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ABSTRACT: Alzheimer’s disease (AD) is a progressive brain
disorder that can significantly affect the quality of life. We used a
variety of in silico tools to investigate the transcript-level mutational
impact of exonic missense rare variations (single nucleotide
polymorphisms, SNPs) on protein function and to identify potential
druggable protein cavities that correspond to potential therapeutic
targets for the management of AD. According to the NIA-AA
(National Institute on Aging-Alzheimer’s Association) framework, we
selected three AD biomarker genes (APP, NEFL, and MAPT). We
systematically screened transcript-level exonic rare SNPs from these
genes with a minor allele frequency of 1% in 1KGD (1000 Genomes
Project Database) and gnomAD (Genome Aggregation Database).
With downstream functional effect predictions, a single variation
(rs182024939: K > N) of the MAPT gene with nine transcript SNPs was identified as the most pathogenic variation from the large
dataset of mutations. The machine learning consensus classifier predictor categorized these transcript-level SNPs as the most
deleterious variations, resulting in a large decrease in protein structural stability (ΔΔG kcal/mol). The bioactive flavonoid library
was screened for drug-likeness and toxicity risk. Virtual screening of eligible flavonoids was performed using the MAPT protein.
Identification of druggable protein-binding cavities showed VAL305, GLU655, and LYS657 as consensus-interacting residues
present in the MAPT-docked top-ranked flavonoid compounds. The MM/PB(GB)SA analysis indicated hesperetin (−5.64 kcal/
mol), eriodictyol (−5.63 kcal/mol), and sakuranetin (−5.60 kcal/mol) as the best docked flavonoids with the near-native binding
pose. The findings of this study provide important insights into the potential of hesperetin as a promising flavonoid that can be
utilized for further rational drug design and lead optimization to open new gateways in the field of AD therapeutics.

1. INTRODUCTION
Alzheimer’s disease (AD) is the most common type of
dementia, characterized by a gradual and progressive decline in
memory and other cognitive functions, ultimately leading to
significant impairment of daily activities.1 Brain changes
associated with AD lead to the destruction of synapses in
parts of the brain involved in memory, including the entorhinal
cortex and hippocampus, culminating in brain atrophy.2

In 2019, AD was established as the sixth-leading cause of
death in the USA and the fifth-leading cause of death for
people aged 65 and older.3 Global statistics show that AD
affected 6.2 million Americans aged 65 and older in 2021.
Without medical advancements to manage or cure the disease,
this figure is projected to nearly double to 13.8 million by
2060.3,4 In Southeast Asia, dementia of the Alzheimer’s type
accounted for 59.8% of all dementia cases in 2021.5 Due to a
rapidly growing elderly population, an estimated two million
people in Pakistan are currently living with AD, and this
number is steadily rising.6

AD is characterized by numerous molecular and cellular
changes in the brain involving a complex interplay of genetic,
environmental, and lifestyle factors that contribute to the
disease’s pathogenesis.2 AD is biologically defined by the
presence of β-amyloid-containing plaques and tau-containing
neurofibrillary tangles (NFTs).7 The anomalous processing of
amyloid precursor protein (APP) by β and γ-secretases leads to
the production of Aβ40 and Aβ42 monomers, which further
oligomerize and aggregate into senile plaques.8 The hyper-
phosphorylation of tau causes it to lose its normal function of
stabilizing microtubules, leading to the formation of paired
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helical filaments which make up the NFTs.9 These NFTs
interfere with the transport mechanism of the cell, impairing
the synaptic transmission between neurons. The formation of
NFTs is a hallmark of AD and is used as a diagnostic criterion
for the disease.10 The accumulation of Aβ42 and p-tau in the
brain triggers a series of events, including inflammation,
oxidative stress, and impaired energy metabolism that
eventually lead to neuronal death.9,10 Emerging research
suggests that aberrant tau and β-amyloid proteins, along with
other variables, may interact intricately to cause the brain
abnormalities associated with AD.11

AD has been designated as a global public health priority
due to its expected tripled prevalence from 2015 to 2050, with
the greatest impact expected in low- and middle-income
countries.3,4 Mixed etiology, overlapping symptoms, variation
in presentation, and a lack of standardized accessible
biomarkers leave AD still difficult to diagnose.12 Even after
more than a century of rigorous research, no disease-modifying
treatment yet exists, and only symptomatic management is
provided to AD patients.13 This high failure rate of clinical
trials can be attributed to pharmacological intervention late in
the disease course. Since it is strongly suggested that treatment
is rendered ineffective after a certain pathological threshold,
there is a pressing need for early diagnostic markers of AD.12,13

The research framework articulated by the NIA-AA (National
Institute on Aging-Alzheimer’s Association) envisions AD as a
molecular rather than a clinical construct.14

Recently, following the NIA-AA research framework guide-
lines,14,15 our group obtained encouraging results on
investigating the potential use of plasma amyloid β 42
(Aβ42), phosphorylated tau (P-tau), and neurofilament light
chain (NEFL) as biomarkers for AD.16 To expand our
biochemical analysis, we conducted this in silico analysis of the
genes encoding the core proteins involved in AD pathogenesis.
This approach allowed us to investigate both pathogenic and
rare-coding mutations and their impact on the structure of the
respective proteins. By examining the structural consequences
of these mutations, we gained valuable insights into their
potential contributions to AD development and progression.

Flavonoids, ubiquitous plant compounds comprising up to
60% of dietary polyphenols, have been extensively studied as
potential drugs or food supplements owing to their biological
functions.68 They consist of a diphenyl propane−flavonoid
skeleton and are divided into subclasses, such as anthocyanins,
chalcones, flavanols, flavanones, flavones, and isoflavones.
Flavonoids exhibit antioxidant properties by scavenging free
radicals, regulating oxidative stress, and chelating transition
metals. Different flavonoids such as myricetin, hesperetin,
genistein, xanthohumol, and isoliquiritigenin, have been
reported to have antioxidant and anti-inflammatory effects.68,69

They also regulate carcinogenesis signaling pathways, interact
with proteins, and modulate wingless-related integration site
(Wnt) signaling pathways, affecting all cancer stages.68,69

Oxidative stress was initially proposed as a major factor in
the development of AD in 1986.68,69 Overwhelming evidence
exists that the cells in the Alzheimer’s brain undergo
abnormally high levels of oxidative stress.69 In AD, the brain
appears to sustain more oxidative damage than normal with
low levels of antioxidants. Recent research on secondary
metabolites of plants, such as polyphenols, has demonstrated
that they may slow the progression of AD. The mechanisms of
action of flavonoids in AD involve the inhibition of
acetylcholinesterase, butyrylcholinesterase, tau protein aggre-

gation, β-secretase, oxidative stress, inflammation, and
apoptosis through the modulation of signaling pathways
implicated in cognitive and neuroprotective functions.69 In
addition, flavonoids, including epicatechin-3-gallate, gossype-
tin, naringenin, quercetin, and myricetin, have been reported to
block β-amyloid and tau aggregation, scavenge free radicals,
and sequester metal ions at clinically low concentrations.69 The
reported possible mechanisms of action of these flavonoids
include decreasing the hyperphosphorylation of tau protein,
oxidative stress, and inflammation, which in general result in
the modulation of metabolic pathways as well as key enzymes
to manage the progression of AD.69 We further explored the
therapeutic potential of flavonoids, known for their neuro-
protective effects by investigating their binding interactions
with the identified druggable protein cavities in AD-related
proteins.17 This investigation aimed to elucidate the potential
therapeutic effects of flavonoids by targeting specific sites
within AD-related proteins.

