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A B S T R A C T   

Objective: Although lower respiratory infections (LRI) are among the leading causes of mortality in the US, their 
association with underlying factors and geographic variation have not been adequately examined. 
Methods: In this study, explanatory variables (n = 46) including climatic, topographic, socio-economic, and 
demographic factors were compiled at the county level across the continentalUS.Machine learning algorithms - 
logistic regression (LR), random forest (RF), gradient boosting decision trees (GBDT), k-nearest neighbors (KNN), 
and support vector machine (SVM) - were employed to predict the presence/absence of hotspots (P  <  0.05) for 
elevated age-adjusted LRI mortality rates in a geographic information system framework. 
Results: Overall, there was a historical shift in hotspots away from the western US into the southeastern parts of 
the country and they were highly localized in a few counties. The two decision tree methods (RF and GBDT) 
outperformed the other algorithms (accuracies: 0.92; F1-scores: 0.85 and 0.84; area under the precision-recall 
curve: 0.84 and 0.83, respectively). Moreover, the results of the RF and GBDT indicated that higher spring 
minimum temperature, increased winter precipitation, and higher annual median household income were 
among the most substantial factors in predicting the hotspots. 
Conclusions: This study helps raise awareness of public health decision-makers to develop and target LRI pre-
vention programs.   

1. Introduction 

Lower respiratory infections (LRI) are diseases of the lower re-
spiratory tracts and include bronchitis, bronchiolitis, pneumonia, and 
recently emerged coronavirus (COVID-19). LRI are major public health 
concerns across the world ([1], [2], [3]), and are among the leading 
causes of mortality and morbidity in children and adults [4,5]. In 2016, 
LRI caused nearly 2.38 million deaths worldwide, including 652,572 
children under five years old and 1,080,958 adults over 70 years old, 
making it the sixth leading cause of death for all ages [6]. 

LRI are the cause of a significant number of hospitalizations in de-
veloped countries [7]. In the US, LRI have been classified as the 7th 
leading cause of death and years of life lost [8]. In this country, 
bronchiolitis is the leading diagnosis of LRI in children younger than 

two years old, causing almost 150,000 annual hospitalizations [9]. Si-
milarly, pneumonia is another most common reason for hospital ad-
missions in the US that causes the most common severe bacterial in-
fection in children [10]. However, with the success of the childhood 
vaccination programs such as the 7-valent and 13-valent pneumococcal 
conjugate vaccines, the proportion of elderly affected by LRI in the US 
has significantly declined [11]. 

Previous studies have shown that many socio-economic factors such 
as education level, income, and poverty [12] and environmental factors 
such as climate and air pollution ([13]; [14]) were significantly asso-
ciated with LRI prevalence. Further, demographic factors such as age, 
gender, and race [15] and behavioral factors such as cigarette smoking 
[16] were correlated with LRI prevalence. Few studies have examined 
the spatial variation of LRI in small geographic regions. For example, 
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Beamer et al. [17] identified distinct patterns of significant spatial 
clusters for each LRI phenotype within Tucson, Arizona. Those clusters 
were associated with various community-level risk factors such as in-
creased air pollution, poor housing conditions, and low socio-economic 
status. Beck et al. [18] conducted a study in Cincinnati, Ohio, to ex-
amine geographic variation of LRI hospitalization rates across Hamilton 
county using Getis-Ord Gi* statistic. They also examined whether such 
variation was correlated with socio-economic status using the non- 
parametric Kruskal-Wallis test. The results indicated a significant al-
teration in the median hospitalization rates by census tract quintile for 
both bronchiolitis and pneumonia. Further, socio-economic conditions 
had substantial influences on those hospitalization rates, and hotspots 
were located in the impoverished neighborhoods in the urban core. 

In recent decades, the use of novel modeling techniques such as 
machine learning algorithms in public health studies, in particular, 
respiratory disease research has increased [19]. For instance, Hecker-
ling et al. [20] trained a back-propagation artificial neural network 
(ANN) optimized by genetic algorithm to predict pneumonia among 
patients (n = 1044) with respiratory complaints from the University of 
Illinois and the University of Nebraska. A multitude of variables, such 
as demographics, symptoms, signs, and comorbidity with other re-
spiratory diseases, including asthma and lung disease, were compiled to 
predict the presence or absence of pneumonia among the patients. The 
ANN model successfully predicted pneumonia on the test dataset with 
93 % accuracy. In a case-control study in Taiwan, Kuo et al. [21] 
compared the performance of seven machine learning classifiers, in-
cluding random forest and logistic regression, to predict hospital-ac-
quired pneumonia among schizophrenic patients. Among the employed 
algorithms, random forest had the highest accuracy (93 %) in pre-
dicting pneumonia. Further, the significant predictors were clozapine 
use, clozapine prescription, and prescription duration. 

