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Abstract

Assistive exoskeletons can reduce the metabolic cost of walking, and recent advances in

exoskeleton device design and control have resulted in large metabolic savings. Most exo-

skeleton devices provide assistance at either the ankle or hip. Exoskeletons that assist mul-

tiple joints have the potential to provide greater metabolic savings, but can require many

actuators and complicated controllers, making it difficult to design effective assistance. Cou-

pled assistance, when two or more joints are assisted using one actuator or control signal,

could reduce control dimensionality while retaining metabolic benefits. However, it is

unknown which combinations of assisted joints are most promising and if there are negative

consequences associated with coupled assistance. Since designing assistance with human

experiments is expensive and time-consuming, we used musculoskeletal simulation to eval-

uate metabolic savings from multi-joint assistance and identify promising joint combinations.

We generated 2D muscle-driven simulations of walking while simultaneously optimizing

control strategies for simulated lower-limb exoskeleton assistive devices to minimize meta-

bolic cost. Each device provided assistance either at a single joint or at multiple joints using

massless, ideal actuators. To assess if control could be simplified for multi-joint exoskele-

tons, we simulated different control strategies in which the torque provided at each joint was

either controlled independently or coupled between joints. We compared the predicted opti-

mal torque profiles and changes in muscle and total metabolic power consumption across

the single joint and multi-joint assistance strategies. We found multi-joint devices–whether

independent or coupled–provided 50% greater metabolic savings than single joint devices.

The coupled multi-joint devices were able to achieve most of the metabolic savings pro-

duced by independently-controlled multi-joint devices. Our results indicate that device

designers could simplify multi-joint exoskeleton designs by reducing the number of torque

control parameters through coupling, while still maintaining large reductions in metabolic

cost.
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Introduction

Wearable robotic exoskeletons that reduce the metabolic cost of walking could improve mobil-

ity for many individuals including those with musculoskeletal or neurological impairments

and assist soldiers and firefighters carrying heavy loads. Assistance strategies that reduce meta-

bolic cost have only recently been discovered using both powered [1–4] and unpowered [5]

devices. Despite these successes, designing controllers for exoskeletons can be counterintuitive

and time-consuming. Some exoskeleton designs focused on biomimicry, where assistive

devices attempt to emulate biological joint kinematics, kinetics, and power, but these seem-

ingly intuitive approaches have had limited success in reducing metabolic cost [6, 7]. To better

understand what aspects of exoskeleton assistance affect metabolic cost, many recent studies

have designed assistance by varying the timing and magnitude of assistive torques and powers

[8–12]. For example, a recent study showed that optimizing both assistance torque onset tim-

ing and average power together produces larger metabolic reductions than when considering

each quantity alone [11]. More recent approaches, such as human-in-the-loop optimization

experiments, which continuously optimize assistance for a subject based on real-time estimates

of metabolic energy, have produced large reductions in metabolic cost [8, 10]. However, since

each human-in-the-loop optimization evaluation requires several minutes of human metabolic

data from indirect calorimetry, it is time-consuming and expensive to test a large number of

devices. For example, a human-in-the-loop optimization may take several days of experimen-

tation to complete.

Simulations and experiments suggest that assisting multiple joints at once could deliver

larger metabolic savings than assisting a single joint [12–15]. However, designing assistance

for these “multi-joint” exoskeletons can magnify the challenges of optimizing the control,

since such devices can include multiple actuators with independent control laws, which

increases the number of parameters that must be tested in experiments. For example, the con-

vergence time for human-in-the-loop optimization experiments scales poorly with increasing

optimization variables, and therefore may be prohibitively long for multi-joint exoskeletons

due to the large number of control variables needed for several assistive torques. As a result,

most exoskeleton studies focus on assisting only one degree of freedom to simplify parameter

design, usually preferring the hip or the ankle since they produce most of the positive power

during walking and running [4, 16–18].

Coupled assistance could greatly simplify the mechanical and control design of exoskeleton

devices by reducing control complexity (i.e., the number of parameters personalized to a sub-

ject) and thus reducing the time needed to perform human-in-the-loop optimizations to

achieve desired reductions in metabolic cost. Coupled assistance could also simplify the

mechanical design of exoskeletons which could make the device lighter and less restrictive for

the sure. Assisting two joints at once using one actuator, or “coupling” assistance, produced

significant reductions in metabolic cost in recent exoskeleton studies with an ankle-hip soft

exosuit [12, 19–21] and a knee-ankle device [14]. These studies exploit the similar timings of

joint moments (e.g., the hip flexion moment and ankle plantarflexion moment reach a maxi-

mum at approximately the same point in the gait cycle). Other exoskeletons that assist multiple

joints may be effective, but they have not been tested in experiments. Simulations could help

us identify which combinations of joints to assist and how control could be coupled across

joints, while achieving significant decreases in metabolic cost.