2. MATERIALS AND METHODS
2.1. Retrieving Genes, SNPs’ Selection, and Extrac-

tion of Rare-Coding Exonic Mutations (nsSNP). As a
continuation of our earlier work reported in 2023 regarding
these biomarker gene targets, the main rationale for the
selection of potential AD genes for biomarker analysis also
follows the NIA-AA research framework guide.15,16 We chose
Aβ 42 protein from category A and P-tau from the T category
of the AT(N) classification of biomarkers. Additionally, we
included NEFL as a candidate biomarker gene as several
studies have shown NEFL to be indicative of disease severity,
although it is not specific to AD.15,16 APP, MAPT, and NEFL
genes were extracted from publicly accessible databases. The
relevant genomic information was extracted through a
database-associated protein search. The strategy for the
retrieval of AD-associated genes/proteins was done from the
NCBI (National Center for Biotechnology Information)
databases18 and the HUGO Gene Nomenclature Commit-
tee.19 All essential genomic information was further retrieved
from NCBI,18 ENSEMBL,20 UniProt,21 and GeneCards.22

Data related to the core single nucleotide polymorphisms
(SNPs) of the aforementioned human genes (potential
biomarker genes/proteins for AD) and their protein sequences
(FASTA format) were downloaded from the NCBI18 and
ENSEMBL (https://asia.ensembl.org/index.html) databases
(Human 127 Genome Assembly, GRCh38.p13 build 38).20

Subsequently, the retrieved SNPs were further validated
through the dbSNP database. The variant effect predictor
(VEP) module was used to predict the downstream functional
effects (DSFE) of variants, including SNPs, deletions,
insertions, and single nucleotide variants (SNVs) on selected
genes, transcripts, and protein sequences as well as regulatory
regions. The rare-coding variants were evidenced in the 1000
Genome Project Database (1KGD)23 and the Genome
Aggregation Database (gnomAD).24 The minor allele
frequency (MAF) cutoff was set less than or equal to 0.01
(1%). The relevant information for all SNPs, including SNP
ID, chromosomal location, nucleic acid changes, amino acid
changes, and reported transcript sequence ID was also
extracted. After the retrieval of all SNPs from the ENSEMBL
database, the extraction of exonic variants was performed by
applying a filter in the VEP module of ENSEMBL. The
extracted details were downloaded and stored as a default
comma-separated values (CSV) Excel file for further analysis.

ACS Omega http://pubs.acs.org/journal/acsodf Article

https://doi.org/10.1021/acsomega.3c05769
ACS Omega 2023, 8, 40695−40712

40696

https://asia.ensembl.org/index.html
http://pubs.acs.org/journal/acsodf?ref=pdf
https://doi.org/10.1021/acsomega.3c05769?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


2.2. Extraction of Deleterious SNPs through the DSFE
Prediction Approach. To screen the deleterious exonic
nsSNP in the genomic mutation dataset, a combination of
various computational tools based on different machine
learning and deep learning algorithms was employed. The
details of the algorithm used to compute deleterious mutations
include the following:

1. SIFT: SIFT (https://sift.bii.a-star.edu.sg/) is a tool for
distinguishing pathogenic mutations with significant
disease involvement from neutral polymorphisms. SIFT
predictions make it easy to examine how amino acid
substitutions affect protein function.25 The SIFT score,
which ranges from 0 to 1, is a normalized likelihood
value of discovering the new amino acid at that site.

2. Polymorphism phenotyping (PolyPhen2): This tool
(Polymorphism phenotyping, http://genetics.bwh.
harvard.edu/pph2/dbsearch.shtml) was used to evaluate
the functional impact of an amino acid substitution on a
protein’s stability and overall function. With regard to
specificity and sensitivity for a mutation, the prediction
(score) output is classed as “most likely deleterious”,
“may be deleterious”, and “benign”, which was employed
as a basis for gene annotation.26

3. Combined annotation-dependent depletion (CADD)
score: In numerous genomic datasets of humans, CADD
is most often employed to filter the deleteriousness of
SNVs as insertion/deletion variations. Because of the
substantial correlation between the CADD score and
allelic diversity, variant pathogenicity, and experimen-
tally measured regulatory effects within individual
genome sequences,27 CADD scores of 20 or higher
were used to select nsSNPs.

4. The rare exome variant ensemble learner (REVEL):
REVEL is used to evaluate the pathogenicity of missense
variations in order to determine the possible pathoge-
nicity of SNV. This tool is not intended to be used as a
descriptive prediction method; rather, it simply indicates
that scores larger than “0.5” are “likely disease causing”
and scores below “0.5” are “likely benign”. Only 10.9%
of neutral variants, but an estimated 75.4% of disease
mutations, have a score above 0.5.28

5. MetaLR: This logistic regression-based method called
MetaLR is used to classify SNV as either “damaging” or
“tolerable”. A number between 0 and 1 is also given in
this instance and variants with higher values are more
likely to be harmful.29

6. Mutation assessor class: The functional effects of
substituting amino acids are predicted by this technique.
The classification of the prediction is “high”, which
represents any variations with a higher likelihood of
being harmful in genomic datasets.30

2.3. Transcript-Sequence-Based Consensus Classifi-
cation of Deleterious nsSNPs. We separately validated the
transcript-sequence-based nsSNPs with PhD-SNP,31 PAN-
THER,32 MutPred2,33 SNAP,34 MetaSNP,35 SNAP2,36

PMut,37 and SNAP&Go38 for their deleterious assessment.
Further, to investigate the consensus classification of the
transcript-sequence-based SNPs’ impact on protein function,
PredictSNP1.0 (http://loschmidt.chemi.muni.cz/predictsnp1/
) tool was used to determine the aggregate predicted accuracy
of nsSNP. This consensus classifier was implemented through
nine of the top-performing prediction tools: PhD-SNP

(predictor of human deleterious single nucleotide poly-
morphisms), SNAP, PANTHER (protein analysis through
evolutionary relationships), PredictSNP, nsSNPAnalyzer, SIFT
(sorting intolerant from tolerant), PolyPhen-1 (polymorphism
phenotyping v1), PolyPhen-2 (polymorphism phenotyping
v2), and MAPP (multivariate analysis of protein poly-
morphism).39

2.4. Characterizing the Effects of Rare nsSNPs on
Protein Stability and the Evolutionary Conservation of
Protein Structural Characteristics Using In Silico
Supervised Learning-Based Methods. The in silico tools
used to characterize the effects of rare nsSNPs on protein
stability and functions include the following web servers/tools:

1. iPTree-STAB: The iPTREE-STAB/iStable v.2.0 is an
interpretable decision tree-based approach that can
distinguish between proteins that become stabilized or
destabilized and predict their stability changes (ΔΔG)
upon single amino acid variation. Three nearby residues
of the mutant site along the N- and C-terminals are used
in classification and regression trees, respectively, as the
major methods for discrimination and predictions
(http://ncblab.nchu.edu.tw/iStable2/seqsubmit.html).
Additionally, this database calculates the surface
accessibility and secondary structural information on
the protein sequences with mutations.40

2. MUpro (http://mupro.proteomics.ics.uci.edu/), this
tool was created using support vector machines
(SVM) and neural networks, employing machine
learning techniques (NN). The benefit of this in silico
approach was that it could anticipate changes in protein
stability without the need for tertiary structures.41

3. I Mutant: I Mutant is a predictor of changes in protein
stability brought on by mutations. I Mutant v3.0 is a
SVM-based tool for the automatic prediction of protein
stability alterations in response to single-point mutations
at pH 7 and a temperature of 25 °C. The predictions are
made from the protein sequence and can be used as a
regression estimator to predict the related ΔΔG values
as well as a classifier to predict the sign of the protein
stability change upon mutation (http://gpcr2.biocomp.
unibo.it/emidio/I-Mutant3.0/I-MutantSuiteHelp.html).
The ternary classification includes the neutral class,
which refers to modest ΔΔG value changes caused by
single-point protein mutations (WT/new). I Mutant
v3.0 classifies the prediction in three classes: neutral
mutation (−0.5 < ΔΔ G < 0.5), large decrease (< −0.5)
and large increase (> 0.5).42

4. INPS-MD: Using sequences and structures, the INPS-
MD approach (impact of nonsynonymous mutations on
protein stability-multi-dimension) predicts the stability
of protein variations. The simplified support vector used
by the libsvm package, which was only evaluated with
linear and radial basis function kernels, is the foundation
of the INPS-MD predictor employing sequences. To
determine stabilizing (ΔΔG > 0) and destabilizing
(ΔΔG < 0) variations, we evaluated INPS-MD
predictions on 9 transcript-level nsSNPs.43

5. ConSurf and SOPMA analysis: By computing the
conservation score using a special technique, the
ConSurf software (http://consurf.tau.ac.il) was utilized
to assess the evolutionary conservation of amino acids’
variation in protein. The technique applies the Bayesian
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method to compute normalized conservative scores
(NMC) with a confidence interval (CI) for each of the
estimated evolutionary conservation scores. Evolutio-
narily conservative amino acids were those with scores
between 7 and 9.44 The secondary structure of amino
acid residues (helix, turn, and coil) was collaboratively
predicted by the SOPMA neural network approach
(PHD). To calculate the secondary structural informa-
tion on proteins, this software (https://npsa-prabi.ibcp.
fr/cgi-bin/npsa_automat.pl?page=npsa_sopma.html)
employed five distinct methods.45

2.5. Computing the Impact of Transcript-Level
Structural Modifications of Rare nsSNPs on the
Secondary Structure, Torsional Angles, Energetic
Potentials, and Protein Dynamics. To examine the effects
of the substitution of an amino acid on protein sequence,
protein secondary structure, surface accessibility, percent
disordered residue, and torsional angles, phi (φ) and psi (ψ),
were computed from NetSurfP-2.0 web server of the Technical
University of Denmark’s (DTU).46 The Cologne University
Protein Stability Analysis Tool (CUPSAT) webserver was used
to look into any potential 3D structural variation associated
with the protein of interest (http://cupsat.tu-bs.de/). With the
use of this web tool, transformations in the potential of the
targeted atom(s) and torsion angle potential were also
obtained.47 The free energy difference of the unfolding
conformational state between the wild type (WT)/native
protein and the nsSNP-based modified protein 3D structure
was calculated using this sequence-based approach.