While several studies have been conducted in smaller geographic 
regions, to our knowledge, no previous nationwide study has examined 
geographic variations of LRI mortality rates and their association with 
underlying factors across the US. Identifying hotspot(s) of LRI mortality 
rates (i.e., counties with higher than expected mortalities) and their 
presence or absence based on population-level underlying factors can 
help public health decision makers for targeted interventions at the 
national level. Thus, in this ecological study, we investigate the geo-
graphic variation of age-adjusted LRI mortality rates across the con-
tinental US from 1980 to 2014 using spatial statistics. Further, we 
employed several machine learning algorithms to predict hotspot(s) 
occurrence with potential risk factors in a geographic information 
system (GIS) framework. 

2. Material and methods 

2.1. Data collection and preparation 

Continental US age-adjusted mortality rates of LRI were obtained at 
the county level from Global Health Data Exchange (http://ghdx. 
healthdata.org/record/ihme-data/united-states-mortality-rates-county- 
1980-2014). The data were available for eight years: 1980, 1985, 1990, 
1995, 2000, 2005, 2010, and 2014. The disease data were then spa-
tialized at the county level in ArcGIS 10.7 (ESRI, Redlands, CA). The 
ESRI shapefile of the administrative boundary of US counties was ob-
tained from Topologically Integrated Geographic Encoding and 
Referencing (TIGER)/Line US Census Bureau for the year 2018 (http:// 
www.census.gov/). 

Explanatory variables (n = 46) including climatic, topographic, 
socio-economic, and demographic factors were compiled at the county 
level across the continental US and stored in a file geodatabase in 
ArcGIS 10.7. The variables were selected according to either the pre-
viously published literature or domain knowledge. 

Low and high air temperature can aggravate respiratory symptoms, 
particularly among individuals with preexisting conditions. Low air 

temperature can adversely impact epithelium by narrowing the re-
spiratory airways and declining lung functions. In contrast, high air 
temperature can increase allergic illnesses possibly by increasing pollen 
production or extending the length of pollen season, which in turn can 
make the respiratory symptoms worse. Increased precipitation may 
facilitate the spread of respiratory diseases. Vitamin D, which is pro-
duced by sunlight exposure, may protect the human body against re-
spiratory diseases. We obtained climate data including daily air tem-
perature (°C), daily precipitation (mm), and daily sunlight (KJ/m2) 
from the Centers for Disease Control and Prevention Wide-Ranging 
Online Data for Epidemiologic Research (CDC WONDER) database 
(http://wonder.cdc.gov/). Then, we aggregated the daily climate data 
for the spring (March 19-June 20), summer (June 20-September 22), 
autumn (September 22-December 21) and winter (December 21 to 
March 20) seasons (i.e., seasonal minimum and maximum temperature, 
seasonal average precipitation, and seasonal average sunlight). 

The fine particulate matter (PM 2.5), which may contain soot, 
smoke, and dust, can get deep into human lungs and enter the blood-
stream. According to Bowe et al. [22], exposure to high levels of PM 2.5 
is associated with almost 200,000 deaths in the US. Moreover, cigarette 
smoking can damage human airways and the small air sacs in the lungs. 
Daily PM 2.5 air quality data was obtained from the CDC WONDER 
database. The mean values of PM 2.5 for the four seasons were com-
puted for each county. Also, the data pertaining to cigarette smoking 
prevalence in the US for men and women were obtained from Dwyer- 
Lindgren et al. [23]. 

Respiratory infections are more complicated in infants and children 
living in high altitudes. During acute LRI, hypoxemia occurs more 
frequently in children at high altitudes, which may result in increased 
mortality [24]. Therefore, the topographic data (i.e., median altitude 
and slope) of US counties were also incorporated as explanatory vari-
ables. The altitude shuttle radar topography mission (STRM) digital 
elevation model with 30 m spatial resolution were obtained from the 
national map website (http://nationalmap.gov/). The altitude and 
slope values for counties were then quantified using zonal statistics 
function in ArcGIS Spatial Analyst extension. 