Musculoskeletal simulation has become a valuable tool for examining the complex muscle-

level and whole-body metabolic changes produced by exoskeleton devices [22]. Researchers

have used simulation to analyze an existing exoskeleton and optimize its mechanical design

[23] and to better understand human-device interaction [24]. Other studies have used
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simulation to help interpret experimental results, for example, to understand how muscle

mechanics drive metabolic changes for an ankle exoskeleton [25]. Researchers have also used

simulation to model exoskeleton devices as ideal actuators to discover guidelines for designing

walking [26] and running [13] exoskeletons. A recent study [27] applied results from assisted

running simulations [13] to design assistance for a soft running exoskeleton. The simulation-

derived controls provided greater metabolic cost reductions compared to assistance designed

based on biological joint moments, demonstrating the ability of simulations to improve exo-

skeleton design. Another recent study conducted by our group used simulation to design assis-

tance for an experimental hip-knee-ankle exoskeleton, resulting in a large metabolic reduction

[28]. While this study and the running simulation study examined multi-joint assistance [13],

no study has used simulation to systematically compare different multi-joint assistance strate-

gies for walking.

In this study, we examined how simulated multi-joint assistance affects the metabolic cost

of walking. We added ideal, massless assistive devices to a lower-extremity musculoskeletal

model and simultaneously optimized muscle activity and device controls to match the net

joint moments of normal walking and minimize metabolic cost. Each device assisted a single

joint or assisted multiple joints simultaneously. Multi-joint devices could control assistance at

joints independently or couple assistance for multiple joints, using the same control with inde-

pendent peak torque magnitudes. We used the simulations to achieve two goals. First, we

sought to estimate the metabolic savings provided by multi-joint exoskeletons during walking

as compared to exoskeletons that assist only a single joint. Second, we sought to determine if

coupled assistance could achieve similar metabolic savings compared to independent assis-

tance. To address our second aim, we compared total and muscle metabolic cost savings and

optimal device torques between coupled and independent multi-joint assistance.

Materials and methods

Experimental data

We used a previously-collected dataset from 5 healthy individuals walking on a treadmill

(mean ± s.d.: age: 29.2 ± 6.3 years, height: 1.80 ± 0.03 m, mass: 72.4 ± 5.7 kg) [29]. Subjects in

this previous study provided informed consent to a protocol approved by the Stanford Institu-

tional Review Board. The data included marker trajectories, ground reaction forces, and elec-

tromyography (EMG) signals. For each subject, we simulated three gait cycles of walking at

1.25 m/s. One gait cycle was used in a model calibration step, and the other two were used for

simulations of exoskeleton devices. For validating muscle activation patterns predicted from

simulation, we used the processed EMG signals as described in the previous study [29], where

signals were normalized by the highest value recorded across all walking speeds (see section

“Comparison of simulations with experimental results”).

Musculoskeletal model

A generic 29 degree-of-freedom skeletal model was scaled to each subject’s data based on static

marker trials [30]. Nine Hill-type muscle-tendon units, as modeled in a previous simulation

study from our group [31], were included on each leg of the model: gluteus maximus, biarticu-

lar hamstrings, iliopsoas, rectus femoris, vasti, biceps femoris short head, gastrocnemius,

soleus, and tibialis anterior. We used this reduced muscle set since we only simulated sagittal-

plane exoskeleton devices and since fewer muscles kept the optimizations tractable. To create

the set of nine muscles, we combined muscles (from the model of [30]) that had similar sagit-

tal-plane functions into one muscle with a combined maximum isometric force value. Joint
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and muscle kinematics and net joint moments were computed through inverse kinematics

and inverse dynamics tools using OpenSim 3.3 [32].

Simulation framework

We used a simulation framework [33] based on the GPOPS-II direct collocation optimal con-

trol software (Version 2.3) [34] to solve the muscle redundancy problem for unassisted walk-

ing. In each simulation, we solved for muscle activity while enforcing muscle activation and

tendon compliance dynamics. Muscle kinematics were constrained to match muscle-tendon

lengths and velocities obtained from inverse kinematics, and muscle-generated moments were

constrained to match net joint moments computed from inverse dynamics. Since we only

included sagittal-plane muscles in our model, only sagittal-plane joint moments (hip flexion-

extension, knee flexion-extension, and ankle plantarflexion-dorsiflexion) were matched in

each optimization. We assumed left-right symmetry of walking and therefore only solved for

muscle activity in the right leg. Each problem included reserve torque actuators in addition to

muscle-generated moments to help ensure dynamic consistency; these actuators were penal-

ized in the objective function such that the muscles were the primary actuators enforcing the

joint moment constraints. Each optimal control problem was solved with the Legendre-Gauss-

Radau quadrature collocation method provided by GPOPS-II using an initial mesh of 100

mesh intervals per second. The initial mesh was updated using mesh refinement with a toler-

ance of 10−3 to reduce muscle activation and tendon compliance dynamic errors in the solu-

tion trajectories. The resulting nonlinear programs produced from the collocation method

were solved with a convergence tolerance of 10−3 using IPOPT, the non-linear optimization

solver [35].