To predict the 3D structure of each transcript-sequence, we
used the Phyre2 web-based server for transcript-level protein
3D structure prediction (http://www.sbg.bio.ic.ac.uk/
phyre2).48 The Phyre2 services use the concepts and methods
of homology modeling to forecast the 3D structure of a protein
sequence. A protein sequence of interest (the target) can be
modeled accurately on a very distantly related sequence of a
known structure (the template), provided that the relationship
between the target and template can be determined through
sequence alignment as the structure of a protein is more
conserved in evolution than its amino acid sequence. Profiles
and hidden Markov models are currently the most effective
and reliable techniques for identifying and aligning remotely
related sequences (HMMs). These profiles/HMMs serve as an
accurate representation of the mutational propensity of each
location in an amino acid sequence based on reported
mutations in similar sequences.48

SDM (site-directed mutator) was another computational
method for analyzing the variation of amino acid replacements
occurring at particular structural environments that were
permitted within the family of homologous proteins with
known 3D structures, turning them into substitution
probability tables.49 To analyze and visualize protein dynamics
by sampling conformations and to evaluate the effects of
residue modification/possible mutations on protein dynamics
as well as the stability brought by changes in vibrational
entropy, DynaMut, a web server that implemented two
independent, well-established normal mode techniques, was
employed.50

2.6. Protein’s Homology Model, Bioactive Flavonoid
Selection, and Compilation of 3D Compounds’ Library.
To prefer the complete 3D protein homology with
comprehensive structural coverage of amino acid residues,

the best homology model of canonical protein coding gene
sequence (MAPT) was retrieved from the AlphaFold protein
structure database available through the UniProt database
(https://alphafold.ebi.ac.uk/search/text/MAPT).21,51 This
strategy was adopted because of the inaccessibility of a
complete 3D protein model in the Protein Data Bank (PDB).
Prior to this, we performed protein BLAST (basic local
alignment search tool) using the PDB database. The sequence
query coverage was less than 60%; therefore, our preference
was to choose a 3D model with full coverage (amino acid
length of 758) from the canonical sequence of MAPT.

The SAVES (structure validation server: https://saves.mbi.
ucla.edu/) web server was used to know the probable residue
properties, chi-plot analysis, side chain parameters, G-factor,
and planar group analysis.52 Bioactive flavonoid compounds
were selected based on their previously proposed role as
neuroprotective compounds, which can prevent the pro-
gression of age-related disorders, including AD, and can be
used to design and develop new potential drugs that are
effective in cognitive disorders.53 According to Ayaz et al.,
2019, we chose various flavonoid compound classes for the
identification of therapeutic targets in the present protein.17 A
thorough literature search was used to get the basic
information on these bioactive substances for establishing a
3D compound library including all bioactive flavonoids
reported from various sources and classes. From the PubChem
compound database (https://pubchem.ncbi.nlm.nih.gov), the
3D structures of all reported compounds were retrieved.54

Following a visual examination of each 3D compound, the
structures were initially downloaded in SDF (structure data
format) and translated to PDB format using Open Babel
software.55 All the 3D compounds were subjected to Pfizer’s
rule of five for evaluating drug-likeness criteria.56 Following the
evaluation, only 3D bioactive flavonoids which satisfied all five
of Pfizer’s rule of five physicochemical requirements were
chosen because any one infraction was treated as a failure or an
elimination aspect.57 Only eligible compounds were further
screened with the help of OSIRIS Property Explorer (https://
www.organic-chemistry.org/prog/peo/), which uses chemical
structures in SMILE format for drug property prediction in
terms of topological polar surface area, clog P calculation, log S
calculation, molecular weight, and others. The drug-likeness
properties were further computed and validated and only those
3D bioactive flavonoids were selected which have drug-score
>0.8 (80%).58

2.7. Virtual Screening of Bioactive Flavonoid Com-
pounds through the Molecular Docking-Based Graph-
ical-Automatic Drug Design Approach. The structure of
the MAPT protein from the AlphaFold protein structure
database was chosen for this experiment. In our selected
protein 3D model, the details of active site residues and
pockets have not been well characterized because of the lack of
complete 3D model details in the PDB. For this reason, virtual
screening using a blind docking approach is a computational
technique used in drug discovery when the information on the
active site of a target protein is unknown or poorly
characterized. These methods help to identify potential
binding sites and candidate compounds for further exper-
imental validation. Second, the main objective of applying this
strategy was to significantly expedite the flavonoid screening
process through blind docking-based virtual screening by
narrowing the pool of compounds for further experimental
validation. The basic reason for virtual screening was to dock a
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library of all bioactive flavonoid compounds into the binding
pocket of the AD protein and then rank the small ligand
molecules based on their binding affinity with the MAPT
protein. The virtual screening approach resulted in some top-
ranked compounds in terms of binding energy, which were
used to be moved forward for testing toward hit identification.
In this regard, we employed the iGEMDOCK graphic
automatic drug design system to identify compound-protein
associations via the fitness value. The corresponding formats of
the ligands (flavonoids) and MAPT protein for this analysis
were PDB files. iGEMDOCK provides post-analysis tools (i.e.,
atomic compositions) by providing a graphical-integrated
environment for virtual screening (molecular docking),
utilizing k-means and hierarchical clustering techniques based
on docked poses (i.e., protein−ligand interactions) as well as
compound characteristics. A novel approach for determining
compound similarity was atomic composition (AC), which was
comparable to the amino acid content of a protein sequence.59

2.8. Identifying Druggable Protein Cavities and
Predicting Near-Native Binding Pose through Molec-
ular Mechanic Computation with Poisson−Boltzmann/
Generalized Born Surface Area Solvation. The binding
cavities in the protein of interest were explored using the CB-
dock (cavity-detection guided blind docking) technique.60 We
employed this method in order to find the best protein-binding
(druggable) cavities in terms of their molecular interactions
with bioactive flavonoid compounds. CB-dock is an automated
protein−ligand docking method that locates binding cavities/
sites. Utilizing the COACH prediction tool as a benchmark set,
CB-dock compared and rated cavities using a technique known
as “CurPocket” with cutting-edge algorithms for predicting
protein−ligand binding sites. Using a novel curvature-based
cavity detection approach, the CB-dock additionally deter-
mines the center and size of the docking box of the putative
cavity as a critical process parameter. This prediction method
was carefully optimized and achieved a ∼ 70% success rate for
top-ranking poses whose root-mean-square deviation was
within 2 Å from the X-ray pose.60 All eligible screened

bioactive compounds were CB-docked with a 3D model of the
MAPT protein, and the binding affinities for each drug-like
compound were documented. Ultimately, the highest grading
cavities produced after each compound’s interaction with the
chosen protein model were used to assess for its further
molecular visualization and interpretation of intervening
therapeutic target with AD protein using a 2D ligand plot.60

In order to identify the near-native mode of binding of
MAPT protein with ligand through rescoring docking poses,
we used the fastDRH algorithm. This tool generated protein−
ligand binding poses by the molecular docking approach,
structure-truncated MM/PB(GB)SA free energy calculation,
and predicting the hotspot residues by per-residue free energy
decomposition analysis. In structure-based drug design,
predicting the native binding pose of a small molecule within
a protein-binding pocket is considered a crucial challenge,
particularly in the hit-to-lead and lead optimization phases.
The fastDRH server integrates AutoDock Vina and AutoDock-
GPU docking engines, structure-truncated MM/PB(GB)SA
free energy calculation methods, and several poses based on
per-residue energy decomposition analysis into an accessible
and multifaceted online platform. The combined structure-
truncated MM/PB(GB)SA rescoring processes demonstrated a
success rate of >80% in the benchmark, which was significantly
higher than that of AutoDock Vina (70%) in terms of protein−
ligand binding mode prediction. The per-residue energy
decomposition analysis technique based on several poses is a
more reliable solution for hotspot residue identification than
the one employing only a single pose, and the effectiveness of
the outcomes has been empirically proven in various drug
discovery projects. The molecular mechanics energies in
combination with the MM/PBSA and MM/GBSA methods
were used to calculate the free energy of small ligands binding
to biological macromolecules, such as proteins. This approach
is an efficient and reliable free energy simulation method for
modeling molecular recognition.61

