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Abstract

In livestock industries, reliable up-to-date spatial distribution and abundance records for ani-

mals and farms are critical for governments to manage and respond to risks. Yet few, if any,

countries can afford to maintain comprehensive, up-to-date agricultural census data. Statis-

tical modelling can be used as a proxy for such data but comparative modelling studies have

rarely been undertaken for livestock populations. Widespread species, including livestock,

can be difficult to model effectively due to complex spatial distributions that do not respond

predictably to environmental gradients. We assessed three machine learning species distri-

bution models (SDM) for their capacity to estimate national-level farm animal population

numbers within property boundaries: boosted regression trees (BRT), random forests (RF)

and K-nearest neighbour (K-NN). The models were built from a commercial livestock data-

base and environmental and socio-economic predictor data for New Zealand. We used two

spatial data stratifications to test (i) support for decision making in an emergency response

situation, and (ii) the ability for the models to predict to new geographic regions. The perfor-

mance of the three model types varied substantially, but the best performing models showed

very high accuracy. BRTs had the best performance overall, but RF performed equally well

or better in many simulations; RFs were superior at predicting livestock numbers for all but

very large commercial farms. K-NN performed poorly relative to both RF and BRT in all sim-

ulations. The predictions of both multi species and single species models for farms and

within hypothetical quarantine zones were very close to observed data. These models are

generally applicable for livestock estimation with broad applications in disease risk model-

ling, biosecurity, policy and planning.

Introduction

Policy and planning for the livestock sector is often impeded by the lack of reliable records on

spatial distributions and abundance of livestock species [1]. Few countries maintain accurate
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up-to-date livestock census data, particularly at the resolution and spatial scale required [1, 2],

hampered by high costs and considerable ongoing resource requirements. Yet livestock demo-

graphic information is critical in environmental, social and epidemiological applications, and

especially for disease risk modelling and emergency response [1, 3].

Rising demand for animal products is leading to the global expansion and intensification of

livestock industries [2]. A concomitant increase in global movement of animals and animal

products via international trade is providing greater chances for the transmission of invasive

pests and diseases into naïve countries [4], which can have catastrophic economic, social and

animal welfare impacts. For example, the eight-month foot-and-mouth disease (FMD) out-

break in the United Kingdom in 2001 led to the culling of more than six million animals for

disease control and ‘welfare’ [5], and cost the UK more than £7 billon [6], including substantial

restrictions on trade and reductions in tourism. Availability of a complete census of vulnerable

animals would facilitate a rapid response for the containment and eradication of an incursion

such as FMD, and therefore minimise the impacts.

Statistical modelling can be used to fill gaps where data are too expensive and/or onerous to

collect. Species distribution models (SDM) predict species distributions by relating occurrence

or abundance records to environmental, demographic, climatic and satellite derived predictor

variables [7]. Greater availability of candidate predictor data have resulted in the rapid rise of

SDMs in ecological and conservation applications (e.g., [7]), and more recently for agriculture

(e.g., [3, 8, 9]) and disease risk modelling (e.g., [10, 11]). The ecological and environmental

requirements of most livestock species are well understood, and relevant training and predic-

tor data are often readily available, both of which make widespread predictions feasible.

To date, models that predict livestock and commercial poultry populations have focused

almost exclusively on stratified regression [2, 3, 8, 12–14]. A recent exception assessed the use

of Random Forests to improve estimates [9]. Reasonable predictive accuracy (correlations of

up to 80% between predicted and direct counts) has been demonstrated at local, regional [2,

12] and global scales [1]. In most of these studies training data has comprised the disaggre-

gation of coarse spatial resolution census data into animal densities. For example, the Gridded

Livestock of the World project (GLW) estimated global distributions at 1km2 resolution for

major livestock species of cattle, goats, buffalos, sheep, pigs and poultry [3]. The GLW data has

been applied in animal health research [15] including for predicting the risk of avian influenza

[16] and the incidence and distribution of FMD [17].

Machine learning methods have been proposed for livestock estimation due to their poten-

tially higher predictive performance, and their capacity to straightforwardly incorporate com-

plex interaction effects and noisy data [3, 7]. Advances in computing capacity, software and

statistical innovation [18] have made machine learning techniques such as Random Forests

(RF), boosted regression trees (BRT) and k-nearest neighbour (K-NN) models, practical

options for large ecological datasets [3]. Methods such as RF and BRT are relatively novel for

ecological applications but they consistently outperform more established methods [7, 19].