Lower socio-economic status can be associated with unbalanced 
access to health care which in turn can lead to elevated mortality of 
diseases. A broad range of socio-economic and demographic variables 
including the proportion of the white and black population, median 
household income, poverty, unemployment rate, (lack of) health in-
surance, and the number of physicians per county was obtained from 
the US Census Bureau's American FactFinder (https://factfinder.census. 
gov/) and included in the file geodatabase. All data used in this study 
are publicly available from the above sources. 

2.2. Spatial statistics 

The spatial pattern of age-adjusted LRI mortality rates (i.e., clus-
tered, dispersed, or random) across the continental US, were examined 
with global and local indices of spatial autocorrelation for every eight 
years of study. Moran’s I and Getis-Ord General G were employed to 
investigate the extent to which the nearby counties had similar LRI 
rates. Moran’s I is calculated using the following formula: 
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where Li and Lj are the deviations of LRI mortality rates from the 
average mortality rate for county i and county j, respectively; wij is a 
binary weight matrix between county i and county j based on the first- 
order Queen contiguity (i.e., each element in weight matrix is non-zero 
when the counties share borders of non-zero length); and n is the ag-
gregate number of counties. The value of I ranges between -1 (negative 
spatial autocorrelations) and +1 (positive spatial autocorrelation), 
while values close to 0 indicate no spatial autocorrelation ([25], [26]). 

A. Mollalo, et al.   International Journal of Medical Informatics 142 (2020) 104248

2

http://ghdx.healthdata.org/record/ihme-data/united-states-mortality-rates-county-1980-2014
http://ghdx.healthdata.org/record/ihme-data/united-states-mortality-rates-county-1980-2014
http://ghdx.healthdata.org/record/ihme-data/united-states-mortality-rates-county-1980-2014
http://www.census.gov/
http://www.census.gov/
http://wonder.cdc.gov/
http://nationalmap.gov/
https://factfinder.census.gov/
https://factfinder.census.gov/


Using the same notation as for Eq (1) Getis-Ord General G is com-
puted as: 
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A significant value of G indicates spatial clustering of LRI mortality 
rates. Both Moran’s I and Getis-Ord General G statistics were calculated 
in ArcGIS 10.7. 

Local measures of spatial autocorrelation such as Getis-ord Gi* also 
were applied to locate the identified spatial autocorrelations of LRI 
mortality rates (P  <  0.05) as follows [27,28]. 
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A high positive and a high negative value of Gi
* imply hotspot and 

coldspot, respectively. However, the focus of this study is on mapping 
and analyzing the identified hotspots of LRI mortality rates for further 
modeling. More detailed information about the clustering and hotspot 
detection techniques have been published elsewhere ([29], [30]). 

2.3. Machine learning modeling 

Five different machine learning classifiers were employed to iden-
tify hotspot locations (P  <  0.05) of the LRI age-adjusted mortality 
rates. The LRI mortality rate for the year 2014 was considered as de-
pendent variable. The classifiers were vanilla logistic regression (LR), 
random forest (RF), gradient boosting decision trees (GBDT), k-nearest 
neighbors (KNN), and support vector machine (SVM). These classifiers 
were selected due to their successful performance in identifying in-
tricate patterns in many binary classification applications ([31]; [32]). 
The scikit-learn Python package was used to develop the classifiers. 

2.3.1. Logistic regression 
LR, a linear function for binary classification, applies maximum 

likelihood estimation to minimize the errors after transforming the 
presence or absence of LRI hotspots into a logit variable [33]. The 
output of LR is the likelihood of LRI’ hotspot occurrence, as a function 
of several exploratory variables and can be expressed as: 

=
+

P
exp
1

1 z (5) 

Where P is the predicted likelihood of LRI hotspot occurrence bounded 
between 0 and 1; and z is a linear combination of the variables and its 
value varies between and + . More precisely: 

= + + + …+z X X Xn n0 1 1 2 2 (6) 

Where 0 is the intercept and = …i n( 1, , )i are the coefficients asso-
ciated with the variables = …X i n( 1, , )i . The detailed information about 
LR is provided by Hosmer and Lemeshow [34]. 