Figure 1. Research work-flow.
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3. RESULTS
3.1. Selection of the AD-Associated Genes and

Proteins. Figure 1 depicts the research scheme employed in
this study. According to the prescribed criteria of NIA-AA, we
extracted three human genes encoding a particular protein
biomarker. The first gene was NEFL (NCBI Gene ID: 4747),
which has a four-exon count, two transcripts, and the following
genomic location on chromosome 8:24,950,955−24,956,721,
reverse strand. The protein coded by NEFL is NEFL
polypeptide (UniProt accession no. P07196). The second
gene was microtubule-associated protein tau (MAPT; NCBI
Gene ID: 4137), which has 16 exons and 30 transcripts and the
genomic location of chromosome 17:45,894,527−46,028,334
on the forward strand. The protein coded by theMAPT gene is
MAPT (UniProt accession no. P10636). The third biomarker
gene was amyloid β precursor protein (APP; NCBI Gene ID:
351), which has 20 exons and 20 transcripts and the genomic
location of chromosome 21:25,880,535−26,171,128 reverse
strand. The protein coded by the APP gene is an APP
(UniProt accession no. P05067).
3.2. Genes Mutational Estimation and Extraction of

Rare-Coding Deleterious SNPs through DSFE Predic-
tion. The total number of mutations estimated was 3243 in
the NEFL, 35286 in the MAPT, and 77249 in the APP gene.
The overall mutations (SNPs) from these three biomarker
genes were 115,778. These mutations were further filtered in
terms of exonic SNPs, which reduced the count to 1148 in
NEFL, 28891 in MAPT, and 12338 in APP genes, with an
overall count of 42,377 SNPs. On the basis of MAF criteria of
1%, we further filtered the rare mutation numbers in all three
genes and found the estimates of 27 in NEFL, 497 in MAPT,
and 320 in the APP gene (Figure 2 and Table S1). By applying
the set MAF criteria and DSFE prediction, we obtained only a
single exonic rare-coding SNP, rs182024939, with nine (9)
different transcripts of the MAPT gene (Table 1). Hence,
because all other SNPs were excluded, this variant
(rs182024939) from MAPT was characterized as a rare-coding
high-risk mutation with nine different transcripts and was
considered for further analysis.

The SNV was sourced from dbSNP, and it exhibits a G > A
substitution at position 17:46010327 in the GRCh38 reference
genome. The supporting evidence for the variant includes a
MAF of T = 0.000005/1 in gnomAD exomes, as well as a MAF

of T = 0.000156/1 in the 1KGD. The nine transcript
sequences of the extracted rare-coding deleterious SNP
(rs182024939) by DSFE prediction include MAPT-201
(K672N: ENST00000262410.10), MAPT-204 (K280N:
ENST0 0 0 0 0 3 5 1 5 5 9 . 1 0 ) , MAPT - 2 0 5 ( K 6 1 5 N :
EN ST 0 0 0 0 0 4 1 5 6 1 3 . 6 ) , MAPT - 2 0 6 ( K 2 5 1 N :
EN ST 0 0 0 0 0 4 2 0 6 8 2 . 6 ) , MAPT - 2 0 8 ( K 2 2 2 N :
EN ST 0 0 0 0 0 4 4 6 3 6 1 . 7 ) , MAPT - 2 1 2 ( K 5 9 7 N :
EN ST 0 0 0 0 0 5 7 1 9 8 7 . 5 ) , MAPT - 2 1 4 ( K 2 8 0 N :
EN ST 0 0 0 0 0 5 7 4 4 3 6 . 5 ) , MAPT - 2 1 7 ( K 2 5 1 N :
ENST00000680542 . 1) , and MAPT -218 (K222N:
ENST00000680674.1).

All nine filtered transcript sequences of MAPT showed
similar chromosomal locations, alleles, and global MAF status.
However, in all nine transcripts, the amino acid positions of the
mutations were different. The SIFT, PolyPhen, and MetaLR
statuses of all nine transcript-level mutations were deleterious,
probably damaging, and damaging, respectively. The remaining
three prediction tools, REVEL, CADD, and mutation assessor,
classified these nine transcript-level mutations of MAPT as
likely disease-causing, damaging, and medium, respectively
(Table 1).
3.3. Consensus Classification-Based Computation of

All Transcript Sequences of Identified Rare-Coding
Pathogenic Variant of the MAPT Gene. By applying six
different machine learning algorithms to compute the
sequence-based pathogenicity of all nine transcript-based
variants (rs182024939) of the MAPT gene, we found the
most pathogenic effect in the MAPT-212 (K597N) transcript
sequence. Only the PANTHER tool showed a potentially
damaging effect. The remaining algorithms (PhD SNP, SNAP,
Meta-SNP, SNAP2, and PMut) showed a disease impact.
Besides this, MAPT-201 (K672N) and MAPT-205 (K615N)
also showed some disease-linked impact in a few prediction
tools (Table 2). The evolutionary conservation scores
computed by the PANTHER tool for MAPT transcripts 201,
205, 206, 2012, and 217 showed possibly damaging effects. As
per the findings reported in Table 2, the transcripts computed
with deleterious impacts were MAPT 201 and 212.
Interestingly, it was observed that MAPT 204, 208, 212, and
214 were disease-causing mutations, specifically indicated by
PMut (Table 2).

Figure 2. Mutational (SNPs) estimation of selected AD gene biomarkers.
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To get a consensus classification on these results, we used a
classifier predictor tool to establish the pathogenic effects of
these transcript-associated mutations. Conclusively, with the
aid of a consensus classifier predictor, we computed that all
nine transcript-based variants (rs182024939) of the MAPT
gene have been characterized with potential pathogenic effects
(Table 3). The consensus classification pattern indicated that
the nine filtered transcripts of MAPT exhibited a pathogenic
impact. Interestingly, the most pathogenic transcripts of
MAPT computed using this classifier were 204, 205, and
214, respectively (Table 3). However, very few exceptions
were also noticed in the different algorithms jointly covered
under the consensus classification pattern (Table 3).
3.4. Categorizing the Transcript-Based Effects of

Rare-Coding Deleterious Variations on Function,
Stability, and Evolutionary Conservation of MAPT
Protein. The computational investigations from various
algorithms used to compute the effects of all nine transcript-
based variants (rs182024939) of the MAPT gene on protein
function and stability showed a marked decrease in the stability
of proteins upon this mutation. The tools used to calculate the
ΔΔG (kcal/mol) difference in energies showing the impact of
the mutation on protein functions include iPTREE-STAB,
MUpro, I Mutant, and INPS (Table 4). To investigate the
impact of mutations on protein function, our findings indicated
that the use of the algorithms mentioned above resulted in a
uniform pattern of protein destabilization with very little
variation in computed scores (Table 4). In addition, the
findings in Table 4 strengthen and validate the outcomes of the
previously used consensus classification experiments on nine
filtered transcripts of MAPT.

The computed evolutionary conservation scores (BNC-
Bayesian normalized conserved score) showed that the three
transcript sequences, that is, MAPT-201 (K672N), MAPT-205
(K615N), and MAPT-212 (K597N), were highly conserved as
well as exposed, and the mutations present in these sequences
were on the extended strand, β-turn, and α helix, respectively.
Additionally, the protein sequences of these transcripts of the
MAPT gene have a higher proportion of exposed residues,
which were computed using an algorithm that calculates the
NMC using the Bayesian method with a CI for each of the
inferred evolutionary conservation scores. Specifically, the
findings from this study indicated that MAPT transcripts 201,
205, and 212 were highly conserved (evolutionary conservative
amino acids: residues with scores between 7 and 8). The rest
of the transcript sequences also showed good, conserved
scores, and were exposed in the transcript-sequence function
determination of entire proteins (Table 5).
3.5. Impact of Transcript-Sequence-Based Modifica-

tions of Rare-Coding Deleterious Variations on Secon-
dary Structure, Torsional Angles, Energetic Potentials,
and Protein Dynamics. By computing the impact of
transcript-sequence-based modifications of rare-coding delete-
rious variation (nsSNPs) on secondary structure and torsional
angles, energetic potentials showed the overall destabilization
of protein structure upon mutation (Table 6). Similarly, the
predicted energy difference because of mutations in nine
different transcript sequences of the MAPT gene showed
validation of the entire structural destabilization impact (Table
6). In particular, the computed higher RSA and ASA values
observed in MAPT transcripts 204 and 214 also showed lower
ΔΔG energetic values than the others. However, this analysis
at the protein’s secondary structural level helps to relate theT
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previous computational prediction as well as to better
understand the inclusive destabilization impact in almost all
transcripts of MAPT (Table 6).