Muscle parameter calibration

We calibrated the model’s muscle parameters so that estimated muscle activations would bet-

ter match EMG measurements. Our model calibration approach consisted of three main steps.

In the first step, we scaled maximum isometric force values based on a previously reported

relationship between muscle volume and total body mass [36]. In the second step, we opti-

mized optimal fiber lengths, tendon slack lengths, and passive muscle strain parameters while

minimizing the error between model and reported experimental passive muscle moments

[37]. We used MATLAB’s fmincon to minimize passive moment errors across a range of

static joint positions with a rigid-tendon assumption for computing passive muscle force. In

addition to the cost term penalizing deviations from experimental passive muscle moments,

secondary cost terms were included to minimize total muscle passive force and prevent devia-

tions from default parameter values which would lead to undesirable solutions with large pas-

sive forces in individual muscles.

The third step of our model calibration used EMG data to further adjust the model’s muscle

parameters. Passive muscle strain parameters were fixed to the values obtained from the first

calibration step, and tendon slack length and optimal fiber lengths were again optimized

within 25% of their original values, using the first-step calibration values as an initial guess.

The error between EMG data and muscle excitations was the primary term minimized in the

objective function. Passive muscle forces were also minimized to prevent undesired increases

in passive forces due to the readjusted parameters. The muscle activations were also included

as a lower-weighted, secondary objective term to aid convergence. The resulting muscle

parameters were used in all subsequent simulations.
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Exoskeleton device simulations

After calibrating the model for a given subject, we simulated unassisted and assisted gait using

the subject’s remaining two gait cycles. In both unassisted and assisted gait, the primary objec-

tive was to minimize metabolic cost computed from a version of the metabolic energy model

developed by Umberger et al. (2003) that was modified to have a continuous first derivative for

gradient-based optimization [38, 39]. We included additional secondary objective terms to

minimize muscle excitation, muscle activation, and the derivative of tendon force, all of which

aided problem convergence. Since our simulation method relied on kinematics obtained from

an inverse kinematics solution, the unassisted and assisted simulations used the same healthy

walking kinematics (i.e., the simulation did not change the model’s kinematics in response to

the assistive device). In the unassisted simulations, the muscles and the heavily-penalized

reserve torque actuators were the only actuators available to reproduce the net joint moments.

In the assisted simulations, exoskeleton devices were modeled as massless torque actuators

and could apply torques to reduce muscle effort, while still matching the net joint moment

constraints from inverse dynamics. The actuators had no power limits, but had peak torque

limits for hip flexion-extension (1.0 N-m/kg), knee flexion-extension (1.0 N-m/kg), and ankle

plantarflexion (2.0 N-m/kg); these peak torque limits were included to speed convergence and

were chosen such that optimized device controls never exceeded the optimization bounds.

Torques were applied in the following five joint directions: hip flexion, hip extension, knee

flexion, knee extension, and ankle plantarflexion. Single-joint exoskeleton devices provided

assistive torques in one of the five joint directions. Multi-joint exoskeleton devices provided

assistance to the following combinations of joint directions: (1) hip-extension knee-extension,

(2) hip-flexion knee-flexion, (3) knee-flexion ankle-plantarflexion, (4) hip-flexion ankle-plan-

tarflexion, and (5) hip-flexion knee-flexion ankle-plantarflexion. The multi-joint exoskeleton

devices were actuated by individual control signals (i.e., “independent” control) or with only

one control signal applied to all joint directions (i.e., “coupled” control). When using coupled

control, additional “gain” variables scaled the applied exoskeleton torques to allow different

applied torque magnitudes since net joint moment magnitudes differed between the hip, knee,

and ankle.

For all unassisted and assisted conditions, we computed both total and muscle-level metrics

of metabolic cost to assess device performance. The gross average total metabolic rate was com-

puted by integrating the sum of individual muscle metabolic rates, multiplying by two (since

we only solved for the right leg and assumed medio-lateral symmetry), dividing by the motion

duration and total body mass, and adding a constant basal rate of 1.2 W/kg [38]. The average
muscle metabolic rate was computed by integrating the metabolic rate of a muscle, multiplying

by two, and dividing by the duration of the motion and body mass. Changes in both gross

average total metabolic rate and average muscle metabolic rate due to assistance were com-

puted as a percent of unassisted gross average total metabolic rate.