Studies evaluating SDM techniques have arisen in response to the large variety of models

available, types of data and research questions (e.g., [7, 20–22]), as well as the considerable var-

iation in predictive performance between SDM types [7]. Models for common, widespread

and generalist species generally are less accurate than environmentally or geographically

restricted species [7, 21, 22]. Therefore, examining and comparing machine learning tech-

niques and SDM approaches that use livestock data is critical to ensure the appropriate models

are applied, given their growing popularity, and the potential value and application of the

predictions.

New Zealand has one of the strongest biosecurity frameworks in the world [23]. Its geo-

graphic isolation and strict biosecurity regulations have prevented the incursion of many
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significant agricultural pests and diseases which is crucial to maintaining trade access to inter-

national markets, and to protecting the economy and industry. Biosecurity investment by the

NZ government is substantial but the recent and economically damaging incursions of varroa

mite [24] and bacterial kiwifruit vines disease (PSA) [25] show that significant agricultural

pests still pass the border undetected. New Zealand has an accurate, up-to-date national-level

database of the geographic locations of farms called Agribase; however counts of livestock on

these holdings are not reliably available. Yet, this information is important for biosecurity and

disease preparedness [26, 27], highlighted by the recent estimated cost of a small FMD out-

break in NZ involving several hundred farms to be more than NZ$16 billion over eight years

[28].

We developed and tested three machine learning species distribution models to predict

national-level farm animal demographic data: BRT, RF and K-NN. The models were built

from a commercial livestock database, Agribase, and environmental and socio-economic pre-

dictor data for New Zealand. The context of the model development was to (i) provide support

for decision making in an emergency response situation and (ii) initial values for stochastic

models that are used for planning. We assessed their performance using a regional cross-vali-

dation with model predictions evaluated for local government areas to assess how well models

can predict to new regions. The models were assessed at two spatial scales: (i) at the farm level,

and (ii) using hypothetical quarantine zones whereby model predictions were assessed in a

3km radius around randomly selected ‘outbreak’ farms reflecting the emergency quarantine

zones that may be established immediately following notification of a serious disease such as

FMD.

Methods

Livestock data

AgriBase™ (AsureQuality) is a national-level commercial livestock database that holds contact

data and geospatial information about agricultural and horticultural properties across NZ. The

database was initially developed for biosecurity and emergency management applications and

currently lists 134,377 individual properties in vector polygon data format. Entry in the data-

base is voluntary and more than 60% of the properties have records for livestock. ‘Lifestyle

farms’, small holdings with few animals used primarily for personal consumption, on the

urban fringe are the most numerous farming type by a factor of almost four (>60,000), fol-

lowed by commercial beef (15,433) and dairy farms (11,840). No data on enterprise activities

of any kind are held for 36,815 properties, of which 87% are categorised as ‘lifestyle’ farms; the

majority of these are considered to be missing data rather than true zeroes. This is due to the

voluntary nature of the database with no incentive for property owners to declare their live-

stock holdings. However, because it was not possible to distinguish between missing values

and values that are really zero, all were removed for model development and assessment.

There were also approximately 6,000 farms with identical spatial information reflecting cross-

leased land where information from multiple polygons has been merged into a single data

point. This prevented the correct extraction of predictor information for the individual farm

polygons and therefore precluded their use in the models. In total 91,662 properties were used

for model training and validation. It was not possible to differentiate between free-range and

intensively farmed animals.

Many livestock demographic applications require knowledge of the total numbers of live-

stock contained on a property. We built models with a consistent response variable across

properties by calculating the livestock units (LSU) as grazing equivalents for each property.

This value was calculated by multiplying the total number of animals of a given species by a
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value that represents their grazing equivalence to an adult dairy cow (Table 1; [29, 30]). In cer-

tain contexts knowledge of specific livestock species is required, so single species models were

also assessed for cattle, as derived from beef and dairy records.

