
GigaScience, 7, 2018, 1–5

doi: 10.1093/gigascience/giy018
Advance Access Publication Date: 4 March 2018
Technical Note

TECHNICAL NOTE

Genome Annotation Generator: a simple tool for
generating and correcting WGS annotation tables for
NCBI submission
Scott M. Geib 1,∗,†, Brian Hall2,†, Theodore Derego1, Forest T. Bremer2,
Kyle Cannoles1,3 and Sheina B. Sim 1

1Tropical Plant Protection Research Unit, USDA-ARS Daniel K. Inouye U.S. Pacific Basin Agricultural Research
Center, Hilo, HI, 96720, USA, 2Plant and Environmental Protection Science, University of Hawaii at Manoa,
Honolulu, HI, 96822, USA and 3Department of Computer Science and Engineering, University of Hawaii at
Hilo, Hilo, HI, 96720, USA
∗Correspondence address: scott.geib@ars.usda.gov http://orcid.org/0000-0002-9511-5139
†Authors contributed equally.

Abstract

Background: One of the most overlooked, yet critical, components of a whole genome sequencing (WGS) project is the
submission and curation of the data to a genomic repository, most commonly the National Center for Biotechnology
Information (NCBI). While large genome centers or genome groups have developed software tools for post-annotation
assembly filtering, annotation, and conversion into the NCBI’s annotation table format, these tools typically require
back-end setup and connection to an Structured Query Language (SQL) database and/or some knowledge of programming
(Perl, Python) to implement. With WGS becoming commonplace, genome sequencing projects are moving away from the
genome centers and into the ecology or biology lab, where fewer resources are present to support the process of genome
assembly curation. To fill this gap, we developed software to assess, filter, and transfer annotation and convert a draft
genome assembly and annotation set into the NCBI annotation table (.tbl) format, facilitating submission to the NCBI
Genome Assembly database. This software has no dependencies, is compatible across platforms, and utilizes a simple
command to perform a variety of simple and complex post-analysis, pre-NCBI submission WGS project tasks. Findings: The
Genome Annotation Generator is a consistent and user-friendly bioinformatics tool that can be used to generate a .tbl file
that is consistent with the NCBI submission pipeline. Conclusions: The Genome Annotation Generator achieves the goal of
providing a publicly available tool that will facilitate the submission of annotated genome assemblies to the NCBI. It is
useful for any individual researcher or research group that wishes to submit a genome assembly of their study system to
the NCBI.

Keywords: Genome curation; annotation; whole genome sequencing project

Received: 8 February 2017; Revised: 12 April 2017; Accepted: 26 February 2018

C© The Author(s) 2018. Published by Oxford University Press. This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium,
provided the original work is properly cited.

1

http://www.oxfordjournals.org
http://orcid.org/0000-0002-9511-5139
http://orcid.org/0000-0003-0914-6914
mailto:scott.geib@ars.usda.gov
http://orcid.org/0000-0002-9511-5139
http://orcid.org/0000-0002-9511-5139
http://creativecommons.org/licenses/by/4.0/


2 Geib et al.

Introduction

While ever-improving sequencing technology and assembly
software enable the collection of raw sequences for genome as-
sembly and structural annotation, further steps need to be taken
to ensure the quality and completeness of a whole genome se-
quencing (WGS) project for submission to the National Center
for Biotechnology Information (NCBI) or other data repositories
[1]. To submit a genome to the NCBI for curation, it must be con-
verted to the NCBI annotation table format (.tbl). With a genome
assembly project consisting of thousands of sequences demar-
cated by hundreds of thousands of structural annotations, this
task clearly requires automation. However, there is currently no
freely available tool that performs rapid and controlled conver-
sion of a genome assembly and associated structural annota-
tions into a .tbl format in addition to allowing for editing, mod-
ification, and revision of the content of the project. Moreover,
the typical assembly and draft annotation contains some de-
gree of questionable or erroneous data that requires correction
or omission. It may also be desirable to add functional annota-
tions to the submission and integrate results from InterProScan,
Basic Local Alignment Search Tool (BLAST) homology to curated
databases, or ontology terms generated by other tools [2–4].