Validation approach

To validate our simulations, we compared musculoskeletal model outputs to experimental

data. We compared the value and timing of peak joint moments and joint angles computed

with OpenSim to values previously reported in the literature. Simulated muscle activations

were compared to normalized EMG based on onset and offset timings as suggested by Hicks

et al. (2015) [40]. For these comparisons, we defined muscles, both simulated and experimen-

tal, when their activation was above 5% of peak activation. Errors in muscle timing were

defined when the simulated muscle activations were above the 5% threshold and the EMG was

not above the threshold, and vice versa. We accounted for electromechanical delay in muscles
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by shifting the simulated muscle activations in time by 75 ms [41]. Timing errors were com-

puted across the gait cycle, where 0% error indicated a perfect match at all time points and

100% error indicated no match across all time points.

In addition to comparisons to experimental data, we computed a set of error metrics also

based on suggestions by Hicks et al. (2015). We computed the RMS errors between experimen-

tal and model marker trajectories from inverse kinematics. To estimate the dynamic consis-

tency of our simulations, we computed pelvis residual forces and moments from inverse

dynamics across simulation gait cycles. Finally, we computed the RMS magnitude of the

reserve torques to ensure that the constraints imposed to match experimental net joint

moments was achieved primarily by muscle-generated torques.

Sensitivity analysis

We performed a sensitivity analysis to ensure that the convergence tolerance used in our walk-

ing optimizations did not affect our results. We varied the convergence tolerance between 1

and 10−4 and solved the unassisted walking problem for all subjects with the same gait cycles

used to generate our results. We normalized objective values using the solution generated with

the 10−4 tolerance and computed the mean and standard deviation across subjects and gait

cycles (S4 Fig). The objective values for the 10−3 convergence tolerance, were close to a nor-

malized objective value of 1 in our sensitivity analysis, meaning that tightening the tolerance to

10−4 would yield no improvement in objective values. Therefore, we used a 10−3 convergence

tolerance for each walking optimization in this study.

Statistical testing

To compare the effect of devices on percent changes in metabolic cost, we employed a linear

mixed model (fixed effect: device; random effect: subject) with analysis of variance (ANOVA)

tests and Tukey post-hoc pairwise tests [42]. We used a significance level of α = 0.05. The data

for the statistical analyses consisted of 75 observations (5 subjects and 15 devices); we averaged

over the 2 walking trials used to simulate each single and multi-joint device to remove hierar-

chical structure from our data [43]. The statistical tests were performed with R [44–46].

Results

Device performance

All 15 ideal assistance devices–single joint, multi-joint coupled, and multi-joint independent–

significantly decreased average total metabolic rate compared to unassisted walking (Fig 1, S2

and S3 Tables; p< 0.05). The largest reduction in metabolic cost among multi-joint devices

was produced by the hip-flexion knee-flexion ankle-plantarflexion devices (34% coupled, 39%

independent). Other multi-joint devices produced large metabolic savings: hip-flexion ankle-

plantarflexion (29% coupled, 34% independent), knee-flexion ankle-plantarflexion assistance

(30% coupled, 32% independent), and hip-extension knee-extension assistance (12% coupled,

14% independent). While independent assistance outperformed coupled assistance, the differ-

ences between coupled and independent were small (the percent change in cost for coupled

assistance was 3.5% lower on average across multi-joint devices). The single-joint hip-flexion

device provided the largest savings of the single joint devices (22% reduction), closely followed

by knee-flexion assistance (21%). Multi-joint devices provided greater savings compared to

single joint devices for all conditions (Tukey post-hoc test, p< 0.05) except for two conditions.

First, coupled and independent multi-joint hip-extension knee-extension assistance was not

significantly different from single-joint hip-flexion and knee-flexion assistance. Second,
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coupled hip-flexion knee-flexion assistance was not significantly different from single-joint

knee-flexion assistance.

Muscle metabolic changes

The change in average muscle metabolic rates for a given multi-joint device were similar

between the coupled and independent control devices. Both coupled and independent multi-

joint hip-extension knee-extension assistance produced metabolic reductions in the gluteus

maximus (5% coupled, 6% independent) and vastus intermedius (6% coupled and indepen-

dent) muscles (Fig 2). Multi-joint hip-flexion knee-flexion assistance primarily reduced the

iliopsoas average metabolic rate (19% coupled, 20% independent), and produced smaller

reductions in the gastrocnemius (4% coupled and independent) and semimembranosus (2%

coupled and independent) (Fig 3). Multi-joint knee-flexion ankle-plantarflexion assistance

reduced the average metabolic rates of the soleus (11% coupled, 14% independent) and gas-

trocnemius (4% coupled and independent), but also produced a large reduction in the iliop-

soas (15% coupled and independent), which was not directly assisted (Fig 4). Iliopsoas effort

was reduced since rectus femoris activity increased to counteract knee-flexion assistive torque,

as seen by the small increase in rectus femoris average metabolic rate (4% coupled and inde-

pendent). Multi-joint hip-flexion ankle-plantarflexion assistance produced large metabolic

reductions in the iliopsoas (19% coupled and independent) and soleus (12% coupled, 14%

independent) (Fig 5). Multi-joint hip-flexion knee-flexion ankle-plantarflexion assistance