Predictor variables

Predictor variables were calculated and/or extracted for individual property polygons from

spatial data layers using the open-source statistical environment, R version 3.1.1 (libraries:

’rgeos’, ’rgdal’, ’maptools’, ’raster’, ’geoshpere’, and ’sp’; [31–37]). The 22 candidate predictor

variables that could potentially influence livestock distributions and farming types were a com-

bination of environmental (slope, aspect, elevation, pasture quality, distance to river), climatic

(mean annual rainfall, mean annual temperature) and demographic (social deprivation index,

distance to major road, distance to urban centre which partly accounts for human population

density) variables (S1 Table). Variables were chosen based on the availability of datasets (e.g.,

[38, 39]) and factors that may be relevant for both livestock presence and abundance. Environ-

mental and climatic factors account for natural species limitations and tolerance thresholds,

for example, food and water availability, effects of aspect on vegetation and solar radiation,

and temperature. Demographic variables account for human factors associated with livestock

production, including market access and human population density [3, 12].

The total absolute area of each property was divided into four separate predictor variables:

high quality pasture, low quality pasture, forest, and ‘other’ land cover calculated as the

remaining area of the property polygon, all measured in hectares [39].

In the models both the standard deviation and the mean of several variables were used to

account for variability across individual properties e.g. some properties may be very hilly, but

just using the mean of the slope would not account for valleys and peaks.

Spatial stratifications

Models were built and evaluated with training and validation data based on regional stratifica-

tion, using randomly selected local government authority areas, to assess the ability of the

models to predict to new regions. NZ mainland has 16 different regional councils, hereafter

called regions (S1 Fig). Training data comprised a stratified sample of 11 randomly selected

regions, six from the north island (out of nine) and five from the south island (out of seven)

and the validation data comprised the remaining 5 withheld regions. Two hundred indepen-

dent training and validation datasets were generated in this way. This analysis also provided

information on whether prediction accuracy of the models differed across regions, reflecting

different environmental and demographic conditions.

Table 1. Species equivalence values to an adult dairy cow that were used for analysis [29, 30].

Livestock unit (LSU) coefficients LSU

Dairy cows 1.00

Beef cows 0.80

Deer 0.80

Horses 0.80

Pigs 0.40

Goats 0.10

Sheep 0.10

Poultry (not used in this study) 0.01

https://doi.org/10.1371/journal.pone.0183626.t001
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Model performance was assessed at two spatial scales. The first was a farm-level comparison

of the predictions and the actual livestock counts in the withheld regions. The second scale

assessed the adequacy of the models in emergency disease response situations by validating

model predictions aggregated to nominal “quarantine zones” around randomly selected farms.

We chose a radius of 3 km to reflect the emergency response quarantine zones that typically

would be established immediately following notification of a serious disease such as FMD. A

grid of 9000m x 9000m cells was overlaid across NZ, providing approximately 3,000 grid cells.

The property intersecting with the centroid of each grid cell was extracted using ArcGIS (Ver-

sion 10.2.2). The cell size was chosen to minimise overlap of farms within 3km of the central

property, if two cells were randomly selected next to each other. Two hundred of these inter-

secting properties were selected at random and then each was used as the hypothetical ‘out-

break farm’, the focal point for a 3km quarantine zone. All farms within a 3km radius of the

focal property boundary were extracted and used as validation data using the spatial libraries

‘rgeos’, ‘rgdal’, and ‘sp’ in R [33, 35–37]. The 200 ‘outbreak farms’ provided a balance between

providing enough validation data for modelling without overlapping zones becoming an issue.

Ten iterations of these methods provided ten independent grids, to give a total of 2000 out-

break farms and concomitant quarantine zones (200 outbreak farms x 10 independent data-

sets). For each new iteration the bottom left corner of the grid was moved at random to

produce ten distinct grids, and thereby different sets of grid centroids to intersect with farms.

Since sampling of the outbreak farms was performed spatially by proximity to the farm cen-

troid, this sample was taken with probability proportional to the outbreak farm size. The

remaining farms outside the 200 hypothetical quarantine zones were used as training data.

Models tested

Three SDM modelling techniques were considered. The optimal parameters were assessed for

each model type prior to fitting the final models and are outlined for each model type below.

Each model strategy assumes that the sample is representative of the population, a common

statistical assumption. A formal interpretation of our assessment of the models requires the

assumption that the residuals are uncorrelated; this is unlikely because of the spatial nature of

the data; however, such assumptions are again common and we do not think it substantially

undermines our conclusions.