2.3.2. Random forest 
RF developed by Breiman [35] is an ensemble learning method 

where a plethora of decision trees are produced based on bootstrap 
sampling. The input data are repeatedly split, based on many different 
generated classification trees. The final decision is made based on the 
maximum number of ‘votes’ obtained from individual trees ([36]; 
[37,38]). In this study, the number of trees was set to 1000. Also, the 
optimal number of layers from the root to the node of the trees was 
chosen using cross-validation from the set of {2, 3, 4}. 

2.3.3. Gradient boosting decision trees 
Similar to RF, GBDT is an ensemble method based on bootstrap 

sampling, which generates many decision trees. While RF uses the 
bagging method (e.g., equal probability of sample selection in each 
iteration), GBDT uses a boosting method (i.e., weighted (unequal) 
sample selection in each run). After each iteration, the weights are 
adjusted so that the higher weights will be assigned to the models with 
good performances (Friedman [39]). 

Suppose xi is a training sample, yi is the associated label of xi, and N 
is the number of training samples. For any training sample x x, F( )i i is 
the classification (the ith decision tree) of xi, and yL( , F(x ))i i is the loss 
between F(xi) and yi. GBDT determines an optimal model such that 

= L y F x( , ( ))i
n

i i1 is minimized. In the first step, the GBDT initialize the 
decision tree F x( )0 , then iteratively constructs m new trees. For each 
iteration, a negative gradient is computed and a new tree h(x) is added 
to reduce the residuals. The optimal model F x( )* can be calculated as 
follows: 

= + +
=
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i

m

t t
*

0
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where m is the number of iterations; v controls the learning rate; t is 
the weight of h x( )t and h x( )t is the trained decision tree in the tth 
iteration [39]. 

2.3.4. K-nearest neighbors 
The k-nearest neighbors classifier (k is a positive integer), is a non- 

parametric and distance-based algorithm that assigns a test sample to 
the class that is common among its k-nearest training samples. In other 
words, a county is classified as a hotspot of LRI if a majority of its 
neighboring counties are hotspots Peterson [40]. Using a random 
search algorithm, k = 10 was selected as the optimal number of nearest 
neighbors. Also, the explanatory variables are not involved in this al-
gorithm. 

The distance can be calculated in a variety of ways including 
Euclidean distance, Hamming distance, Manhattan distance and 
Minkowski Distance. We used Manhattan distance which yielded better 
results which is calculated as: 

=
=

D x y| |M
i

n

i i
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where x and y are n -dimensional vectors such that = …x x x x( , , , )n1 2
and = …y y y y( , , , )n1 2 . 

2.3.5. Support vector machine 
The SVM classifier, first proposed by Vapnik [41], uses robust sta-

tistical learning theory. Consider a dataset of high dimensional points, 
viewed as vector = … >x R i n d{ : 1, }, 1i

d , where each point belongs 
to one of two classes defined by = …y i n{ {0,1}: 1, }i . Here, yi corre-
sponds to the presence/absence of LRI hotspots. If we assume these 
points to be linearly separable (i.e., can be separated via a linear 
boundary), the goal of SVM is to find the d-dimentional hyperplane 
maximizing the margin (i.e., distance between the closest points or 
support vectors) as illustrated in Fig. 1 [42]. 

The hyperplane can be expressed as = +d x sgn w x b( ) ( . )i , where w
is the orientation of hyperplane and b is the offset of hyperplane from 
origin and sgn is sign function (i.e., sgn= +1 for presence and sgn= -1 
for absence of LRI hotspot). SVM can work in the case where the points 
are not linearly separable by using a soft-margin. Soft margin allows a 
trade-off between the margin of separation and the miss-classification 
penalty. One form of which can be the aggregated distance of the miss- 
classified points to the separation hyperplane. The optimal separating 
hyperplane can be found using Lagrangian multipliers from: 

= = =
Minimize y y x x1

2
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Where i are the Lagrange multipliers and the value of C or regular-
ization shows a trade-off between maximizing the margin and mini-
mizing the errors. Finally, w and b can be obtained as follows: 

=
=
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Where nsv is the number of support vectors placed on the margin lines. 
Many real-world problems are nonlinear. In this case, SVM utilizes 

kernel functions to transform data into a higher dimensional space than 
the original dimension in which the input data can be separated by a 
linear boundary [43]. For non-linear separable cases, the above formula 
is extended using kernel function. This function maps the input dataset 
onto a higher dimensional feature space as shown in Fig. 2. The deci-
sion function is modified as: 