The SDM impact analysis further confirmed the energetic
variations as well as the characteristic attribute difference
because of residue modification (genetic variation-nsSNPs),
which could serve as a basis for understanding the appearance
of protein destabilization upon such mutations (Table 7).
Through SDM analysis, we further validated that the MAPT
transcripts 204 and 214 had higher RSA and MTDEPTH
status (compared to their WTs) as well as a higher protein
destabilization impact (Table 7). Additionally, this was also
observed in our previous experiment (Table 6), which showed

the destabilization impact of these transcript-level mutations
on the protein structure.

Moreover, the DynaMut prediction of protein stability
changes in nine different transcript sequences of the MAPT
gene showed an increase in vibrational entropy due to
mutations. This increase in the vibrational entropy of all
nine transcript-level mutant models of MAPT showed
denaturation of the protein state due to amino acid
substitutions (Table 8). We also found some mixed effects
showing a decrease in the molecular stabilization pattern,
especially in all filtered transcripts between WT and mutant
models (nsSNPs) of the MAPT transcript sequence compared
(Table 8).

Table 2. Transcript-Sequence-Based Evolutionary Conservation Analyses and Prediction of nsSNPs’ Deleterious Impact on
the MAPT Gene

Variant ID Gene transcript ID Amino acid change PANTHER PhD SNP SNAP Meta-SNP SNAP2 PMut

rs182024939 MAPT-201 K672N 0.5a 0.518c 0.685c 0.671c 57 (75%) NC
rs182024939 MAPT-204 K280N 0.366b 0.489 NC 0.469 49 (71%) 0.83c

rs182024939 MAPT-205 K615N 0.5a 0.523c 0.560c 0.644c 34 (66%) NC
rs182024939 MAPT-206 K251N 0.5a 0.484c NC 0.466 39 (66%) NC
rs182024939 MAPT-208 K222N 0.366b 0.462 0.475 0.422 39 (66%) 0.83c

rs182024939 MAPT-212 K597N 0.5a 0.521c 0.620c 0.611c 90 (95%) 0.65c

rs182024939 MAPT-214 K280N 0.366b 0.489 NC 0.469 49 (71%) 0.83c

rs182024939 MAPT-217 K251N 0.5a 0.484 NC 0.466 39 (66%) NC
rs182024939 MAPT-218 K222N 0.366b 0.549c 0.470 0.485 37 (66%) NC

aPossibly damaging. bNeutral. cDisease causing SNP; NC = not computed. PANTHER, PhD-SNP, SNAP, Meta-SNP = output normalized
between 0 and 1 (if > 0.5 mutation is predicted disease causing); SNAP2 = A high score (>50 indicates strong signal for effect), weak signals (−50
< score <50), and a low score (score <−50), strong signal for neutral/no effect. The prediction scores of PMut are from 0 to 1 and the cutoff value
is set to 0.5 (neutral, 0−0.5; pathological, 0.5−1).

Table 3. Transcript-Based Computation of Percent Expected Accuracy through Consensus Classifier Prediction of the Rare-
Coding Deleterious nsSNPs of the MAPT Gene

Gene transcripts ID AA Chromosome: base pair PredictSNP PhD-SNP PolyPhen-1 PolyPhen-2 SIFT SNAP PANTHER MAPP

MAPT-201 K672N 17:46010327 72a 82a 59a 59a 79a 62a 71a 64b

MAPT-204 K280N 17:46010327 87a 82a 59a 54a 79a 62a 71a 57a

MAPT-205 K615N 17:46010327 87a 82a 59a 63a 79a 56a 71a 43a

MAPT-206 K251N 17:46010327 76a 82a 59a 54a 79a 50b 71a 46a

MAPT-208 K222N 17:46010327 51a 82a 59a 74b 79a 50b 71a 64b

MAPT-212 K597N 17:46010327 61a 82a 59a 59a 79a 50b 71a 70b

MAPT-214 K280N 17:46010327 87a 82a 59a 54a 79a 62a 71a 57a

MAPT-217 K251N 17:46010327 76a 82a 59a 54a 79a 50b NC 46a

MAPT-218 K222N 17:46010327 72a 86a 59a 63a 79a 61b 71a 48a

aDeleterious and disease-causing. bNeutral; NC = not computed; AA = amino acid.

Table 4. Transcript-Based Computation of Changes in Free Energy of Amino Acid Substitution in Rare nsSNPs of the MAPT
Genea

Gene
transcript ID variant ID

Amino acid
variation

iPTREE-STAB
ΔΔG (kcal/mol)

MUpro ΔΔG
(kcal/mol)

MUpro_SVM
ΔΔG (kcal/mol)

MUpro_NN
ΔΔG (kcal/mol)

I mutant 2.0
ΔΔG (kcal/mol)

INPS
(kcal/mol)

MAPT-201 rs182024939 K672N −1.38 −1.364 −1 −0.827 −0.55 −0.897982
MAPT-204 rs182024939 K280N −1.38 −1.364 −1 −0.827 −0.55 −0.873567
MAPT-205 rs182024939 K615N −1.38 −1.364 −1 −0.827 −0.55 −0.873567
MAPT-206 rs182024939 K251N −1.38 −1.364 −1 −0.827 −0.55 −0.873567
MAPT-208 rs182024939 K222N −1.38 −1.364 −1 −0.827 −0.55 −0.847001
MAPT-212 rs182024939 K597N −1.43 −1.364 −1 −0.827 −0.55 −0.847001
MAPT-214 rs182024939 K280N −1.38 −1.364 −1 −0.827 −0.55 −0.873567
MAPT-217 rs182024939 K251N −1.38 −1.364 −1 −0.827 −0.55 −0.873567
MAPT-218 rs182024939 K222N −1.38 −1.364 −1 −0.827 −0.55 −0.847001
aThe computed negative values of ΔΔG indicate a decrease in the stability of the protein. The above predictions can be interpreted to identify
stabilizing (ΔΔG > 0) and destabilizing (ΔΔG < 0) variations.
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3.6. Homology Model Selection, Validation, Bioactive
(Flavonoids) Compounds’ 3D Library Preparation, and
Selection on the Basis of Drug-like Properties Assess-
ment. We retrieved the WT 3D homology model of a selected
MAPT protein from the AlphaFold database, and the PDB file

of this 3D protein was accessed through UniProt accession no.
P10636. The reason for the selection of this model was the
availability of a complete 3D model according to the sequence
length (1−758), with reference to the 3D protein model
prediction strategy. The downloaded model in PDB format

Table 5. Evolutionary Conservation Analyses and Protein Structure Prediction of Rare-Coding Deleterious SNPs of the MAPT
Gene