Random forests (RF). RF is a bagging algorithm that creates decision trees by repeatedly

selecting bootstrap samples from a training set, fitting trees to each replicate. Bagging ran-

domly generates a set of data from the original with replacement. A random sub-sample of the

predictors is used to split each node in a tree [40]. The given number of trees is averaged to

obtain the estimates. Fitting variables can be changed in the model, including the number of

trees to be grown and the number of randomly selected variables to be used as candidates at

each split. RFs were built using the ‘randomForest’ package in R [37, 41] with the number of

trees set to 2000. For the RF models, each response variable was transformed using a square

root, based on statistical practice (the metrics are counts, for which the square root is a com-

mon variance-stabilizing transformation) and empirical inspection of residual plots.

Boosted regression trees (BRT). BRT’s combine two algorithms, namely regression trees

and boosting, to build and fit many models and improve predictions by focusing resources on

outliers. The algorithm builds a large number of simple decision trees adaptively. The final

BRT model can be thought of as an additive regression model [42]. Several fitting variables can

be varied in the model: a user-defined bagging fraction introduces stochasticity into the model

and defines the proportion of data drawn at random from the original data at each step; the

learning rate varies the contribution of each tree added to the model and the tree complexity
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defines the number of nodes for each tree [42]. Predictive performance was assessed under dif-

ferent bagging conditions, learning rate and tree complexity and the parameters were chosen

based on those which achieved the minimum predictive error. Parameters in the final BRT

models had a bagging factor of 0.5, learning rate of 0.005 and tree complexity of 10. Boosted

regression trees (BRT) were implemented using the ‘dismo’ and ‘gbm’ packages in R [43, 44].

For the BRT, the response variable was assumed to have a conditional Poisson response and

log link function.

K-nearest neighbour (K-NN). K-NN is a distance-weighted nearest neighbour prediction

algorithm in which training sites closest in predictor distance to the new point of interest are

used to predict its value. Closer training samples can be weighted higher than those further

away. The output of the k-NN for regression is the average value of the k nearest neighbours,

where the k nearest properties were used to predict the LSU/cattle of the target properties. We

defined the number of samples (k) as 5, and the distance metric used was Euclidean distance.

K-NN models were fit using the ‘class’ package in R [45]. No transformation was needed for

the K-NN models because they make no assumption about the conditional distribution of the

response variable.

Model development and evaluation

The predictive accuracies of Boosted regression trees (BRT), Random forests (RF) and K-near-

est neighbour (K-NN) were evaluated and compared for national-level livestock estimation in

NZ. Two response variables were separately modelled to test multi-species aggregates and sin-

gle species models: LSU rounded up to the nearest whole number to give counts of LSU, and

cattle as a single species model case study, derived from beef and dairy records. For each

response variable, 200 replicate BRT, RF and K-NN models were run for the two spatial strati-

fications, corresponding to the ten independent training and validation datasets. The models

were set up with the same 22 predictor variables (S1 Table). The models were assessed for how

well they predicted livestock on individual farms and the aggregated farms within quarantine

zones.

The model fits were determined primarily by how well they predicted LSU in the withheld

samples. A goodness of fit measure between the withheld validation data and predicted values

was used to compare the BRT, RF and K-NN models: the discrepancy quantified using the

Root Mean Square Prediction Error (RMSPE).

RMPSEi ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

i¼1
ðŷ i � yiÞ

2

q

where the quantity was only computed for those farms in the regions that were excluded from

the replicate sample, and ŷ i was computed by predicting the farm (or summing the predicted

farms to the quarantine zone) LSU or cattle.

Pseudo R2 was also calculated as the relative variance of the observed values minus the pre-

dicted values from withheld observations, against the variance of the observed values, averaged

across all repetitions.

Results

Methods comparison

Boosted regression trees were the best performing models overall when assessed on RMSPE

and Pseudo R2 (Table 2). However the prediction accuracy of random forests was higher for

many regions (Table 2, S2 and S3 Tables). This was the case for farm-level and quarantine

zone predictions for both LSU and cattle. When assessing the RMSPE by farm size, overall RF
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predictions were substantially better than BRTs for all but very large farms (> 250 LSU)

(Table 3). Random forests predicted better for farms with zero values and farms with less than

15 LSU, which is common for over 90% of lifestyle farms. All models had very high R2 values

for zone level predictions (LSU: BRT = 0.92; RF = 0.91; KNN = 0.74), substantially higher than

for farm level predictions (Table 2). These differences in goodness of fit measures between RF

and BRTs mean the choice of model should be based on context of model development and

requirements of the model predictions.

