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Abstract: Fracture of a dental implant (DI) is a rare mechanical complication that is a critical cause of
DI failure and explantation. The purpose of this study was to evaluate the reliability and validity of a
three different deep convolutional neural network (DCNN) architectures (VGGNet-19, GoogLeNet
Inception-v3, and automated DCNN) for the detection and classification of fractured DI using
panoramic and periapical radiographic images. A total of 21,398 DIs were reviewed at two dental
hospitals, and 251 intact and 194 fractured DI radiographic images were identified and included
as the dataset in this study. All three DCNN architectures achieved a fractured DI detection and
classification accuracy of over 0.80 AUC. In particular, automated DCNN architecture using periapical
images showed the highest and most reliable detection (AUC = 0.984, 95% CI = 0.900–1.000) and
classification (AUC = 0.869, 95% CI = 0.778–0.929) accuracy performance compared to fine-tuned and
pre-trained VGGNet-19 and GoogLeNet Inception-v3 architectures. The three DCNN architectures
showed acceptable accuracy in the detection and classification of fractured DIs, with the best accuracy
performance achieved by the automated DCNN architecture using only periapical images.

Keywords: artificial intelligence; dental implants; deep learning; supervised machine learning

1. Introduction

Dental implants (DIs) have shown a high survival and success rate, making them
an indispensable and predictable treatment modality for restoring missing teeth [1]. In
a recent systematic review of DI rehabilitation outcomes, the 10-year survival rate was
reported as 96.4% (95% CI = 95.2–97.5%), and the overall cumulative survival rate for
a follow-up study of 15 years was reported as 82.6%, respectively [1,2]. Accordingly,
various biological (including peri-implant mucositis and peri-implantitis) and mechanical
(including chipping, screw loosening and fractures, and ceramic and fixture fractures)
complications could increase and require a multiplicity of re-interventions [3].

Among mechanical complications, fracture of DI is almost impossible to repair or
modify; therefore, it is one of the critical causes for the possibility of DI failure and explan-
tation. Biomechanical and physiological overload and stress with non-passive prosthesis
fit might be considered to be the most common risk factors for DI fracture [4,5]. As shown
in recent studies, various clinical variables (including age, sex, diameter, length, placement
position, with or without bone graft, fixture material (CP4 or alloy), polished or unpolished
cervical feature, butt or conical abutment connection, micro- or macro- thread, and plat-
form switching) may affect the fracture of DIs, and the diameter, position, history of bone
graft, and micro-thread presence of the DI are significantly related to the occurrence of DI

Diagnostics 2021, 11, 233. https://doi.org/10.3390/diagnostics11020233 https://www.mdpi.com/journal/diagnostics

https://www.mdpi.com/journal/diagnostics
https://www.mdpi.com
https://orcid.org/0000-0002-0796-9100
https://orcid.org/0000-0002-2375-0141
https://doi.org/10.3390/diagnostics11020233
https://doi.org/10.3390/diagnostics11020233
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/diagnostics11020233
https://www.mdpi.com/journal/diagnostics
https://www.mdpi.com/2075-4418/11/2/233?type=check_update&version=2


Diagnostics 2021, 11, 233 2 of 9

fractures [6,7]. In a systematic review of long-term results of more than 5 years, the ratio of
fracture was reported as 0.18%, and a recent 12-year follow-up study showed a frequency
of 0.92% in 19,006 fractured DIs of 5125 patients [6,7]. Since the prevalence and incidence
of fracture is relatively rare and often asymptomatic, it is a very difficult and challenging
task for early detection in actual clinical practice. When DI fracture is undiagnosed or
diagnosed late, post-traumatic and inflammatory reactions that induce severe bone loss
around DI will inevitably occur [7].