= +f x sign y K X X b( ) ( ( , ) )i i i j (13) 

Where K X X( , )i j is a Gaussian radial basis function kernel as: 

=K X X X X( , ) exp( )i j i j
2 (14)  

Appropriate results highly depend on the selection of C and . Here, 
we used a grid search to find the optimum values for the two para-
meters. This method checks various combinations of C and in a range 
of pre-defined values (C between 0.5 and 20 with increments of 0.5 and 

between 0.005 and 1.0 with increments of 0.1). It should be noted 
that these ranges are boundaries of search space and have been chosen 
to cover a large enough space. For example, in our case, 20 is nu-
merically large enough for C. 

2.4. Accuracy assessment 

To employ the algorithms, 70 % and 30 % of the dataset were 
randomly selected for training and test dataset, respectively. A rando-
mized search algorithm for tuning hyper-parameters in each classifi-
cation algorithm was used. L1 regularization (LASSO) was used to re-
duce the complexity of the model and to avoid overfitting. This is done 
by penalizing small weights to zero, leading to a sparser model. 

The performances of the classifiers were assessed with several me-
trics: overall accuracy ( +

+ + +
T T

T T F F
P N

P N P N
), precision (

+
T

T F
P

P P
), recall ( + )T

T F
P

P N
, 

F1-score ( +2* Precision recall
Precision recall

* ), false positive rate or FPR (
+
F

T F
P

N P
) and area 

under ROC (receiver operating characteristic) curve (ROC AUC). In the 
above formulas, T T F, ,P N P, and FN represent the number of true posi-
tives, true negatives, false positives, and false negatives, respectively. 

The area under the precision-recall curve (PR AUC), which shows 
the tradeoff between precision and recall of different thresholds, was 
also measured because the classes were imbalanced (Goutte & Gaussier 
[44]). All evaluation metrics were computed on the test dataset. 

3. Results 

The null hypothesis of complete spatial randomness was rejected for 
all study years based on Moran’s I (range: 0.36 – 0.61; p-values <  
0.001) and General G (range: 0.0018 – 0.0019; p-values < 0.001) 
statistics. The z-scores of both statistics almost consistently increased to 
large values from 1980 to 2014, indicating highly significant clustering 
(Table 1). Clustering was minimal from 1980 to 1990, but sharply and 
consistently increased thereafter. 

In the earlier years of the study period (1980–1985), the identified 
hotspots of the LRI mortality rates by Getis-Ord Gi* hotspot detection 
technique were mostly concentrated in the western US. In contrast, 
from 1990 to 2000, these hotspots became less prominent, while LRI 
hotspots shifted toward the southeastern parts of the US (Fig. 3). These 
counties continue to represent hotspots through the remaining periods. 

In total, 118 counties (3.8 % of US counties) were persistently 
identified as (part) of LRI hotspots (Fig. 4). Among these were counties 
in Georgia (n = 49), Kentucky (n = 25), and Virginia (n = 22) that 
were persistently affected, and accounted for 81.3 % of total persistent 
hotspot counties. 

All the classification algorithms predicted the hotspots of LRI mor-
tality rates with relatively high accuracy (≥ 0.84); however, GBDT and 
RF were the most accurate models (0.92) (Table 2). Precision-recall 
plots of the employed models (Fig. 5) showed that GBDT had the 
highest PR AUC - indicating the largest values of both precision and 
recall for different cut-off values. 

GBDT achieved the highest F1- score (85 %) and PR AUC (84 %), 
compared to the other models, while the LR model had the worst per-
formance (Table 2). Also, the results of RF were slightly better than 
KNN and SVM. Overall, of the employed machine learning algorithms, 

Fig. 1. Principle of linearly separable SVM using maximum margin.  

Fig. 2. A non-linear boundary in the input space (left) and a maximum margin 
hyperplane in feature space (right). 

Table 1 
Results of the global Moran’s I and General G statistic of age-adjusted LRI 
mortality rates, continental US, 1980-2014.         