Both BRT and RF performed significantly better than K-NN across all spatial stratifications

and response variables (Table 2, S2 and S3 Tables). No single K-NN model performed better

than BRT and RF with any goodness of fit measure, with the same predictor and response

data. K-NN predictions included zero values, but overall predictions were poor.

Number of farms per quarantine zone was 64 on average, and the average by region ranged

from 25.5 to 101. The mean number of zones per region was 125, and the range was 2 to 445.

There was significant residual spatial correlation of farm-level RMSPE below approximately

60km, with farms close together tending to have similar LSU values than farms further apart

(Fig 1).

Examples of three regions are shown spatially in Figs 2 and 3 for the actual LSU, and the

predicted LSU from both Random Forests and Boosted Regression Trees for the regional strat-

ification (Fig 2) and quarantine zone stratification (Fig 3). KNN is not shown due to its

extremely poor model fit.

Region cross-validation with random forests

Farm level predictions. Fig 4 provides a scatterplot of the observed against the fitted

farm-level LSU values for the region-withheld RF model, by region. The results for all regions

tended to cluster closely around the 1:1 line, which confirmed the model quality. The predic-

tions also showed evidence of fanning, meaning that the natural variation increases with the

size of the response variable. The fanning was accommodated in the model by means of a

Table 2. The prediction root mean squared error (RMSPE) and Pseudo R2 for LSU and cattle using the withheld results for the regional spatial

stratification for individual farms within regions and quarantine zones. Also shown is the mean count of LSU and cattle per farm and the standard devia-

tion in brackets. Full results for all models are shown in the Supporting Information (S2 and S3 Tables).

Response variable Spatial stratification Mean (SD) RMSPE Pseudo R2

RF BRT KNN RF BRT KNN

LSU Farm 131.5 (342.1) 215.6 (45.4) 216.4 (48.2) 380.2 (57.3) 0.60 0.59 -0.28

Zone (‘000) 12.7 (19.6) 5.4 (1.0) 4.8 (0.8) 9.0 (1.2) 0.91 0.92 0.74

Cattle Farm 89.9 (237.2) 172.9 (31.8) 171.4 (31.6) 275.3 (32.4) 0.47 0.47 -0.39

Zone (‘000) 7.8 (14.7) 6.4 (1.3) 3.5 (0.6) 5.2 (1.4) 0.86 0.92 0.75

https://doi.org/10.1371/journal.pone.0183626.t002

Table 3. Comparison of BRT, RF, and KNN by the RMSPE for LSU across different size farms.

Farm Size (number of LSU) Number of farms RF BRT KNN

No animals 16650 61.5 74.4 292.0

Small (1–15) 34582 31.0 37.3 111.6

Medium (16–150) 18623 82.3 99.8 252.3

Large (151–250) 5618 134.9 152.7 312.8

Very large (>250) 15919 505.4 498.5 780.5

https://doi.org/10.1371/journal.pone.0183626.t003

Species distribution models for livestock

PLOS ONE | https://doi.org/10.1371/journal.pone.0183626 August 24, 2017 7 / 19

https://doi.org/10.1371/journal.pone.0183626.t002
https://doi.org/10.1371/journal.pone.0183626.t003
https://doi.org/10.1371/journal.pone.0183626


square-root transformation of the response variable, as noted in the Methods. The scatterplots

of cattle results are not shown, as they are a subset of the LSU variable and relationships are

similar to LSU across all region simulations.

Quarantine zone predictions. The results for the quarantine level predictions for the

regional stratification model are summarised in Table 2, S2 Table and Fig 5. We summed the

predictions for every farm that had any area within a 3 km radius of the centroid of the subject

farm, and applied the same statistics to these summed quarantine-level predictions and obser-

vations. Again, the results clustered closely around the 1:1 line, and as expected there was

much less variation around the line than in farm-level predictions.

Fig 1. Spatial variogram of farm-level RMSPE, using Euclidean distance between farm centroids. The solid line gives the

variogram of the observed data, with the dotted lines indicating the 95% confidence intervals of the null distribution obtained by random

permutation of RMSPE between the farm locations.

https://doi.org/10.1371/journal.pone.0183626.g001
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Variable importance

We determined the most important variables for predicting both LSU and cattle by running

the random forest model on the full dataset with all covariates, including a categorical spatial

predictor variable representing regional councils (S1 Fig). Comparing separate models for

each of the two response variables can identify differences in variable importance for multi

species and single species models.

