MRI images as normal and
abnormal. The images were normalized and resized before
being put into the pre-trained InceptionV3. The study
achieved an accuracy of 98.31% for normal versus abnormal
classification. The authors used InceptionV3, but modern
CNN architectures like EfficientNet and ConvNext have
achieved superior performance and computational efficiency.

The study6 proposed a method to classify brain tumor
type, fine-tuning the pre-trained CNNs EfficientNetB0 and
InceptionResNetV2. An autoencoder-based data augmenta-
tion method was used to handle the imbalance in the
dataset. Instead of manually searching for the optimal

hyperparameters, the study used a Bayesian method to find
suitable ones for fine-tuning the models. Finally, distinguish-
ing features were selected using an algorithm called Marine
Predator. After feature selection, a variety of classifiers were
used for the classification. The best accuracy of 99.8% was
achieved by feeding the discriminant features to the cubic
SVM classifier, which outperformed the state-of-the-art
methods. The study performed a thorough evaluation of
the proposed pipeline by using a variety of classifiers and
comparing the results with the state-of-the-art.

The transformer architecture was initially proposed for
natural language data, but its variant vision transformer pro-
duced excellent results for the image classification tasks.27

It was a radical shift from the sliding window-styled CNNs
and used patches instead. The limitation of the vision trans-
former was its attention mechanism, which needed each
patch to attend to every other patch. This design results in
an exponential increase in the computational requirement
with the increase in the resolution of input image data.
Swin transformers presented a hybrid approach with
patches and sliding windows. Swin transformer remained
a dominant architecture for image data for a while.14

ResNext was an effort to revitalize CNN architecture by
taking inspiration from the design choices of the Swin
transformer, like the number of blocks in different stages,
stem cell design, and depth-wise convolutions. The result-
ing architecture (ConvNext) outperformed the Swin trans-
former with fewer floating-point operations.15

This study uses a pre-trained CNN with a modern archi-
tecture (ConvNext Base) to extract features and then use
these features for the target task of brain tumor grade clas-
sification. Figure 1 depicts the design choices and training
strategies that helped ConvNext architecture achieve
state-of-the-art performance.

Research methodology
This cross-sectional study uses a pre-existing, publicly
available dataset to classify brain tumor grade using the pro-
posed CNN-based technique. It was conducted in the
Machine Perception & Visual Intelligence Research
Group at the COMSATS University Islamabad, Lahore
Campus, Pakistan, in the Spring of 2024. The publicly
available dataset used in the study, BraTS 2019, was
released in 2019. The block diagram of the proposed
method is shown in Figure 2.

In the first step of the pipeline, the tumorous slices were
flagged. After that, the features were extracted only from
the tumorous slices so the classifier gets the slices with
either LGG or HGG tumor. For feature extraction, the
study has used the regular version of the ConvNext called
ConvNext Base by freezing all its layers. The pre-trained
ConvNext’s top model was discarded and replaced by a
global average pooling layer that extracted one feature per
feature map, thus resulting in a total of 1024 features.
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Finally, the features were provided to a fully connected
neural network for classifying the data into LGG versus
HGG. The sub-sections “Dataset,” “Deep features extrac-
tion,” and “Classification” present a detailed explanation
of the dataset and methodology used by the study.

Dataset

The BraTS 2019 dataset was used in the study, and to the
best of our knowledge, this is the first study that used this

dataset for brain tumor grading using the features extracted
from ConvNext.28,29,30 BraTS is a popular publicly avail-
able dataset, and its different versions serve as a benchmark
to compare techniques. As part of the BraTS 2020 dataset, a
mapping of the datasets BraTS 2017, 2018, 2019, and 2020
was provided.28,29,30,31 Of the 259 HGG patients, 210 are
common in the 3 datasets, and the BraTS 2019 dataset con-
tains an additional 49 patients. For LGG patients, 75
patients are the same in the 3 datasets, and BraTS 2019
has only 1 additional patient. The BraTS 2012 and 2013

Figure 1. The design choices and training methodology of ConvNext are inspired by transformer-based architectures.15

GFLOPs: Giga (Billion) floating-point operations per second; Kernel sz.: Kernel size; ReLU: rectified linear unit; GELU: Gaussian error linear
unit; BN: batch normalization; LN: layer normalization; sep. d.s. conv: separate downsampling convolution layers.
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cases are already included in these versions (2017 or later),
while the BraTS 2014–2016 cases are discarded as they are
not annotated by expert radiologists.32 BraTS 2020 contains
an additional 34 HGG cases (compared to BraTS 2019),
which makes the dataset further unbalanced. Based on
this analysis, this study has used BraTS 2019.