Artificial intelligence, specifically deep learning and neural network-related technolo-
gies, has developed significantly over the last 10 years and is now widely applied in the
medical and dental fields [8,9]. Deep convolutional neural networks (DCNNs) are a branch
of deep learning methods that use a cascade of multiple layers of nonlinear transformation
to generate high-level abstraction, thereby increasing its versatility for identifying repre-
sentative patterns or features [10,11]. Recently, DCNN has expanded in popularity and
has become the cutting-edge technology for medical image analysis, including detection,
segmentation, and classification [12].

In orthopedic and trauma surgery, DCNN has been successfully used to detect and
classify various types of human bone fractures, and in particular, has shown excellent accu-
racy performance of diagnosing hip, proximal humerus, ankle, and femur fractures [13–16].
In dentistry practice, one study was recently conducted to improve the detection accu-
racy of vertical root fractures based on dental radiographic images, but as far as we are
aware, there is no research related to DI fracture [17]. Therefore, the aim of this study is
to evaluate the reliability and validity of deep learning for detection and classification of
DI facture based on three different DCNN architectures using panoramic and periapical
radiographic images.

2. Materials and Methods

The study design and protocol were reviewed and authorized by the Institutional
Review Board of the Veterans Health Service Medical Center (VHSMC, approval no. BO-
HUN 2020-03-012-001, 13 April 2020) and Daejeon Dental Hospital, Wonkwang University
(approval No. W2011/002-001, 23 April 2020), and the need for informed or written consent
was waived as part of the study approval. This study was conducted in compliance with
the revised Declaration of Helsinki and followed the STROBE guidelines for the conduct
and reporting of observational studies [18,19].

2.1. Dataset

We retrospectively obtained a dataset from January 2006 to December 2015 in VHSMC
and from April 2007 to December 2019 in WKUDH. A total of 21,398 DIs in 7281 patients
were reviewed through dental electronic records, clinical photos, and dental digital radio-
graphic images by two participating board-certified periodontists (DWL and JHL) and
one board-certified prosthodontist (SYK). All periapical images were obtained using the
standard paralleling technique, and radiographic images with severe noise, haziness, or
distortion were excluded by the three dental professionals mentioned. Following this, one
periodontist (JHL) manually and multiply segmented the anonymized DICOM format DI
images (panoramic images with a pixel resolution of 2868 × 1504 and periapical images
with a pixel resolution of 1876 × 1402), using radiographic image analysis software (IN-
FINITT PACS, INFINITT Healthcare and Osirix X 10.0 64-bit version, Pixmeo SARL), into
the region of interest. Finally, 251 intact and 198 fractured DIs were identified and included
as the total dataset in this study. The fractured DIs were classified into three groups, refer-
ring to a previous study that analyzed the pattern of fracture (Type I, horizontal and vertical
fractures limited within and around the crestal module; Type II, vertical fracture beyond
the crestal module; and Type III, horizontal fracture over the crestal module) [20]. However,
the number of type-III fractured DIs was very small (n = 4) in the process of obtaining
datasets; therefore, only type-I and -II fractured DIs were included in this study. The details



Diagnostics 2021, 11, 233 3 of 9

and numbers of the panoramic and periapical images for each intact and fractured DI are
shown in Table 1.

Table 1. Number of panoramic and periapical radiographic images for intact and fractured dental
implants (DIs). Dataset collected from two dental hospitals: Veterans Health Service Medical Center
and Daejeon Dental Hospital, Wonkwang University.

Dataset

Frequency Percentage

Intact DIs
Panoramic images 110 43.8
Periapical images 141 56.2

Fractured DIs, Type I
Panoramic images 41 48.8
Periapical images 43 51.2

Fractured DIs, Type II
Panoramic images 52 47.3
Periapical images 58 52.7

Fractured DIs were classified as follows: Type I, horizontal and vertical fractures limited within and around
crestal module of implant fixture; Type II: vertical fracture beyond crestal module of implant fixture.