Gene
transcript ID Variant ID

Amino acid
change

ConSurf score/BNC
score (CI)a

Evolutionary
analysis

SOPMA
prediction Secondary structure information Surface accessibility

MAPT-201 rs182024939 K672N 8/−0.71 (9:−0.937 and
7:−0.563)

highly conserved
and exposed

extended
strand

α-helix = 1.9%, β-strand = 1.7%,
and coil = 96.4%

buried = 5% and
exposed = 95%

MAPT-204 rs182024939 K280N 7/−0.422 (7:−0.628
and 6:−0.315)

exposed β turn α-helix = 4.3%, β-strand = 4.1%,
and coil = 91.6%

buried = 8.6% and
exposed = 91.4%

MAPT-205 rs182024939 K615N 8/−0.677 (8:−0.898,
7:−0.536)

highly conserved
and exposed

β turn α-helix = 2.4%, β-strand = 2.4%,
and coil = 95.1%

buried = 5% and
exposed = 95%

MAPT-206 rs182024939 K251N 6/−0.417 (7:−0.654,
6:−0.260)

exposed random coil α-helix = 4.9%, β-strand = 3.4%,
and coil = 91.7%

buried = 10.7% and
exposed = 89.3%

MAPT-208 rs182024939 K222N 6/−0.440 (7:−0.677,
6:−0.281)

exposed random coil α-helix = 3.1%, β-strand = 2.9%,
and coil = 94%

buried = 10.2% and
exposed = 89.8%

MAPT-212 rs182024939 K597N 8/−0.816 (9:−1.049,
7:−0.648)

highly conserved
and exposed

α helix α-helix = 2.5% and coil = 97.5% buried = 2.9% and
exposed = 97.1%

MAPT-214 rs182024939 K280N 7/−0.422 (7:−0.628,
6:−0.315)

exposed β turn α-helix = 4.3%, β-strand = 4.1%,
and coil = 91.6%

buried = 8.6% and
exposed = 91.4%

MAPT-217 rs182024939 K251N 6/−0.417 (7:−0.654,
6:−0.260)

exposed random coil α-helix = 4.9%, β-strand = 3.4%,
and coil = 91.7%

buried = 10.7% and
exposed = 89.3%

MAPT-218 rs182024939 K222N 6/−0.306 (9:−1.189,
4:0.174)

exposed random coil α-helix = 4.2%, β-strand = 6.6%,
and coil = 89.2%

buried = 26.2% and
exposed = 73.8%

aBNC = Bayesian method for calculating rates with a CI to each of the inferred evolutionary conservation scores. The amino acids with scores
between 7 and 9 were evolutionary conservative amino acids.

Table 6. Impact of Structural Modifications through Transcript-Level Homology Models of MAPT Protein on the Secondary
Structure, Torsional Angles, and Energetic Potentials of Proteina

MAPT gene
transcript Mutations

RSA
(%)

ASA
(Å) SS3 SS8

Phi
(ϕ)

Psi
(ψ)

Intrinsically
disordered regions

(%)
Torsion angle

potentials
Overall
stability

Predicted ΔΔG
(kcal/mol)

201 K672N 50 117 strand B-sheet −122 138 4 favorable destabilizing −0.34
204 K280N 52 123 strand B-sheet −123 139 3 unfavorable destabilizing −0.82
205 K615N 49 117 strand B-sheet −124 138 4 favorable destabilizing −0.34
206 K251N 50 117 strand B-sheet −123 139 3 favorable destabilizing −0.34
208 K222N 51 119 strand B-sheet −125 139 3 favorable destabilizing −0.34
212 K597N 49 117 strand B-sheet −123 139 3 favorable destabilizing −0.34
214 K280N 52 123 strand B-sheet −123 139 3 unfavorable destabilizing −0.82
217 K251N 50 117 strand B-sheet −123 139 3 favorable destabilizing −0.34
218 K222N 51 120 strand B-sheet −124 138 3 favorable destabilizing −0.32

aRSA = relative solvent accessible area and ASA = accessible surface area. The computed negative values of ΔΔG indicate a decrease in the stability
of the protein. The above predictions can be interpreted to identify stabilizing (ΔΔG > 0) and destabilizing (ΔΔG < 0) variations.

Table 7. SDM Analyses to Investigate the Impact of Amino Acid Substitution on 3D Protein Models and on the Overall
Structural Environment of MAPT Protein

MAPT gene transcript
ID Mutations

WT RSAa
(%)

WT DEPTHb
(Å)

WT
OSPc

MT RSAd
(%)

MT DEPTHe
(Å)

MT
OSPf

SDM predictedg
ΔΔG

201 K672N 60.9 3.5 0.13 76.8 3.4 0.13 0.24
204 K280N 51.8 3.4 0.17 57.5 3.5 0.13 −0.61
205 K615N 60.9 3.5 0.13 76.8 3.4 0.13 0.24
206 K251N 60.9 3.5 0.13 76.8 3.4 0.13 0.24
208 K222N 60.9 3.5 0.13 76.8 3.4 0.13 0.24
212 K597N 60.9 3.5 0.13 76.8 3.4 0.13 0.24
214 K280N 51.8 3.4 0.17 57.5 3.5 0.13 −0.61
217 K251N 60.9 3.5 0.13 76.8 3.4 0.13 0.24
218 K222N 60.9 3.3 0.13 74.9 3.3 0.13 0.25

aResidue relative solvent accessibility for WT. bResidue depth for WT. cOccluded surface packing value for WT residue. dRelative solvent
accessibility for modified residue. eDepth for modified residue. fOccluded surface packing value for modified residue. gThe computed negative
values of ΔΔG indicate a decrease in the stability of the protein. The above predictions can be interpreted to identify stabilizing (ΔΔG > 0) and
destabilizing (ΔΔG < 0) variations.
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was further investigated to ensure that the structure was clean,
as no heteroatoms, ligands, water molecules, or other
unwanted ions or charges were present that might affect the
accuracy and reliability of the desired protein 3D model. The
Ramachandran plot analysis of the 3D model selected for
further work showed that 41.3% of residues were in the core
region, and 29.1 and 10.8% were in the generously allowed
region. The 3D structural residue properties showed that the
maximum deviation was 23.2, the bad-contact score was one,
and the bond/length angle was 35.4. The 3D structural G-
factor analysis through SAVES showed that dihedrals were
−1.36, covalent ones were −1.33, and overall was −1.28.
Furthermore, the planar group analysis showed that 94.8% of
residues were within limits, and 5.2% were highlighted.

Besides this, we extracted sixty-one flavonoids previously
reported as prospective compounds for the modulation of
neurodegeneration by Ayaz et al., 2019. For all selected
compounds (flavonoids), the downloaded 3D structures were
visually inspected to ensure a proper 3D transformation.
Subsequently, they were screened using the Lipinski rule of five
criteria. We identified forty-one flavonoid compounds that met
all five criteria, and the remaining compounds were excluded.
On forty-one screened compounds, we applied the OSIRIS
drug property explorer, among which we found twenty-three
compounds that were retained as nonmutagenic, nontumori-
genic, and nonirritating compounds. We found five more
compounds that had reproductive risks or effects so we
excluded them. From eighteen compounds, we examined each

individual compound on the basis of its OSIRIS computed
drug score, and we included only eight compounds that had a
score of >0.8 (80%) (Table S2).
3.7. iGEMDOCK-Based Virtual Screening of Bioactive

Flavonoids, Identification of Druggable Protein Cav-
ities with a Cavity Detection-Guided Binding Approach,
and MM/PB(GB)SA Computation for Near Native
Docking Pose through Docking, Rescoring, and
Hotspot Residue Analysis. Initially, the iGEMDOCK tool
was used for virtual screening of the library of flavonoid
compounds, and the experiment was distinct in two steps. In
the first step, we allowed all sixty-one flavonoid bioactive
compounds to dock with the MAPT protein to obtain
significant molecular interactions with the fitness score
(Table S3). In the second step, we inspected and filtered
only those compounds (with binding interactions) that initially
passed all steps of the inclusion criteria (drug-likeness) for
compound assessment. Of the eight screened flavonoid
(exhibiting drug-likeness properties) compounds, 7-O-methyl-
eriodictyol (−77.02 kcal/mol) was the top-ranked compound
with the highest fitness value with the MAPT protein. The
second- and third-ranked compounds were hesperetin
(−74.098458 kcal/mol) and alpinetin (−73.33 kcal/mol),
respectively (Table 9 and Figure 3).

We employed the CB-dock tool to identify druggable
protein cavities in MAPT using a cavity detection-guided
binding approach with screened drug-like flavonoids. Five top-
ranked docked flavonoid compounds identified through the

Table 8. DynaMut Prediction of Protein Stability Changes of Amino Acid Substitution on 3D Protein Models through NMA of
MAPT Proteina,b,c

MAPT gene
transcript ID Mutations

SAAMBE ΔΔG
(kcal/mol)

DynaMut ΔΔG
(kcal/mol)

NMA ENCoM
ΔΔG (kcal/mol)

mCSM ΔΔG
(kcal/mol)

SDM ΔΔG
(kcal/mol)

DUET ΔΔG
(kcal/mol)

ΔΔS Vib ENCoM
(kcal.mol−1.K−1)

201 K672N −0.12D 0.525S −1.017D 0.088S 0.100S 0.327S 1.271b

204 K280N −0.12D −0.266D −0.338D 0.185S −0.040D 0.395S 0.423b

205 K615N −0.12D 0.525S −1.017D 0.088S 0.100S 0.327S 1.271b

206 K251N −0.12D 0.525S −1.017D 0.088S 0.100S 0.327S 1.271b

208 K222N −0.12D 0.525S −1.017D 0.088S 0.100S 0.327S 1.271b

212 K597N −0.12D 0.525S −1.017D 0.088S 0.100S 0.327S 1.271b

214 K280N −0.12D −0.266D −0.338D 0.185S −0.040D 0.395S 0.423b

217 K251N −0.12D 0.525S −1.017D 0.088S 0.100S 0.327S 1.271b

218 K222N −0.12D 0.525S −0.809D 0.082S 0.100S 0.322S 1.011b

aS = stabilizing and D = destabilizing. bIncrease of molecular flexibility. cNMA = normal-mode analysis, ENCoM = elastic network contact model,
mCSM = mutation cutoff scanning matrix, SDM = site-directed mutator, and ΔΔS Vib ENCoM = vibrational entropy energy between WT and
mutant. The computed negative values of ΔΔG indicate a decrease in the stability of the protein. The above predictions can be interpreted to
identify stabilizing (ΔΔG > 0) and destabilizing (ΔΔG < 0) variations.