The dataset consists of 76 LGG and 259 HGG cases,
where each case has four sequences (T1, T2, T1 T1C,
and FLAIR) and one ground-truth value, the manual
tumor segmentation performed by expert radiologists.
Each MRI scan for a sequence contains 155 slices, each
with a dimension of 240× 240. The acquisition protocol
for T1 is 2D sagittal or axial, where each slice is 1–6mm
thick; for T1C, it is 3D and mostly with 1mm thickness;
for T2, it is 2D in axial orientation, and slices are 2–6mm
thick and finally for FLAIR it is 2D in all the orientations
where slices are 2–6 mm thick. During manual segmenta-
tion (performed by the dataset providers), different parts
of the tumor (edema, necrotic region, enhancing, and
non-enhancing core) were delineated using different
sequences or combinations. For each case, the delineations
performed by various radiologists were fused to reach one
consolidated segmentation.28

The dataset was already preprocessed, and the proposed
method did not perform further preprocessing. The prepro-
cessing performed by the dataset providers was image
registration and skull stripping. Registration was performed
using rigid transformation, with the T1C sequence as the
reference because of its highest spatial resolution. Skull
stripping was then performed to remove the skull signal.

Features extraction and classification

Feature extraction in the proposed method was performed
using the weights in the convolution base of ConvNext
(Base version), which were pre-trained on the ImageNet
dataset. Therefore, only the convolution base of
ConvNext architecture was used, and its top model
(optional fully connected layers and logistic regression)
was discarded. Global average pooling was used, which
resulted in 1024 features for each magnetic resonance
slice. Instead of using all the slices, only the slices with

the tumorous pixels were used. These tumorous slices
were extracted using the ground truth segmentation pro-
vided by the dataset. The tumorous slices were fed to the
pre-trained ConvNext without performing any further pre-
processing step. To match the input dimensions of the pre-
trained ConvNext, each slice was repeated three times to fill
the three channels of the input layer.

The features extracted using the frozen layers in the con-
volution base of ConvNext and global average pooling
were then fed to a fully connected neural network contain-
ing 754,945 trainable parameters. Table 1 shows the classi-
fier network layers, the units in each layer, and the
activation functions used.

Two types of experiments were performed where in the
first category of experiments, the convergence behavior was
assessed by training the model for 500 epochs without
using the validation set. Checkpoints were saved after
each epoch and after training the test set accuracy was eval-
uated for each checkpoint, which helped in the visualization
of the trajectory of the model to convergence for each
setting. The best checkpoints for different input settings
are given in Tables 4 and 7 and provide useful insight.

For the second category of experiments, a validation set
was also used with early stopping regularization and a
patience value of 20. After the training ended, the test set
was evaluated on the best model (that produced the best
accuracy on the validation set). The results obtained from
the second category of experiments were compared with

Figure 2. Block diagram of the proposed method.
LGG: low-grade Glioma; HGG: high-grade Glioma.

Table 1. The architecture of the classifier network.

Layer Number Layer Type Number of Units Activation

1 Dense 512 ReLU

2 Dense 256 ReLU

3 Dense 256 ReLU

4 Dense 128 ReLU

5 Dense 1 Sigmoid

ReLU: rectified linear unit.
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the state-of-the-art techniques for brain tumor grade classi-
fication. The rest of the hyperparameters were the same.

This study is a continuation of an earlier study33 con-
ducted to find the optimal pre-training strategy. Two
models were used in the study33: a simple and a complex
model. The exact number of layers and units per layer
and other hyperparameters were tuned empirically. This
study retained the same hyperparameters and used the
complex model (shown in Table 1). Table 2 shows the
hyperparameter setting for the classification.

Statistical analysis

The accuracy measures the percentage of correctly classified
examples in the test set. In addition to the overall accuracy,
this study uses the measures of sensitivity (True Positive
Rate) and specificity (True Negative Rate) to compute the
class-specific accuracies to fairly represent the results in the
presence of imbalanced classes. Moreover, the measure of
AUC was used to assess the proposed approach’s perform-
ance in a decision boundary-agnostic manner, offering a
robust summary of the model’s ability to distinguish
between classes. The scikit-learn package in Python was
used to calculate thesemetrics. The results for each sequence
combination were compared using a horizontal bar graph. A
bar was drawn for eachmetric, and the bars for the metrics of
each sequence combination were grouped for better visual-
ization of the performance difference among the individual
and combined sequences. The Matplotlib library in Python
was used to visualize the results.