2.2. Preprocessing

All included radiographic images were resized to 224 × 224 pixels for the VGGNet-19
architecture, 299 × 299 pixels for the GoogLeNet Inception v3 architecture, and 224 × 224
pixels for the automated DCNN architecture, respectively. The dataset was randomly
divided into 60% training, 20% validation, and 20% test datasets for model development
and accuracy performance predictions. The preprocessing includes pixel normalization,
and one-hot encoding was deployed to reduce irregularities in the dataset. The training
dataset was randomly augmented 100 times using rotation (range of 30◦), width and
height shifting (range of 0.2), zooming (range of 0.2), and horizontal and vertical flip. No
augmentation procedure was performed in the validation and test datasets.

2.3. Architecture of the DCNN

We conducted a training process based on three different DCNN architectures, to com-
pare the accuracy performance to detect and classify the types of fractured DIs (Figure 1):

• The VGGNet-19 architecture is a 19-layer DCNN model for the 2014 ImageNet Large
Scale Visual Recognition Challenge (ILSVRC) competition with a 7.3% Top-5 error
rate, by the Visual Geometry Group at the University of Oxford [21].

• The GoogLeNet Inception-v3 architecture, which showed excellent performance in
the 2014 ILSVRC competition with a 6.7% Top-5 error rate, consists of 22 deep layers
and 9 inception modules [22].

• The automated DCNN architecture was designed to search for optimized DCNN
model selection and efficient hyperparameter tuning (including number of convolu-
tional layers, learning rate, dropout rate, batch size, number of epochs, and optimizer
type) [23]. All automated DCNN analyses were conducted using the Neuro-T version
2.1.1 (Neurocle Inc., Seoul, Korea).

The VGGNet-19 and Inception-v3 architectures utilized the transfer learning and
pre-trained model with weights from approximately 1.28 million images (ImageNet) and
11,980 DI images of datasets we have built in the past [24]. For training the VGGNet-19 and
Inception-v3 models, the top layers were truncated by defining a new fully connected soft-
max classification and output layer with a practical number of categories. We implemented
the stochastic gradient descent (SGD) algorithm and used the Adam optimizer with an
initial learning rate of 0.0001 and a decay rate of 0.001 based on the Keras application
programming interface in the Python [25]. The models were trained for a maximum of
2000 epochs with a dropout probability of 0.5 during training to avoid overfitting. The
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final models were chosen as the pre-trained architectures with the best performance on
the validation datasets. The automated DCNN architecture automatically created effective
deep learning models and searched for the optimal hyperparameters during training and
inference. The final automated model consisted of 18 layers with no dropout, with an Adam
optimizer and L2 normalization. The batch size was set to 10, and epochs were set to 25.

Figure 1. Schematic illustration of deep convolutional neural network (DCNN) applications. Dataset prepared from
anonymized raw panoramic and periapical radiographic images, and all included dental implants (DIs) were manually
cropped and labeled. Training process was based on three different DCNN architectures to compare accuracy performance
to detect and classify types of fractured DIs.

3. Results
3.1. Detection of Fractured DIs

The automated DCNN architecture achieved the best accuracy performance using
periapical images, with the highest AUC of 0.984 (95% CI = 0.900–1.000), sensitivity of 0.880,
specificity of 1.000, and Youden index of 0.880. The fine-tuned and pre-trained VGGNet-19
architecture achieved the lowest accuracy performance using panoramic images, with
an AUC of 0.902 (95% CI = 0.765–0.973), sensitivity of 0.944, specificity of 0.818, and
Youden index of 0.762. The detection accuracy of the fractured DIs is shown in detail in
Table 2. Figure 2 shows the ROC curves of three different DCNN architectures using only
panoramic, only periapical, and panoramic and periapical images.

Table 2. Detection accuracy of fractured DIs between three different DCNN architectures.