Fig 6 shows the relative influence of predictor variables for the RF models for both LSU and

cattle response variables. The x axis represents the mean decrease in accuracy, as measured by

an increase in mean square error (MSE), if the variable were randomly permuted. High quality

pasture was overwhelmingly the most important predictor for both LSU (367%) and cattle

(378%) and had substantially more influence than the second highest ranked predictor vari-

able. For LSU the size of the farm, accounted for by the combination of area, high quality pas-

ture, low quality pasture and the variable ‘other area’ was very important, as was the distance

to an urban centre. For cattle, the region, as well as variables accounting for the slope and alti-

tude of the farm were the most highly ranked variables after high quality pasture. Variables

accounting for aspect (slope cosine and slope sine), deprivation index and the two solar stan-

dard deviation predictor variables were not important for either response but still had some

impact on model performance, given by positive relative importance measures.

Fig 2. Maps of the actual livestock units (LSU) and the modelled region level livestock predictions for three regions. Maps show results from

Random Forests and Boosted Regression Trees for Waikato, Canterbury and Wellington for region predictions. The gradient colour axis is on a log

scale for display purposes. KNN results are not shown due the extremely poor fit of the models relative to other model types.

https://doi.org/10.1371/journal.pone.0183626.g002
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Discussion

Comparative species modelling exercises illuminate the strengths and weaknesses of different

techniques [46] but have not previously been undertaken for livestock data, and machine

learning techniques have been applied to livestock data only very recently [9]. The three

machine learning techniques assessed in this study, RF, BRT and K-NN, produced vastly dif-

ferent results even with identical predictor and response variables, as seen in other ecological

studies (e.g., [7, 21]). Overall predictive accuracy of the best models at the zone level were

extremely high, though with a tendency to underestimate total numbers, possibly due to zero-

inflation. Predictions for farm-level livestock in withheld regions were lower, and models for

LSU generally performed better than for cattle alone.

Discrepancies existed between the goodness of fit measure for RF and BRTs for some simu-

lations and regions which make it difficult to determine a single best model. Boosted regres-

sion trees were the best performing technique overall, but RF’s performed equally well or

better in many simulations. Random forests performed best for all but very large, typically

commercial farms, which make them more valuable in disease response modelling and

national livestock estimation, where data deficiencies tend to be clustered around smaller non-

commercial and peri-urban farms. RMSPE was used as an indication of model accuracy [3]

and it is heavily penalised for large departures from observed values. The poor fit of RF for

large farms relative to BRT may mean the RMSPE for RF were disproportionately influenced

Fig 3. Maps of the actual livestock units (LSU) and the modelled zone level livestock predictions for three regions. Maps show results from

Random Forests and Boosted Regression Trees for Waikato, Canterbury and Wellington for zone level predictions. The gradient colour axis is on a log

scale for display purposes.

https://doi.org/10.1371/journal.pone.0183626.g003
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relative to BRT. K-NN models performed poorly relative to the other models across all

simulations.

For NZ, the context of the spatial model development was to provide support for decision-

making in an emergency response situation and in initialising planning models, and therefore

RF’s are recommended given their better performance for farm sizes of most interest. The

demonstration of residual spatial correlation in the results indicates the need for methodologi-

cal developments, combining model-based spatial correlation methods [47] with non-

parametric machine learning techniques. For areas consisting largely of commercial grazing

(e.g. parts of the south island) BRT’s could be considered. Stochasticity of populations at a

local level means that model predictions should be used with caution for disease control

Fig 4. Scatterplot of the observed against the predicted farm-level. Results are plotted by region. Total quarantine zone

LSU was calculated by summing the observed and predicted values for all farms within the 3km quarantine zone. Cattle

results are not shown as plots they are a subset of LSU.

https://doi.org/10.1371/journal.pone.0183626.g004
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decisions during an outbreak. Epidemic responses could be severely impacted by missing a

piggery in the outbreak zone. The predictions however are valuable for regional and national

responses to diseases, as well as planning and simulation modelling.