Experimental settings
To increase the number of examples for training, 2D slices
were used instead of 3D volumes, and only the slices
marked as tumorous by radiologists were used. As a

result, 4926 LGG and 17,224 HGG slices were obtained.
For observing the training progress and convergence behav-
ior, this data was divided into training and test sets using an
80–20 class balanced split, thus leaving 17,720 samples for
training and 4430 for testing purposes where the size of
each slice (sample) was 240× 240. For the second category
of experiments, 10% of the training set was allocated to the
validation set. That means 15,948 slices were used to train
the model, and 1772 were reserved for the validation set.
Table 3 shows the images/slices of the train, test, and valid-
ation sets.

Experiments were performed on each possible combin-
ation of the sequences. Since the feature extraction was per-
formed using the pre-trained ConvNext, input was limited
by having precisely three channels. Therefore, only a com-
bination of any three sequences could be used. Each
sequence occupied one channel of the input tensor.

Results
Experiments were performed for each possible combination
of any three sequences. The evaluation measures used are
accuracy, sensitivity, specificity, and area under the curve
(AUC). LGG has been treated as the negative class, while
HGG has been treated as the positive class. Therefore, sen-
sitivity is the percentage of HGG examples that are cor-
rectly classified, while specificity is the percentage of
correctly classified LGG examples.

To study the training progression and convergence
behavior, the model was trained for 500 epochs in each
experiment, and checkpoints were saved after every
epoch. The best results (accuracy, sensitivity, specificity,
and AUC) of each experiment (a combination of sequences)
are shown in Table 4. The best accuracy in the table has
been highlighted in bold.

In the second category of experiments (grade classifica-
tion using train, test, and validation sets), the training
epochs were again set to 500. However, the training
stopped much earlier for each experiment because of the
early stopping with a patience of 20. The test set results
(accuracy, sensitivity, specificity, and AUC) of each experi-
ment (a combination of sequences) are shown inTable 5. The
best accuracy in the table has been highlighted in bold.

The best accuracy (99.61% and 99.5%) was achieved for
the combination of T1, T1C, and FLAIR sequences in both
types of experiments. The lowest accuracy (99.37% and
99.03%) was achieved for the combination of T1, T1,
T1C, and FLAIR, which both involved the FLAIR

Table 3. Slices/images in the train, test, and validation sets.

Class
Train
Set

Test
Set

Validation
Set

Total Tumorous
Slices

HGG 12,401 3445 1378 17,224

LGG 3547 985 394 4926

Total 15,948 4430 1772 22,150

HGG: high-grade Glioma; LGG: low-grade Glioma.

Table 2. Hyperparameter settings for the classification.

Epochs Batch Size Learning Rate Optimizer Loss Checkpoint Frequency

500 64 0.00005 Adam Binary cross entropy After every epoch
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sequence. The top two best accuracies were achieved for the
combinations involving T1 and T1C. Manual segmentation
performed on the BraTS dataset’s magnetic resonance
images explains these results. Although the radiologists
used all the sequences for labeling the data, T1 was used
along with T1C to segment different tumor substructures.28

Comparison with studies using BraTS 2017 or later

The study results (of experiments using a validation set) have
been compared with those using BraTS 2017 and 2018 as
these two datasets are closest to BraTS 2019, while the pre-
vious BraTS datasets are different. The study34 only used a
tiny subset of the data from BraTS 2013 and 2017 (only
60 images for training and 100 for testing). Therefore, it is
not included in the comparison (although it reported an
accuracy of 99%). A comparison of the proposed method
with the studies using BraTS 2017 or later for brain tumor
grading has been presented in Table 6.

Ablation study
Studies have used individual sequences and have copied the
same slice three times to form a three-channel input. The

purpose of the ablation study was to see the result when
only one sequence was used. Each of the four sequences
was used to gauge the best sequence.

Table 7 presents the results when using individual
sequences to study the training progression and conver-
gence behavior.

Table 8 presents the results when using individual
sequences with early stopping based on the validation set
metrics. In Tables 7 and 8, the best results are highlighted
in bold.

It is evident from the results that a combination of
sequences produces better classification accuracy than
individual sequences. For individual sequences, the best
accuracy was achieved for T1 (99.12% and 98.55%).
Interestingly, the top two best results achieved for a combin-
ation of sequences involved the T1 sequence. The lowest
accuracy for a combination of sequences is greater compared
to the best accuracy of individual sequences. Also, all the
combinations of sequences took more epochs to converge
(reach the highest accuracy) compared to the individual
sequences.MRI sequences contain complementary informa-
tion, and radiologists use multiple sequences to segment
brain tumors manually. The CNN architecture also achieved
superior results when presented with comprehensive

Table 4. The best accuracy (and other measures) was achieved for each combination using 500 epochs.