Variables AUC 95% CI SE Sensitivity Specificity Youden Index

Panoramic images
VGGNet-19 0.902 0.765–0.973 0.049 0.944 0.818 0.762
GoogLeNet Inception-v3 0.920 0.790–0.982 0.045 0.833 0.909 0.742
Automated DCNN 0.960 0.845–0.997 0.040 1.000 0.954 0.954

Periapical images
VGGNet-19 0.946 0.842–0.990 0.039 0.920 0.960 0.880
GoogLeNet Inception-v3 0.979 0.892–0.999 0.014 0.920 0.920 0.840
Automated DCNN 0.984 0.900–1.000 0.012 0.880 1.000 0.880

Panoramic and periapical images
VGGNet-19 0.929 0.854–0.972 0.037 0.933 0.933 0.866
GoogLeNet Inception-v3 0.967 0.906–0.993 0.015 1.000 0.866 0.866
Automated DCNN 0.972 0.913–0.995 0.014 0.866 0.966 0.833

DCNN, deep convolutional neural network; AUC, area under the curve; CI, confidence interval; SE, standard error.
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Figure 2. Receiver operating characteristic (ROC) curves for detection of fractured Dis consisting of (a–c) 40 panoramic
images, (d–f) 49 periapical images, and (g–i) 89 panoramic and periapical images. Plots include 95% confidence bounds.

3.2. Classification of Types of Fractured DIs

The automated DCNN architecture achieved the highest accuracy performance using
periapical images, with the highest AUC of 0.869 (95% CI = 0.778–0.929), sensitivity of 0.900,
specificity of 0.911, and Youden index of 0.811. The fine-tuned and pre-trained Inception-
v3 achieved the second-highest accuracy performance using periapical images, with an
AUC of 0.853 (95% CI = 0.769–0.916), sensitivity of 1.000, specificity of 0.677, and Youden
index of 0.677. The VGGNet-19 architecture achieved the lowest accuracy performance
using panoramic images, with an AUC of 0.745 (95% CI = 0.504–0.910), sensitivity of
0.700, specificity of 0.800, and Youden index of 0.500. The classification accuracy of the
fractured DIs is shown in detail in Table 3. Figure 3 shows the ROC curves of all three
different DCNN architectures using only panoramic, only periapical, and panoramic and
periapical images.
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Table 3. Classification accuracy of types of fractured DIs between different three DCNN architectures.

Variables AUC 95% CI SE Sensitivity Specificity Youden Index

Panoramic images
VGGNet-19 0.745 0.504–0.910 0.122 0.700 0.800 0.500
GoogLeNet Inception-v3 0.805 0.569–0.945 0.110 1.000 0.600 0.600
Automated DCNN 0.810 0.575–0.948 0.106 0.800 0.800 0.600

Periapical images
VGGNet-19 0.833 0.745–0.900 0.058 0.900 0.744 0.644
GoogLeNet Inception-v3 0.853 0.769–0.916 0.040 1.000 0.677 0.677
Automated DCNN 0.869 0.778–0.929 0.085 0.900 0.911 0.811

Panoramic and periapical images
VGGNet-19 0.804 0.648–0.912 0.074 0.900 0.700 0.600
GoogLeNet Inception-v3 0.815 0.661–0.920 0.077 0.901 0.749 0.650
Automated DCNN 0.829 0.677–0.929 0.072 0.850 0.850 0.700

DCNN, deep convolutional neural network; AUC, area under the curve; CI, confidence interval; SE, standard error.

Figure 3. ROC curves for classification of types of fractured Dis consisting of (a–c) 19 panoramic images, (d–f) 20 periapical
images, and (g–i) 39 panoramic and periapical images. Plots include 95% confidence bounds.
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4. Discussion

Artificial intelligence and deep learning are progressing and expanding rapidly, and
have shown promising applications for dental image analysis in recent years. In particular,
as newly developed DCNN models and algorithms are continuously adopted and coupled
with the area of implant dentistry, it may be an important adjunct for diagnosis, treatment,
and prognosis assessments [26]. Recent DCNN-related studies confirmed that various
types of DIs with different shapes, lengths, or dimensions can be effectively detected and
classified using panoramic and periapical images [27–29].