Widespread species, such as livestock, generally have complex distributions and often do

not respond predictably to environmental gradients. Such species are expected to be better

modelled with non-parametric models such as RF, BRTs and K-NN [21]. Random forests [19]

and BRTs [7] are relatively novel in ecology though they have been widespread in other disci-

plines for some time. These machine learning techniques require greater computing capacity

than classical tools such as generalized linear models, but are generally considered to have

great predictive accuracy [3, 7, 19]. Interaction terms are often omitted from traditional SDM

Fig 5. Scatterplot of the observed against the predicted total quarantine zone LSU. Results are plotted by region. Total

quarantine zone LSU was calculated by summing the observed and predicted values for all farms within the 3km quarantine

zone. Cattle results are not shown as plots they are a subset of LSU.

https://doi.org/10.1371/journal.pone.0183626.g005
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techniques because they greatly increase the number of model parameters [18], but RF and

BRT can easily fit complex relationships and interactions without the need to explicitly specify

them, they do not overfit and are stable with noisy data [7, 19, 42]. BRT’s have successfully

been used for disease and disease risk modelling (e.g., [16, 48]) and RF’s for the presence of

rare and invasive plant species [19]. The capability of machine learning techniques, and RF in

particular, for population mapping is being realised and many organisations are beginning to

investigate these techniques including FAO and the WorldPop consortium [3, 9, 49]. Our

results provide support for their use in agricultural applications.

RFs have some advantages over other machine learning techniques. They can compute the

contribution of each predictor through post-hoc analysis of variable importance measures,

even where interactions exist [19, 49], which has previously been cited as a challenge facing

SDMs [50]. RF’s also have fewer user-defined parameters than BRT’s, which can be of signifi-

cant benefit when using automated fitting procedures [49]. The final advantage of RF over

KNN and BRT is technological: at present, it is relatively straightforward, although time

Fig 6. Relative influence of predictor variables from random forest models for LSU and cattle. Plots show the increase in MSE

of predictions if the variable of interest were randomly permuted. See S1 Table for full variable names and descriptions.

https://doi.org/10.1371/journal.pone.0183626.g006
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consuming, to produce distributions for the point predictions, using quantile RF [51]. These

distributions can then be used to represent and propagate the statistical uncertainty of the pre-

diction through instances of model simulation, although care must be taken to consider the

potential correlation of prediction errors.

For livestock predictions, area of high-quality pasture was the most important predictor for

all model simulations (Fig 6). Farm slope, elevation and hilliness were also important and

reflect what livestock species can be kept in certain areas, e.g. high country farms, renowned

for steep terrain and winter snow, are often confined to sheep farming [52]. Incorporating

socio-economic and anthropogenic variables can improve model performance [3] and this

was demonstrated with the high relative importance of distance to urban centre and distance

to road. This is likely to be the influence of lifestyle farms on the urban fringe. Similarly,

human population density was a key predictor in determining livestock distributions in the

GLW regression models [1], and large population centres and roads were both important in

explaining cattle farm locations in Australia [26]. In our study, deprivation index, a measure of

socio-economic status, was not statistically important for the LSU or cattle. Our results suggest

that RF can be used successfully to estimate peri-urban livestock populations, despite other

studies citing the potentially confounding issues of multifunctional land-use and human settle-

ment [13]. In other studies, areas of lowest animal density on the periphery have been more

difficult to accurately model with higher coefficients of variation and levels of uncertainty rela-

tive to higher density areas [12].

Different farm types and livestock species can play varying roles in disease transmission

depending on context [53–55]. In the case of FMD, infected cattle become infected easily and

produce large quantities of virus relative to sheep, which can have limited pathology and act as

silent spreaders [56, 57]. Cattle were used in this study as a case study to compare single species

vs multispecies model predictions. Single species models can provide specific information

about the species’ distribution and important predictor variables, demonstrated in the differ-

ences in ranking for important variables. For cattle, the regional identifier variable was very

important, indicating that regional variations influence the distribution and abundance of live-

stock species. In NZ this is particularly the case for dairy, which is usually concentrated in spe-

cific areas and it may be worthwhile investigating the merits of further disaggregation into

dairy and beef cattle. This outcome also indicates that spatial stratification is important. Simi-

lar work by Prosser et al [2], estimating poultry populations, found regionally stratified models

performed better than country wide models on the basis that the factors driving livestock den-

sities will be similar in comparable ecological and administrative areas [3].