Year Index Z-score Type of 
distribution 

P-value 

Moran’s I General G Moran’s I General G  

1980 0.38 0.0019 36.31 8.27 Clustered ∼ 0 
1985 0.36 0.0019 34.59 8.40 Clustered ∼ 0 
1990 0.37 0.0019 35.04 9.57 Clustered ∼ 0 
1995 0.41 0.0018 39.50 12.10 Clustered ∼ 0 
2000 0.49 0.0018 47.00 15.50 Clustered ∼ 0 
2005 0.53 0.0018 51.06 18.81 Clustered ∼ 0 
2010 0.58 0.0018 55.79 22.24 Clustered ∼ 0 
2014 0.61 0.0018 58.35 24.68 Clustered ∼ 0 
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the decision trees (i.e., GBDT and RF) yielded a more accurate predic-
tions. 

The contributions of variables were analyzed for the GBDT and RF 
models (Fig. 6). The results of the GBDT model indicated that spring 
minimum temperature, winter precipitation, and median household 
income had the greatest positive influence in predicting the hotspots. 

4. Discussion 

In this study, we integrated spatial statistical tools with machine 
learning classifiers in a GIS platform to identify hotspots of the LRI 
mortality rates across the continental US and to identify the most 
substantial LRI-associated environmental and socio-economic factors. 
Given the lack of nationwide spatial analysis and modeling of LRI, our 
modeling framework can be applied as a general protocol specifically to 
more prevalent respiratory diseases in the US such as asthma, chronic 
obstructive pulmonary disease, pneumonia and COVID-19 to support 
public health decision makings at the national level. Overall, there was 
a historical shift in hotspots away from the western US into the 
southeastern parts of the country, and the hotspots were highly loca-
lized in a few counties. Environmental factors contributed most 
strongly to these hotspots, while economic and social factors seem to be 
of secondary significance. 

According to Fischer et al. [45], advanced computational models 
can translate the occurrence of infectious diseases into decision-support 
tools. Unlike traditional models, machine learning algorithms can 
quantify the association between infectious disease and explanatory 
variables, even with incomplete or noisy data [26] in a shorter time 
period and less costs. 

Moran’s I and General G statistics confirmed that LRI mortality rates 
are spatially clustered (P  <  0.001) across the continental US. Counties 
with high mortality rates tend to locate closer together than expected 
by chance. Using Getis-Ord Gi*, we identified several hotspots across 
the continental US. Additionally, spatial-temporal analysis of the clus-
ters found a notable geographic shift in the location of hotspots from 
the west coast to the southeast of the US during the study period. The 
spatial pattern and shift in the locations of hotspots over time may 
partially reflect the vast differences in LRI mortality rates by drivers of 
geographic patterns, including environment, socio-economic and be-
havior factors. It may also be attributed to the health disparities or 
improved health care quality such as PCV7 and PCV13 vaccination 
programs during the study period. The latter is consistent with the 
substantial global decline of Streptococcus pneumonia - the leading 
cause of LRI mortality - as estimated by GBD 2016 Lower Respiratory 

Fig. 3. Location of hotspots of LRI mortality rates in the continental US using Getis-Ord Gi* hotspot detection technique, 1980-2014.  

Fig. 4. Location of counties that were persistently identified as hotspots of LRI 
mortality rates by Getis-Ord Gi* hotspot detection technique, 1980-2014. 

Table 2 
Evaluation metrics associated with each of the employed machine learning 
classifiers.           

Accuracy Precision Recall F1-Score ROC AUC PR AUC FPR  

Classifier        
LR 0.84 0.75 0.87 0.78 0.86 0.72 0.17 
RF 0.92 0.87 0.82 0.84 0.82 0.83 0.03 
GBDT 0.92 0.87 0.83 0.85 0.83 0.84 0.04 
KNN 0.90 0.84 0.8 0.82 0.8 0.82 0.05 
SVM 0.91 0.83 0.86 0.84 0.86 0.82 0.07 
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Infections Collaborators [46]. Moreover, some states (including 
Georgia, Kentucky, and Virginia) and counties included persistent 
hotspots, suggesting targeting resources and policy interventions in 
these areas. 

All the classifiers showed a considerable accuracies; however, due to 
the imbalanced dataset, in general, ensemble decision trees out-
performed the (complex) SVM or traditional and frequently applied LR. 
Additionally, although SVM was slightly less accurate compared to the 
decision trees, it is less interpretable, slower to run, and more suscep-
tible to overfitting. Allyn et al. [47] developed LR, RF, GBDT, SVM, and 
Naïve Bayes Model to predict the mortality of 4676 patients after 
elective cardiac surgery from December 2005 to December 2012. Their 

results showed RF outperformed the other classifiers (AUC = 0.788). 
Our results are also in agreement with the findings of Churpek et al. 
[48], who compared LR, tree-based models, KNN, SVM, and neural 
networks. Their findings showed that RF was the most accurate clas-
sifier (AUC = 0.801), followed by the gradient boosting machine 
(AUC = 0.794). 