Automated DCNN architecture that automatically finds well-performing and special-
ized models and optimal hyperparameters is receiving increasing attention in the field of
computer science, but research based on automated DCNN architecture in the medical
and dental fields is quite insufficient [30,31]. Our most recent research showed that the
automated DCNN architecture was highly accurate (AUC = 0.954, 95% CI = 0.933–0.970) for
classifying similar shapes of six different morphological types of DIs based on panoramic
and periapical images, and achieves better classification accuracy performance (AUC = 0.961,
95% CI = 0.941–0.976) compared to most of the 25 participating dental professionals, in-
cluding board-certified periodontists, periodontal residents, and residents not specialized
in periodontology [24].

The VGGNet-19 and GoogLeNet Inception-v3 architectures, with transfer learning and
fine-tuning of pretrained weights, are already being actively used and show highly consis-
tent and predictable outcomes in the fields of periodontology, restorative dentistry, and oral
surgery [32–34]. All three deep learning algorithms applied in the current study achieved a
fractured DI detection accuracy of over 0.90 AUC, and in particular, automated DCNN using
periapical images showed the best accuracy performance (AUC = 0.984, 95% CI = 0.900–1.000),
compared to the modified VGGNet-19 (AUC = 0.946, 95% CI = 0.842–0.990) and GoogLeNet
Inception-v3 (AUC = 0.979, 95% CI = 0.892–0.999) architectures.

It is difficult to accurately classify similar shapes, but different types of fractured
DI can be examined through dental radiography, and considerable clinical experience is
required for proper type classification of DI fractures. Except for the VGGNet-19 archi-
tecture (AUC = 0.745, 95% CI = 0.504–0.910) using panoramic images, included DCNN
architectures achieved a classification accuracy of over 0.80 AUC, and in particular, auto-
mated DCNN architecture using periapical images showed the highest and most reliable
classification accuracy performance (AUC = 0.869, 95% CI = 0.778–0.929). However, al-
though a total of 21,398 DIs were reviewed in 7281 patients from two dental hospitals, only
four radiographic images were classified as type III. Therefore, type-III DI fractures were
excluded from the dataset and are considered one of the drawbacks of the current study.

Regardless of the type of dataset (including panoramic-only, periapical-only, and
panoramic and periapical images) used for DCNN model training, our previous studies
confirmed that there is no statistically significant difference in accuracy performance for
the identification of DIs [24,29]. The results of this study, consistent with previous studies,
indicated that the classification accuracy was not significantly different among the use of
panoramic-only, periapical-only, and panoramic and periapical image datasets based on
three different DCNN architectures. However, regardless of the type of DCNN architecture,
when periapical-only images were used as a dataset, it consistently showed the highest
accuracy on average. This is owing to the fact that the periapical image has a higher
resolution and sharpness than the panoramic image, and therefore it is expected that the
use of the periapical images as a dataset will be more effective in improving the detection
and classification of fractured DIs.

The current study has several limitations and future directions that need to be con-
sidered. First, because the prevalence and incidence of DI fracture are very low, it is not
easy to obtain more than a significant number of fractured DI image datasets. In this study,
although more than 20,000 radiographic images were reviewed at two dental hospitals,
only 194 fractured DI radiographic images were included in the dataset. Collecting a
larger quantity and quality dataset through more dental hospitals is considered the most
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important prerequisite for clinical use in the field of implant dentistry. Second, the use of
low-resolution image datasets for training and validating the DCNN architecture is another
limitation of this study. Owing to the limitation of available resources, including computing
power storage capacity, we used reduced low-resolution panoramic and periapical images
cropped and resized. Additional studies are necessary to confirm whether higher accuracy
performance could be achieved by using a high-resolution image dataset.

5. Conclusions

In accordance with the limited results obtained from this study, VGGNet-19, GoogLeNet
Inception-v3, and automated DCNN architectures showed acceptable accuracy outcomes
in the detection and classification of fractured DIs, with the best performance achieved
by the automated DCNN architecture using only periapical radiographic images. Further
prospective and clinical evidence is necessary to determine the feasibility of applying
DCNN architecture in dental practice.
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