Table 9. Virtual Screening through a Graphical-Automatic Drug Design (iGEMDOCK) Approach and Post-Screening Analysis
of Top-Ranked Flavonoid Complexes with MAPT

Flavonoidsa
PUBCHEM

ID
Fitness value
(kcal/mol) Rank Atom H-bond Ligand interactions

luteolin 5280445 −69.928722 6 21 LYS607, VAL626, TYR627,
and LYS628

LYS607, VAL626, TYR627, LYS628, PRO629,
VAL630, and LEU632

eriodictyol 440735 −73.27035 4 21 GLU306 VAL305, GLU306, and LYS657
hesperetin 72281 −74.098458 2 22 THR308, GLN653, and

GLU655
VAL305, THR308, GLN653, and GLU655

alpinetin 154279 −73.332331 3 20 ILE614 and LYS615 ILE614, LYS615, and HIS616
7-O-methyleriodictyol 1268276 −77.020284 1 22 GLU306 and LYS657 VAL305, GLU306, ILE307, VAL656, and LYS657
sakuranetin 73571 −72.6986 5 21 LYS615 and HIS616 ASN613, ILE614, LYS615, and HIS616
pinocembrin 68071 −68.404283 7 19 GLU655 VAL305, ILE307, GLU655, and LYS657
aromadendrin 122850 −67.066335 8 21 MET31 and SER516 MET31, ASP34, SER515, and SER516
aThese flavonoids were screened and passed drug-likeness-based inclusion criteria.
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iGEMDOCK approach were used in this CB-dock experiment
to identify druggable protein cavities that reside in the MAPT
protein. In this case, the highest binding affinities were
observed with 7-O-methyleriodictyol as well as eriodictyol; that
is, −6.2 kcal/mol, which showed a prominent consistency of
outcomes produced from both iGEMDOCK and CB-dock
experimentations. The lowest binding affinity was observed for
hesperetin, that is, −5.2 kcal/mol (Table 10 and Figure 3).

Besides this, we used the fastDRH-based prediction method
for determination of the best native binding pose for the
protein-compound (flavonoids) complex with the aid of MM/
PB(GB)SA computation using rescoring functions. The
outcomes showed hesperetin (−5.64 kcal/mol) as the best-

docked compound on the basis of generated energetic
estimates. Besides this, eriodictyol (−5.63 kcal/mol) and
sakuranetin (−5.6 kcal/mol) were the other top-docked
compounds (Table 11 and Figure 4). To provide a better
understanding of these interactions, we included an energy plot
of the top 10 residues (Figure 5) and a heat map of the top 30
residues (Figure 6), which were generated from the same
above web server.

4. DISCUSSION
AD is a complex neurodegenerative disorder with multi-
factorial etiology, resulting from a combination of genetic,
environmental, and lifestyle factors.1 The genetics of AD are

Figure 3. 2D ligand−protein interactions. (A) iGEMDOCK-based 2D ligand−protein interactions of the top five docked flavonoid compounds with
the MAPT protein. (B) CB docking-based 2D ligand−protein interactions of the top five docked flavonoid compounds with the MAPT protein.
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particularly complex, with multiple genes interacting to
influence the disease’s onset and progression.2 The role of
genetic variations which can impact protein functioning and set
the basis for AD cannot be ignored.62 Thus, to understand the
impact of gene-specific mutations, annotation of potential AD
biomarker gene variants is still needed. Identifying the genetic
loci associated with biomarkers could aid in better under-
standing the specific pathophysiological components under-
pinning these biomarkers.63 Therefore, we used the set NIA-
AA criteria to investigate the functional impact of transcript-
sequence-based deleterious exonic SNPs taken from the AD
biomarker genes.15

We selected the large set of exonic mutations of APP, NEFL,
and MAPT genes, applied the DSFE prediction tools, and
found nine different transcripts of MAPT’s single-gene
variation (rs182024939: K > N) which emerged as the most
damaging SNP among all of the mutations. By providing
insights into the potential functional impact of a genetic
variant, the DSFE predictions can help in categorizing
promising gene-variant targets for further analysis as well as
in benefiting the development of personalized treatments for
individuals.64 The obtained DSFE results were further
investigated through a number of machine learning algorithms
like PANTHER, PhD-SNP, SNAP, SNAP2, and PMut. Our
analysis revealed that MAPT transcripts 201, 205, and 212
were found as the most pathogenic among the nine different
transcripts of the rs182024939 SNP. The pathogenicity of all
nine selected transcript-level SNPs of the MAPT gene was
confirmed through a consensus classifier predictor algorithm.
This finding is particularly significant given the critical role that
MAPT plays in maintaining the structure and function of
neurons in the brain.8,9 Normally, tau helps stabilize micro-
tubules, which are vital for maintaining neuronal shape and
facilitating intracellular transport. However, in AD tau becomes
abnormally phosphorylated, leading to the formation of tau
tangles and the disruption of these important cellular
processes.9 Interestingly, our results suggest that all the
transcript sequence-based MAPT mutations showed a
significant extent of destabilization in terms of protein
function, which might serve as the basis for understanding its
possible role in AD.

Although the gene pathogenic variations that we found were
relatively rare, their identification and characterization can
provide valuable insights into the biological mechanisms
underlying AD and pave the way for the development of
new therapies. Previous studies have clearly reported that
SNPs in the MAPT gene are associated with an increased risk
of developing AD.65 Interestingly, our study also evaluated the
impact of missense mutations on the MAPT protein and found
that the substitution of lysine with asparagine (K > N) in nine
different transcript-level SNPs resulted in a generalized
destabilizing effect on the protein’s stability, function, and
dynamics. This inference was supported by the calculation of
the associated free energy change, indicating a significant
impact on the protein’s structural and functional properties.
Additionally, our analysis of the impact of mutations on
protein properties revealed that all nine transcript-level
mutations of the MAPT protein had destabilizing energies.
Mutations can affect a protein’s structural modifications,
secondary structure, torsional angles, and energetic potentials,
which can ultimately affect its stability, function, and ability to
interact with other molecules.66 Further exploration of theseT
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mutations has important implications for disease pathology
and drug discovery, especially in the management of AD.

The use of evolutionary conservation analyses to predict the
functional significance of mutations is a novel approach that
can help identify SNPs, which may contribute to disease
pathogenesis.44 The identification of three highly conserved
transcripts (201, 205, and 212) in our study suggests that these
SNPs are more likely to have deleterious effects on the
production and processing of tau protein. These findings
shared valuable insights regarding the exploration of potentially
(evolutionary) conserved transcripts of the MAPT gene
observed with specific mutation and its relevance to their
possible role in disease progression.

Moreover, we also conducted SDM analysis to investigate
the impact of amino acid substitutions on the structural
environment of MAPT. This analysis (transcript-sequence-
based) involved creating mutant proteins with a single amino
acid substitution in specific regions and predicting their
structures using a homology modeling method.49 Our results
showed that these substitutions led to variations in the MAPT
protein, suggesting that it has the potential to impact the
protein’s function and stability. The SDM analysis conducted
in our study provided valuable information regarding the

specific regions of the protein that are affected by amino acid
substitutions. This information can serve as a particular
contribution to guide future studies aimed at understanding
the molecular mechanisms of disease pathology. Besides this,
we also utilized the DynaMut computational tool, which
predicts changes in protein stability resulting from amino acid
substitutions using NMA.50 The tool outputs predicted
changes in free energy and increased vibrational entropy
energy between the WT and mutant proteins of MAPT’s
transcript, which were used to interpret the change in protein
stability.