Sequence(s)

Results

Best Accuracy (%) Sensitivity (%) Specificity (%) AUC (%) Epoch Number

T1, T1C, T2 99.59 99.82 98.58 82.58 282

T1, T1C, T2, FLAIR 99.61 99.8 98.88 99.98 175

T1, T2, FLAIR 99.37 99.59 98.48 99.88 132

T1C, T2, FLAIR 99.37 99.68 98.17 99.94 159

AUC: area under the curve; T1: T1-weighted; T1C: contrast-enhanced T1-weighted; T2: T2-weighted; FLAIR: fluid-attenuated inversion recovery.

Table 5. The accuracy (and other measures) achieved for each combination using early stopping.

Sequence(s)

Results

Accuracy (%) Sensitivity (%) Specificity (%) AUC (%) Epochs Before Convergence

T1, T1C, T2 99.16 99.21 98.98 99.98 44

T1, T1C, FLAIR 99.5 99.62 99.09 99.97 46

T1, T2, FLAIR 99.11 99.56 97.56 99.98 42

T1C, T2, FLAIR 99.03 99.3 98.07 99.91 52

AUC: area under the curve; T1: T1-weighted; T1C: contrast-enhanced T1-weighted; T2: T2-weighted; FLAIR: fluid-attenuated inversion recovery.
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information compared to when identical sequences were
used for each input channel.

The results of Tables 4 and 7 are visualized in Figure 3
for a better comparison of the results in the ablation study
with the regular experiments.

Discussion
The results showed that the proposed method achieved
superior accuracy and outperformed the state-of-the-art

when inputting three different MRI sequences to the
CNN. Many studies used BraTS datasets and compared
the results obtained using individual sequences and their
combinations for brain tumor grading. The study42 used
convolutional autoencoders for brain tumor grading on
the BraTS 2017 dataset by performing pre-training using
synthetic images generated through the generative adversar-
ial network and then fine-training on the actual images.
Three sequences (T1C, T2, and FLAIR) were used indi-
vidually and in combination. The best and average results

Table 6. Comparison of the proposed approach with existing techniques.

Study Dataset Accuracy

Classical machine learning methods 35 BraTS 2017 88.77

36 BraTS 2017 91.18

37 BraTS 2018 91.18

38 BraTS 2018 98.71

Deep learning methods 39 BraTS 2017 89.47

40 BraTS 2019 98.85

41 BraTS 2017 92.98

20 BraTS 2018 98

42 BraTS 2017 92.4

43 BraTS 2017 97.78

21 BraTS 2017 96.9

BraTS 2018 92.5

44 BraTS 2017 90.87

45 BraTS 2018 97.1

46 BraTS 2018 96.1

47 BraTS 2018 96.49

23 BraTS 2017 98.68

48 BraTS 2017 90.7

49 BraTS 2019 95.86

24 BraTS 2017 97.85

24 BraTS 2019 97.15

Proposed method BraTS 2019 99.5
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were reported using the combination of these three
sequences, while for individual sequences, the best accur-
acy was reported using T1C. The study18 performed brain
tumor grading through radiomic features and a random
forest classifier on the BraTS 2015 dataset. All the
sequences (T1, T1C, T2, and FLAIR) and their possible
combinations were used for classification, and the results
were compared. The lowest accuracy was reported using
individual sequence features (FLAIR), a combination of
two sequences performed better than individual sequences,
and a combination of three sequences performed better than
a combination of two sequences. In comparison, the best
accuracy was achieved when features from all four
sequences were merged and fed to the classifier. T1C
achieved the best accuracy for individual sequences,
while for a combination of the two, the best accuracy was
reported using T1C and T1. The best accuracy was reported
for three sequences using the combination of T1, T1C, and
T2. Finally, the study37 used texture features and logistic
regression to classify grades on the BraTS 2018 dataset.
Different sequences (T1C and T2) combinations and
tumor regions (necrotic and edema) were used for grade
classification. The best result was reported using the

combination of T1C and T2 when features from only the
necrotic region were classified.