The findings of decision trees indicated that higher spring tem-
perature and increased precipitation during winter are among the most 
substantial predictors of the presence or absence of the hotspots. The 
contribution of these environmental factors is most likely due to the 
changes in the epidemiology of weather-sensitive pathogens and host 
immune response, which can, in turn, lead to respiratory infections 

Fig. 5. Results of the precision-recall curve for employed machine learning classifiers. The orange dash line annotates the average precision.  

Fig. 6. Relative variable importance analysis using the gradient boosting and random forest decision trees. A detailed description of x-axis codes is provided in 
Supplementary Material. 
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[49]. Other studies show that respiratory infections are seasonal, 
especially during winter and rainy months. Seasonality may play a role 
due to the proximity of people in enclosed environments during cold 
temperature weather, which can facilitate the spread of infections 
during those seasons. For example, Thomas et al. [50] found that RSV 
infection was more prevalent in children during the winter months in 
Canada. In Malaysia, LRI was positively correlated with the monthly 
number of rainy days but negatively associated with the monthly mean 
temperature [51]. A study conducted in Pakistan showed that LRI cases 
were more frequent in months when the minimum temperature was 
lower [52], however, in Brazil, statistically significant associations were 
found between viral LRI and increasing temperature and decreasing 
humidity [53]. Inconsistent findings may be due to different studied 
organisms or different spatial units of analysis. For example, from 
county-level studies, one can not draw a conclusion at the individual 
level due to ecological fallacy. Moreover, age is a potential confounder 
that needs to be adjusted, particularly in studying mortality rates of 
diseases, to avoid distorting the relationship. 

The findings of decision trees also implied that the economic status 
such as median household income and the higher proportion of the 
population living below the poverty line (according to the definition of 
US census Bureau (https://www.census.gov/) were among substantial 
socio-economic factors in describing LRI hotspots. Although we cannot 
provide an explicit explanation for economic factors, poor access to 
basic treatments is a plausible explanation. The findings were consistent 
with a large body of literature worldwide. LRI was found pre-
dominantly in the disadvantaged populations in South Auckland, New 
Zealand [54]. These populations were living in areas in the bottom 
quintile for socio-economic deprivation and with high rates of smoke 
exposure and poor living conditions. Similarly, impoverished children 
living in informal households without electricity and running water had 
approximately four times higher LRI mortality rates in South Africa 
[55]. 

There are several limitations of the current research study. First, the 
variables incorporated in the machine learning models undergoes sev-
eral transformations and are susceptible to measurement or analysis 
errors. Also, neglecting the role of spatial autocorrelation, especially in 
sparse data, may produce biased estimates of the importance of vari-
ables. Another limitation is attributed to the selection of spatial scale. 
The values within each county are uniform, but there might be sharp 
contrasts between neighboring sub-counties, however, the choice of the 
spatial unit was dictated by the available data. Future studies should 
analyze and predict hotspots of LRI at the sub-county level, such as zip 
code or census tract levels, for targeted human interventions, particu-
larly for Virginia, Kentucky, and Georgia, which were persistently 
identified as LRI hotspots. Additionally, future LRI studies should in-
corporate the concentration of other criteria air pollutants such as 
ground ozone, Sulphur oxides, lead, carbon monoxide, and nitrogen 
oxides as they may cause serious damages to internal organs especially 
to lungs which can lead to a higher mortality of LRI. 

To our knowledge, this is the first study that incorporated national 
datasets on the LRI mortality rate using machine learning algorithms. 
Despite the above limitations, these findings have important public 
health implications. Predicting why the counties with high LRI mor-
tality rates cluster geographically can be helpful further to reduce 
mortality in these regions. Moreover, the results of decision tree mod-
eling can provide insight for future research geared toward identifying 
contributing factors such as median household income and climate 
factors to elevated LRI mortality rates. Despite significant efforts for 
mitigating mortality of LRI, there are many clustered counties, parti-
cularly in Georgia, Kentucky, and Virginia, where LRI mortality rates 
have remained elevated for the past 35 years. 
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