Fig 1. Reduction in metabolic rate for single and multi-joint assistance devices. The percent change in gross total metabolic rate,

averaged over the gait cycle, for the single joint (gray), multi-joint coupled (orange), and multi-joint independent (blue) assistance

devices. Negative values indicate decreases in metabolic cost. Each bar value and corresponding error bar provides the mean reduction

and standard deviation across subjects. Asterisks indicate devices that produced significantly larger metabolic reductions compared to

single-joint devices.

https://doi.org/10.1371/journal.pone.0261318.g001
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similarly produced large iliopsoas (18% coupled, 19% independent) and soleus (11% coupled,

13% independent) metabolic reductions, and the added knee-flexion torque produced a reduc-

tion (rather than increase) in the semimembranosus (2% coupled and independent) and a

larger reduction in the gastrocnemius (4% coupled and independent) (Fig 6).

Device torques and powers

Average peak device torques and powers were similar between coupled and independent

multi-joint assistance for many of the devices (S2 Table), but there were some notable differ-

ences between peak torques and powers at individual degrees-of-freedom (S4 Table). For

multi-joint hip-flexion knee-flexion assistance, a lower average peak knee-flexion torque was

observed with coupled control (0.4 N-m/kg) compared to independent control (0.7 N-m/kg).

However, despite this peak moment decrease, coupled control provided larger knee-flexion

average peak power (1.7 W/kg) compared to independent control (1.0 W/kg). The largest dif-

ferences in peak device torques were seen in ankle-plantarflexion assistance for multi-joint

devices, but this did not necessarily result in similarly large metabolic changes. For example,

the average peak ankle plantarflexion torque for independent knee-flexion ankle-plantarflex-

ion assistance (1.6 N-m/kg) was larger than the average peak torque for coupled assistance (1.0

N-m/kg), but these devices produced similar metabolic savings (S2 Table, Fig 4). This could be

partially explained by the relatively small difference in average peak powers at the ankle for

knee-flexion ankle-plantarflexion multi-joint assistance between independent (3.4 W/kg) and

coupled control (3.2 W/kg) (S4 Table). These results suggest that multi-joint assistance can

exploit the timing of torque assistance to provide device powers necessary for large metabolic

Fig 2. Summary of multi-joint hip-extension knee-extension assistance. Top: the device torques for multi-joint hip-

extension knee-extension assistance with coupled (orange) and independent (blue) control compared to net joint

moments (gray). Bottom: changes in average muscle metabolic rates as a percent of unassisted gross average total

metabolic rate for the multi-joint assistive devices. Negative values indicate decreases in metabolic cost. Solid bars and

error bars indicate the mean and standard deviation across subjects, respectively. Summing the individual muscle

percent changes yields the total percent changes for the hip-extension knee-extension multi-joint devices reported in

Fig 1.

https://doi.org/10.1371/journal.pone.0261318.g002
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savings, even when coupled torque timing limits assistance torque magnitudes at individual

joints.

Validation results

Joint moments (S1 Fig) and joint angles (S2 Fig) computed with OpenSim had similar peak

values and timings compared to previously reported joint moments and joint angles for nor-

mal treadmill walking at a similar walking speed [47]. The onset-offset timing errors between

simulated muscle activations and normalized EMG recordings, averaged across gait cycles and

subjects, were as follows: gluteus maximus (28.4%), rectus femoris (31.4%), semimembranosus

(32.1%), vastus intermedius (11.1%), gastrocnemius (17.0%), soleus (7.9%), and tibialis ante-

rior (25.1%) (S3 Fig).

Estimates of gross total metabolic rate (3.2 ± 0.2 W/kg, S1 Table) were lower than typical

experimental values for normal unassisted walking (4.0–4.3 W/kg, [48]). This metabolic

underestimation is likely because we did not include frontal-plane muscles (e.g., hip adduc-

tors-abductors) or upper-extremity muscles in our musculoskeletal model. However, since we

were evaluating trends in percent metabolic changes between sagittal-plane single-joint and

multi-joint devices and between coupled and independent multi-joint devices rather than

absolute values of metabolic cost, we deemed this underestimation acceptable for the purposes

of this study.