The study’s results were compared to the recent studies
that used classical machine learning and deep learning tech-
niques. The studies35,36,37,38 used classical machine learn-
ing algorithms for brain tumor grade classification. The
study36 used texture features and a logistic regression clas-
sifier,35 and used shape-based, histogram-based, and texture
features. At the same time, the best accuracy was achieved
using a random forest classifier. The study37 used texture
features and, after performing feature selection, fed them
to regular neural networks for grade classification.

The rest of the studies given in the comparison table
(Table 6) used CNNs except for two studies, one of which
used convolutional autoencoder,42 while the other used
LSTM for grade classification.20 The studies39,41,43,47 pro-
posed novel CNN architectures, while the study21 used deep
features extracted from pre-trained InceptionV3 along with
dominant rotated local binary pattern features for grade classi-
fication. The study23 used novel CNN where the Gabor filter
bank modulated convolutional layers to add rotation and
scale invariance to the learned features. The study48 increased
the dataset size by using semi-supervised learning to estimate

Table 7. The best accuracy (and other measures) was achieved for individual sequences using 500 epochs.

Sequence(s)

Results

Best Accuracy (%) Sensitivity (%) Specificity (%) AUC (%) Epoch Number

T1 99.12 99.59 97.36 99.67 74

T1C 98.85 99.48 96.34 99.83 60

T2 99.05 99.53 97.26 99.82 61

FLAIR 99 99.42 97.26 99.74 60

AUC: area under the curve; T1: T1-weighted; T1C: contrast-enhanced T1-weighted; T2: T2-weighted; FLAIR: fluid-attenuated inversion recovery.

Table 8. The best accuracy (and other measures) was achieved for individual sequences using early stopping.

Sequence(s)

Results

Accuracy (%) Sensitivity (%) Specificity (%) AUC (%) Epochs Before Convergence

T1 98.55 99.27 96.04 99.75 46

T1C 97.88 98.87 94.42 99.67 33

T2 97.47 98.98 92.18 99.6 46

FLAIR 97.97 98.72 95.33 99.49 35

AUC: area under the curve; T1: T1-weighted; T1C: contrast-enhanced T1-weighted; T2: T2-weighted; FLAIR: fluid-attenuated inversion recovery.
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the labelsofunlabeleddataandgenerative adversarialnetwork
(GAN) to generate synthetic data. The study40 used deep fea-
tures and fed them to the softmax after selecting the optimal
features.

Conclusion and future works
The success of the Swin transformer provided the research
community with design choices that were used to design
and train the ConvNext architecture and achieve
state-of-the-art performance. The stronger inductive bias
of the CNN architecture makes them more suitable for
the image data. These characteristics make ConvNext a
suitable architecture for medical imaging tasks with
smaller dataset sizes. This study uses the pre-trained
ConvNext architecture for the brain tumor grade classifi-
cation. The study used linear probing after extracting the
features of the BraTS 2019 dataset from the ConvNext
architecture. The superior results in accuracy, sensitivity,
specificity, and AUC on the target task of brain tumor
grade classification demonstrated the efficacy of the repre-
sentations learned from the pre-trained ConvNext
architecture.

The study presented results using ConvNext representa-
tions for a target medical image task. However, more
studies are needed for a comprehensive investigation
involving many imaging modalities, organs, and anomalies.

To ensure generalizability, the study needs to be conducted
on datasets of different sizes, starting from small to medium
to large ones. Also, the efficacy of different versions of the
ConvNext architecture needs to be investigated.

Recently, domain-adapted pre-training has been used by
many researchers to achieve better results compared to the
generic dataset pre-trained models. The in-domain data pre-
training after the generic dataset (e.g. ImageNet) pre-
training was able to bridge the domain difference between
the generic dataset and target dataset (e.g. MRI). It would
be interesting to see the performance of ConvNext after
domain-adaptive pre-training compared to the generic
dataset pre-training. The lottery ticket method and its var-
iants are another compute-efficient training technique that
results in a model with much fewer parameters while
achieving comparable accuracy. It is worthwhile to
explore the target task performance of a pre-trained model
using such methods. Finally, some studies have slightly
modified the pre-trained models to accommodate the
target data with more channels in the data (e.g. MRI).
Since using all the sequences results in comprehensive
information about a subject, exploring the computationally
efficient methods suggested in this section while using all
the sequences during the target classification is necessary.

Contributorship: YM was involved in conceptualization,
methodology, software, validation, formal analysis,

Figure 3. Visualization of the results achieved for experiments using 500 epochs.
T1: T1-weighted; T1C: contrast-enhanced T1-weighted; T2: T2-weighted; FLAIR: fluid-attenuated inversion recovery; AUC: area under the
curve.
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