Studies have reported the role of flavonoids like quercetin
and EGCG (epigallocatechin gallate) in the management of
AD. They have antioxidant and anti-inflammatory properties
that reduce oxidative stress and inflammation in the brain.53

They also inhibit β-amyloid plaque formation and aggregation,
a hallmark of AD pathology.17 Similarly, curcumin and
resveratrol have been shown to protect neurons from oxidative
damage and improve cognitive function in animal models of
AD.67 Keeping the therapeutic potential of bioactive flavonoids
in mind, we conducted an extensive literature search to create a
3D compound library of flavonoids and assessed their drug
likeness.17 We used a virtual screening approach through the

Table 11. Predicting the Near Native Binding Pose and Analysis for the MAPT Protein−Ligand Complexes through MM/
PB(GB)SA Computation

Compounds
Docking score

(kcal/mol)
PB1

(kcal/mol)
PB3

(kcal/mol)
PB4

(kcal/mol)
GB1

(kcal/mol)
GB2

(kcal/mol)
GB5

(kcal/mol)
GB6

(kcal/mol)
GB7

(kcal/mol)
GB8

(kcal/mol)

7-O-methyleriodictyol −5.13 −3.4 −11.91 −11.74 −16.94 −15.02 −14.86 −11.06 −13.43 −14.29
hesperetin −5.64 −2.33 −14.49 −18.97 −24.52 −21.55 −21.2 −16.73 −19.83 −20.2
alpinetin −4.86 −4.79 −12.17 −12.99 −15.68 −14.26 −14.06 −11.9 −13.12 −12.73
eriodictyol −5.63 0.6 −4.68 −5.58 −6.67 −5.3 −5.14 −2.77 −4.5 −5.45
sakuranetin −5.6 −0.75 −12.75 −17.48 −23.38 −20.5 −20.14 −13.62 −18.15 −18.49

Figure 4. Predicting the top three near-native binding poses and analysis for protein−ligand complexes based on the MM/PB(GB)SA
computation. The coloring scheme shows green�conventional H-bonds; light green�van der Waals; dark purple�π−π stacked; light purple�π-
alkyl; red�unfavorable; and yellow�π-cation/π-anion.
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iGEMDOCK tool to identify potential drug candidates that
can bind to our target protein.59 Our results identified several
top-ranked compounds with favorable binding interactions that
have potential as drug candidates. This computational
approach can effectively narrow the list of potential
compounds and guide further experimental testing, ultimately

leading to the development of effective drugs for the treatment
of various diseases.

Our main interest was to investigate the druggable protein
cavities in MAPT showing prominent molecular interactions of
bioactive flavonoids, for which we utilized the CB-dock
methodological approach.60 This protein−ligand-molecular
docking approach identified the protein’s binding sites by

Figure 5. Energy plot of top 10 residues of best-ranked docked compounds with the MAPT proteins. Compounds (A�7-O-methyleriodictyol; B�
hesperetin; C�alpinetin; D�eriodictyol; and E�sakuranetin). X-axis showing the top ten energetically interacting residues of MAPT protein
with the respective flavonoids. The Y-axis shows estimated energy in kcal/mol.

Figure 6. Heat-map of top 30 residues of best-ranked docked compounds with the MAPT proteins. Compounds (A�7-O-methyleriodictyol; B�
hesperetin; C�alpinetin; D�eriodictyol; and E�sakuranetin). X-axis showing the top 30 energetically interacting residues of MAPT protein with
the respective flavonoids. The Y-axis shows docking poses.
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computing the center and size and customizing the docking
box size according to the query ligands. Through 2D ligand
interaction, we identified key consensus residues, including
VAL305, GLU655, and LYS657, that showed the best affinity
bindings with the top-ranked compounds. Finally, we
employed fastDRH, a web server and computational tool for
docking, to predict the binding affinity between the protein
receptor and a small molecule ligand based on their 3D
structure. This tool incorporated features derived from both
the protein and the ligand, such as physicochemical properties,
geometric descriptors, and intermolecular contacts, to predict
the binding affinity between them. fastDRH utilized MM/
GBSA analysis to estimate the free energy of binding between
molecules.61 This approach combined molecular mechanics
calculations to describe the internal energy of the system with a
solvation model based on the generalized Born theory to
account for the solvation energy and a surface area term to
consider the entropy of solvent molecules. The analysis was a
valuable tool for predicting and understanding the thermody-
namics of molecular interactions, which is essential in drug
discovery and protein engineering. By employing this
computational tool, we gained further insight into the binding
interactions between the top-ranked flavonoids and the MAPT
protein, providing a basis for the development of potential
drugs for the treatment of neurodegenerative diseases.

Dietary polyphenols have health-promoting properties, such
as antioxidative, antiaging, and anticancer properties.68 Their
potential to combat AD, a common neuropathological disease,
is being debated. Polyphenols, such as curcumin and its
analogous, resveratrol, and other plant compounds, have strong
antioxidant properties and can modulate the Aβ biogenesis
pathway in AD.70 Therefore, in this study, different method-
ologies of docking experimentation, especially MM/PB(GB)-
SA-based findings, described hesperetin as the best-docked
compound with a protein target, which, in general, indicates
the possible role of this flavonoid in the management of AD
progression. Interestingly, the dietary flavonoid “Hesperetin”
(an aglycone of the flavanone glycoside hesperidin) mainly
present in oranges carries its antioxidant properties through
direct radical scavenging and enhancement of antioxidant
defense of the cell.71 Additionally, the antioxidant, anti-
inflammatory, and neuroprotective properties of hesperetin
have received considerable attention.71 Researchers have
reported that this flavonoid compound has the ability to
cross the blood−brain barrier, which has added value to our
findings as a natural treatment for various disorders of the
central nervous system.71,72 Various citrus flavanones, includ-
ing hesperetin, have been well documented to have neuro-
protective effects against H2O2-induced cytotoxicity as they
protect PC-12 cells, likely due to their radical scavenging
property.71,72 In 2018, the most significant protective
mechanism of hesperetin reported by Kheradmand and co-
workers is related to its ability to decrease hippocampal lipid
peroxidation and increase levels of glutathione, as well as other
antioxidant enzyme activities.71 They reported that the
medicinal effects of this flavonoid significantly reduced
oxidative stress and increased antioxidant enzyme activity in
a rat model of AD. In the future, this outcome and our present
findings may serve as a basis to further explore the role of
hesperetin in the management of AD.71,72

Comparably, we performed multiple docking experiments
using different software packages, parameters, and validation
methods to probe the in silico molecular interactions of

selected flavonoids with protein targets. In this case, software-
specific force field, scoring function, processing flexibility of
ligand−protein, solvent and/or ion effects, conformational
sampling, ligand parametrization, and complexity of the system
for analytical data interpretation, are the prominent variables of
the applied molecular docking methodologies that produce
different orders of reactivity of the studied flavonoids with
MAPT protein.73 Moreover, the differences in experimental
conditions, such as temperature, pH, and buffer composition,
can affect the accuracy of predictions and contribute to
variations.73 However, the findings from applied molecular
docking methodologies showed a lowering of the free energy
when the binding of drug-like screened flavonoids was
investigated with MAPT. In the future, it would be valuable
to validate the rare-coding mutations identified through our in
silico analysis of the MAPT gene through local population
sequencing. Furthermore, the efficacy of the identified
flavonoids for the treatment of AD can be clinically evaluated
in this population. This localized approach will enhance our
understanding of the genetic factors contributing to AD within
the population and help establish the relevance and potential
clinical implications of these rare-coding mutations.

5. CONCLUSIONS
Bioinformatics tools can provide valuable insights into the
genetic basis of diseases like Alzheimer’s and aid in the
development of personalized therapies. However, it is
important to validate these predictions through experimental
methods and not rely solely on bioinformatics for clinical
decision-making. By combining evolutionary conservation
analyses and protein structure predictions, rare-coding
deleterious SNPs can be prioritized for further experimental
validation, which can aid in the identification of potential
therapeutic targets. While more research is needed to fully
understand the potential of flavonoids in managing neuro-
degeneration and AD, the current evidence suggests that these
compounds may have promising neuroprotective and
cognitive-enhancing effects. The functional annotation of
genomes improves the understanding of genetic mechanisms
leading to disease risk, symptoms, or prognosis, and is
important for the development of personalized medicine.
Continued research in this field can ultimately lead to
improved treatments and better outcomes for patients with
neurodegenerative diseases. Furthermore, we identified the
best interaction pattern of MAPT with hesperetin, which may
serve as new targets and therapeutic interventions for the
management of AD.
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