The RMS errors between experimental and model marker trajectories from inverse kine-

matics had a mean value of 2.2 cm across lower-limb markers and simulation gait cycles. The

mean RMS error in the pelvis residual forces, expressed as a percent of the peak ground reac-

tion force (GRF) magnitude, was 4.8%, which is within the 5% guideline suggested by Hicks

Fig 3. Summary of multi-joint hip-flexion knee-flexion assistance. Top: the device torques for multi-joint hip-

flexion knee-flexion assistance with coupled (orange) and independent (blue) control compared to net joint moments

(gray). Bottom: changes in average muscle metabolic rates as a percent of unassisted gross average total metabolic rate

for the multi-joint assistive devices. Negative values indicate decreases in metabolic cost. Solid bars and error bars

indicate the mean and standard deviation across subjects, respectively. Summing the individual muscle percent

changes yields the total percent changes for the hip-flexion knee-flexion multi-joint devices reported in Fig 1.

https://doi.org/10.1371/journal.pone.0261318.g003
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et al. (2015). The mean RMS error in the pelvis residual moments, expressed as a percentage of

the product of average mass center height and peak GRF magnitude, was 2.8%, which exceeds

the 1% guideline suggested by Hicks et al. (2015). However, given the good agreement between

net joint moments and previously reported walking data and between muscle activity and

EMG measurements, we deemed this error to be acceptable. Finally, the RMS magnitude of

the reserve torques had a mean value of 0.06 N-m across degrees of freedom and simulations;

the maximum error across time, degrees of freedom, and simulations was 2.01 N-m. The ratio

of the RMS reserve magnitude to the maximum absolute net joint moment had mean and

peak values of 0.1% and 3.7%, respectively, which meet the guideline of 5% provided by Hicks

et al. (2015).

Discussion

We found that most multi-joint devices, both coupled and independent, could provide signifi-

cantly larger metabolic savings compared to single-joint torque assistance in simulated lower-

limb exoskeleton devices for walking. This is noteworthy considering that most current exo-

skeleton devices only assist one degree-of-freedom [3, 5, 8, 11, 49–51]. This is also promising

for the recent development of multi-joint exoskeletons [12, 14, 15]. Our results suggests that

designers should consider coupled multi-joint assistance when building multi-joint exoskele-

tons since coupled devices could reduce device weight and simplify device architecture by

requiring fewer actuators. In addition, the largest metabolic reduction with coupled assistance

occurred with hip-flexion knee-flexion ankle-plantarflexion assistance, suggesting that assist-

ing more than two joints with one actuator can be beneficial. In many cases, peak assistive

Fig 4. Summary of multi-joint knee-flexion ankle-plantarflexion assistance. Top: the device torques for multi-joint

knee-flexion ankle-plantarflexion assistance with coupled (orange) and independent (blue) control compared to net

joint moments (gray). Bottom: changes in average muscle metabolic rates as a percent of unassisted gross average total

metabolic rate for the multi-joint assistive devices. Negative values indicate decreases in metabolic cost. Solid bars and

error bars indicate the mean and standard deviation across subjects, respectively. Summing the individual muscle

percent changes yields the total percent changes for the knee-flexion ankle-plantarflexion multi-joint devices reported

in Fig 1.

https://doi.org/10.1371/journal.pone.0261318.g004
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moments and powers were similar between coupled and independent multi-joint assistive

devices, in spite of the reduced control complexity when coupling assistance between joints.

We did not model device masses in our simulations, which would increase metabolic cost

estimates, especially when adding mass to distal body segments [52]. We chose to assess the

benefit from torque assistance separately from the exoskeleton designs, since devices that

apply the same assistance can have varying metabolic penalties depending on actuator torque

and power densities. This approach is similar to that of exoskeleton emulator systems, which

use off-board motors to deliver torque assistance to the user and eliminate the cost of worn

masses from actuators. In addition, when implementing our simulated assistance strategies in

experiments, designers can account for the metabolic cost for wearing a particular exoskeleton

design using the mass distribution of the device (e.g., by using the relationships in Browning

et al. (2007) [52]).

Other limitations of our simulation approach should be considered when interpreting our

results. As previously mentioned, we excluded frontal plane muscles (e.g., hip adductors-

abductors) from our simulations, but these muscles have important functions in walking, and

this could partially explain why our simulation underestimates whole-body metabolic cost rel-

ative to ranges reported in the literature (S1 Table). Since muscles that act in the sagittal plane

often also have moment arms in the frontal plane (e.g., adductor longus), our simulations may

exclude muscle interactions between sagittal and frontal plane degrees of freedom [26]. We

also did not include upper-extremity muscles in our simulations, which would have contrib-

uted to our total metabolic cost estimates. Since we used a minimal muscle set in our musculo-

skeletal model, absolute predictions of metabolic cost would be less reliable than comparisons

between simulated assistance conditions. Therefore, for this study, we focused on the