The spatial sampling approach used to identify ‘outbreak’ farms for establishing quarantine

zones selected the farms with probability proportional to their area. This would not be an issue

in disease response modelling as the outbreak farm would be known, rather than randomly

selected. Region is a more unbiased measure for choosing predictor data but also has biases

related to environmental, geographic and other factors. For example, certain regions in the

south island may comprise mainly large-scale sheep farms due to the hilly terrain and low pro-

ductivity land, and these types of farms may not be adequately represented if this region were

removed for model validation. Different model performance based on spatial stratification has

been observed in other studies but with much larger scale differentials. Similar work by Prosser

et al [2], estimating poultry populations, found regionally stratified models performed better

than country wide models on the basis that the factors driving livestock densities will be simi-

lar in comparable ecological and administrative areas [3].

Unbiased data are rare for large numbers of species across extensive geographical areas

[50] and low density areas can increase the uncertainty of predictions [2, 12]. This was true

for the Agribase™ database used in this study. First, the database is voluntary which makes
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differentiating missing data from true zeroes all but impossible. The majority of the ‘missing’

data was attributed to small peri-urban lifestyle farms. However, the removal of this data was

unlikely to have had significant effects on model predictions because one third of the remain-

ing data was classified as lifestyle farms, suggesting they were well represented in the data

including with respect to location and variability of livestock holdings. Second, discrepancies

existed for some polygons, which were represented by merging of multiple farm ids and/or dis-

continuous polygons. All were removed due to the substantial investment required to investi-

gate and separate each group of polygons relative to the likely cost to model accuracy. This

data represented a small fraction of the database (<5%) and was not expected to introduce any

significant biases. Additional errors were expected to arise from seasonal influences on animal

movements and breeding, economic factors, droughts, etc. which can all affect the temporal

and spatial representativeness of census data (Kao, 2002). None-the-less the model predictions

had high accuracy, but true validation would require on the ground farm surveys [3].

Livestock estimation is most commonly represented as numbers per square area (e.g., [2, 3,

12, 13]). However, this representation is problematic for estimating numbers in individual

grid cells because livestock populations are spatially and temporally dynamic [3]. This study

estimated livestock for each property, which is arguably a more valuable measure by allowing

incorporation of farm-level attributes, with greater utility for disease risk planning and policy

applications. Two significant reasons demonstrated the importance of having this level of

information during the 2001 FMD outbreak in the UK, in which decision makers relied

heavily on models built on livestock census and location data. First, farm location data

informed disease containment and eradication strategies (e.g. culling and vaccination) which

relied on spatial relationships between susceptible host populations [53, 58]; second, farm-

level attributes including size, livestock numbers, species mix and number of land parcels, are

all significant risk factors in FMD transmission [53, 54]. This was the first time that mathemat-

ical modelling had been used for management of an outbreak [59].

The quantity and quality of livestock census data available for the 2001 FMD UK outbreak

was unprecedented [55], but despite the acknowledged value, few countries maintain compre-

hensive agricultural census data and/or geospatial databases [58]. The resources required to

collect and maintain databases can be prohibitive, particularly on large- or national-scales. The

application of SDMs for livestock estimation could potentially be extrapolated to other coun-

tries where little or no data is available provided reasonable quality, high resolution data on

environmental conditions and farming systems are available and comparable. Good livestock

predictions have been obtained for countries where data is only available at low resolution [12]

or comprehensive training data is scarce [26]. The machine learning techniques presented

here may be better at predicting to new or under-sampled areas as they have greater ability to

work with noisy data and incorporate complex interactions. A problem facing SDM tech-

niques in the future for livestock applications is the intensification of farming practises which

causes a disassociation between livestock and their environments, making it difficult to predict

populations based on environmental attributes [3, 13]. This is already the case for chickens

and pigs in many countries [3].

Conclusion

Animal biosecurity threats will increase concomitantly with the demand for livestock prod-

ucts, which is projected to double in the next two decades [60]. Several recent high profile bio-

security outbreaks highlight the value of up-to-date census data. For managers to implement

the most effective disease control strategies they need sufficient information to make informed

decisions [23], and maintaining or establishing activities for continual preparedness enables a
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quick response [61]. The SDM approaches in this study are internationally applicable for live-

stock population estimation and have broad applications in disease research, biosecurity, as

well as in policy and planning.
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