Fig 5. Summary of multi-joint hip-flexion ankle-plantarflexion assistance. Top: the device torques for multi-joint

hip-flexion ankle-plantarflexion assistance with coupled (orange) and independent (blue) control compared to net

joint moments (gray). Bottom: changes in average muscle metabolic rates as a percent of unassisted gross average total

metabolic rate for the multi-joint assistive devices. Negative values indicate decreases in metabolic cost. Solid bars and

error bars indicate the mean and standard deviation across subjects, respectively. Summing the individual muscle

percent changes yields the total percent changes for the hip-flexion ankle-plantarflexion multi-joint devices reported in

Fig 1.

https://doi.org/10.1371/journal.pone.0261318.g005
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metabolic trends between single-joint and multi-joint devices and between coupled and inde-

pendent multi-joint devices. As previously mentioned, there were quantitative differences

between simulated and measured muscle activity (S3 Fig), so uncertainty in muscle model

model parameters obtained from our calibration step may have also contributed to metabolic

cost underestimates. In addition, while we optimized for metabolic cost in our simulations,

users in exoskeleton experiments would likely also consider comfort, balance, or joint injury

risk in response to assistance, and these factors may affect metabolic cost measurements. Abso-

lute metabolic cost predictions from simulation could be made more accurate by including a

full whole-body muscle set, including upper-extremity muscles, and optimizing for user com-

fort and safety (e.g., minimizing joint contact forces and ligament strains). Finally, we created

simulations using experimental gait data from only five subjects, which may partially explain

why some of the multi-joint devices we tested did not produce significantly different metabolic

cost changes compared to single-joint devices.

It is important to address how the noted limitations of the study are relevant to designers

aiming to test coupled control strategies in experiments. First, we excluded frontal plane mus-

cles in our simulations since we only tested exoskeleton devices acting in the sagittal plane.

Some hip abductor-adductor muscles produce moments in the sagittal plane; thus, we would

likely see differences in some of the metabolic changes we observed had we included these

muscles. However, these frontal plane muscles would likely also benefit from device assistance,

potentially leading to overall greater reductions. We also did not model upper extremity mus-

cles, but including these muscles in our simulation approach would shift metabolic reductions

for all devices by the same amount and not change the trends we observed. Lastly, we did not

model device masses, which could influence percent metabolic changes as device masses

Fig 6. Summary of multi-joint hip-flexion knee-flexion ankle-plantarflexion assistance. Top: the device torques for

multi-joint hip-flexion knee-flexion ankle-plantarflexion assistance with coupled (orange) and independent (blue)

control compared to net joint moments (gray). Bottom: changes in average muscle metabolic rates as a percent of

unassisted gross average total metabolic rate for the multi-joint assistive devices. Negative values indicate decreases in

metabolic cost. Solid bars and error bars indicate the mean and standard deviation across subjects, respectively.

Summing the individual muscle percent changes yields the total percent changes for the hip-flexion knee-flexion

ankle-plantarflexion multi-joint devices reported in Fig 1.

https://doi.org/10.1371/journal.pone.0261318.g006
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increase. However, as noted previously, we chose to separate the effect of assistance from

device mechanical design. Therefore, we would expect the trends we observed to hold in exper-

iments where worn masses are consistent across tested assistance strategies. In summary, we

believe that the metabolic trends observed between single-joint and multi-joint devices and

between coupled and independent assistance will be replicable in experiments, even if differ-

ences in absolute metabolic cost measurements are observed.

Future studies should build upon the simulation methods used in this study to further

improve metabolic predictions. Users in experiments often adapt their kinematics in response

to assistance (e.g., [5, 11, 12, 20, 27, 53–55]), but our simulations utilized an approach where

kinematics were prescribed exactly based on normal walking data. Devices may cause different

changes in walking kinematics depending on which joints were assisted and the torque or

power applied to the user. Therefore, the metabolic cost trends we observed in our simulations

could differ depending on the magnitude of kinematic adaptations between single and multi-

joint devices. Predictive simulation methods that can optimize kinematic changes in addition

to muscle adaptations could provide a better understanding of why exoskeleton users often

change their gait with assistance. The inclusion of muscle synergies to constrain muscle activa-

tion predictions has been shown to improve predictions of subject-specific walking motions

[56] and could potentially improve predictions of user adaptations to exoskeleton assistance.

In addition, it has been shown that personalizing joint axes, electromechanical delays, activa-

tion dynamics time constants, and other musculoskeletal parameters can affect metabolic cost

estimates and should be considered for future calibration methods [57]. Finally, muscle kine-

matic states estimated from ultrasound measurements for both assisted and unassisted walking

could be used to calibrate metabolic models and improve predictions [58].

Future work should include experimental testing of assistance strategies designed through

simulation to help reveal where simulation methods fall short. For example, our group recently

successfully reduced the metabolic cost of walking for a hip-knee-ankle exoskeleton using sim-

ulation-designed assistance [28], but percent changes in metabolic cost and estimated muscle

activity changes from the simulation did not match well with experimental measurements.

Therefore, combining simulations and experiments in an iterative loop could be particularly

effective for designing assistive devices to reduce metabolic cost. Experiments should test the

multi-joint strategies we simulated in this study to verify the metabolic relationships between

coupled and independent control strategies and should especially consider coupled hip-flexion

knee-flexion ankle-plantarflexion assistance, since this device outperformed all the two-joint

devices in our simulations. Simulations could pair with experiments in other novel ways aside

from this “predict-test-validate” framework. With the advent of human-in-the-loop optimiza-

tion methods, simulation may not need to predict metabolic cost changes with high accuracy

to have utility, but only to generate good initial guesses or help optimizers prioritize promising

assistance control strategies.

Conclusion

We used musculoskeletal modeling and optimal control methods to simulate 15 single-joint

and multi-joint ideal assistance devices. This work helps provide an understanding of the mus-

culoskeletal factors driving the metabolic benefits of multi-joint assistance. Our results, show-

ing that the greatest reduction in metabolic cost using a single actuator to assist multiple joints

(39% reduction) was significantly larger than the reduction produced by the best single-joint

device (22% reduction), suggest that exoskeleton designers should consider coupled assistance

when designing multi-joint devices. Coupled assistance approaches could simplify wearable

devices, increase metabolic reductions when actuation is limited, and help keep experiment
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times tractable. Designers can use these results as a guide for generating new hypotheses to test

in exoskeleton experiments or when prototyping new exoskeleton designs. We invite research-

ers to use our freely available data (https://simtk.org/projects/coupled-exo-sim) and code

(https://github.com/stanfordnmbl/coupled-exo-sim) to build upon our work.

Supporting information

S1 Fig. Net joint moments. Left: net joint moments from inverse dynamics for individual sub-

jects. Right: joint moment means (black) and standard deviations (gray bands) across subjects.

(TIF)

S2 Fig. Joint angles. Left: joint angles from inverse kinematics for individual subjects. Right:

joint angle means (black) and standard deviations (gray bands) across subjects.

(TIF)

S3 Fig. Experimental electromyography data compared to unassisted simulation activa-

tions. This figure shows electromyography data (gray bands) recorded from walking experi-

ments compared to optimized activations generated from unassisted simulations (black). Both

electromyography data and simulated activations are averaged across gait cycles not included

in the muscle parameter calibration procedure.

(TIF)

S4 Fig. Sensitivity of objective value to convergence tolerance. The mean (bars) and stan-

dard deviation (whiskers) of normalized objective values for unassisted walking solutions

across subjects and gait cycles. Objective values at each convergence tolerance are normalized

by objective values using a convergence tolerance of 10−4. We used a convergence tolerance of

10−3 to generate our results, since tightening the tolerance to 10−4 had little effect on the objec-

tive (i.e., the normalized objective values were close to one for the 10−3 tolerance).

(TIF)

S5 Fig. Muscle activations for unassisted and assisted simulations. This figure shows muscle

activations averaged across subjects for unassisted walking (black), single-joint assisted walk-

ing (gray), and multi-joint coupled (orange) and independent (blue) assisted walking.

(TIF)

S1 Table. Simulation-predicted unassisted metabolic rates. This table shows the predicted

gross average total metabolic rates for each subject. The columns represent the gait cycles used

when testing single and multi-joint devices. These values underestimate experimental values

typical of normal unassisted walking (4.0–4.3 W/kg, [48]).

(TIF)

S2 Table. Total metabolic reductions and device powers. This table shows (a) relative and

(b) absolute reductions in gross average total metabolic rate and the (c) peak positive, (d) aver-

age positive, and (e) average negative power for each single and multi-joint device. Quantities

in columns (b)-(e) are normalized by subject mass. All columns are reported as

mean ± standard deviation across 5 subjects.

(TIF)

S3 Table. Subject-specific relative metabolic reductions. This table shows subject-specific

relative reductions in gross average total metabolic rate for each single and multi-joint device.

All quantities are percent reductions in metabolic cost relative to unassisted walking.

(TIF)
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S4 Table. Peak device moments and powers at each degree-of-freedom. This table shows the

peak device moments and powers for individual degrees-of-freedom for each single and multi-

joint device. All quantities are normalized by subject mass and are reported as mean ± stan-

dard deviation across 5 subjects. Peak moment values are peak magnitudes of device moments

applied at each degree-of-freedom.

(TIF)
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