The traditional approachused to address these problems is to
use Linux command line tools or write custom scripts that mod-
ify and filter the genome using a scripting language such as Perl
or Python [5–7] or large-scale genomic database systems [8]. This
method may not be easily or readily reproducible or it may be
entirely beyond the ability of an investigator who has less famil-
iarity with generating custom scripts de novo. Even among those
researchers who use best practices to write clean, well-tested,
and reusable scripts to accomplish these tasks, doing so requires
a large amount of duplicated effort. For this reason, the Genome
Annotation Generator (GAG) was written to provide a straight-
forward and consistent tool for addressing themost common er-
rors in genome assemblies, adding functional annotations from
disparate sources, and producing an NCBI submission-ready an-
notation .tbl file. In addition, the software provides a means for
integrating existing functional annotations and marking anno-
tations that requiremanual curation or review. All of these tasks
are done through an intuitive command line program that re-
quires only basic Unix skills and has no required dependen-
cies or packages. The program GAG facilitates the submission of
WGS projects to NCBI as well as provides a standardized utility
and workflow that fosters consistency between projects. Due to
emerging genome sequencing initiatives such as the “5,000 In-
sect Genomes Initiative” (i5k) the Plant Genome Initiative, and
Genome 10K (G10K) [9,10], many independent research groups
that are not specialized in genome annotation and analysis are
generating large genomic datasets and performing genome se-
quencing projects within their lab. This program can assist in
ensuring quality and consistency of data for new genome biolo-
gists.

Overview

The GAG program is a command line Python program, written
in Python 2.7 and requiring no additional outside programs or
packages to run. The user directs the program to the genome
.fasta file and a .gff3 file containing structural annotations. In
addition, a number of options can be used to fix possible er-
rors, flag or remove features (i.e., genomic elements described
in the .gff structural annotation file) based on selected criteria,
add functional annotations, trim regions of the genome out of

the assembly, and, of course, write the genome to an NCBI .tbl
file format. In addition, changes made to the genome annota-
tion, functional annotations added, and flags requesting man-
ual review are also annotated back to the .gff3 structural an-
notation file, and the original .fasta file is corrected as needed.
When the user issues commands to modify the genome, e.g.,
to remove short introns, the statistics will display 2 columns,
representing the original andmodified genomes. This allows for
stepwise and documented filtering and review to occur and for
interactions between GAG and visual genome review tools (e.g.,
Artemis, Apollo, GBrowse, JBrowse, etc.) [11–15].

Methods

As an example, we consider a possible workflow for a user wish-
ing to prepare a genome for submission to the NCBI Eukaryotic
WGS Database. The user has a scaffolded genome assembly pro-
duced by one ofmanywhole genome assemblers [16–18] in .fasta
file format and a corresponding GFF3 feature file [19, 20] contain-
ing structural annotations resulting from an automated anno-
tation pipeline or predictors such as Maker, Evidence Modeler,
Jigsaw, and others see [21–28]. The approach would be to first
possibly generate functional annotations of predicted genes if
this is desired, using whatever approach the user is interested
in, and then using the genome and annotations with GAG. After
using GAG to remove or flag features of interest, the user may
then further investigate flagged features in a genome browser
by loading the output of GAG, editing, and then performing fur-
ther filtering in GAG, and iterate through this process until a final
draft genome product is generated. Finally GAG writes an NCBI
table file, onwhich tbl2asn is run for submission to theNCBI. This
may identify regions of the genome that need to be trimmed, due
to possible adapter contamination in the genome or low-quality
sequence. Any errors generated by tbl2asn can then be corrected
in GAG and the genome trimmed, until an error-free submission
is generated.

To use GAG, the user creates a folder containing the genome
files (or links to them) and runs gag.py from the terminal with
the .fasta and .gff3 files. GAG will write a statistics file contain-
ing information on the number of each feature type, lengths, and
other information that may be useful for the submitter. In our
experience, automated genome annotation software frequently
produces assemblies containing introns as short as 1 base pair
(bp) long; if any such features are present, GAG can be run to
detect them. It is important to note than while the NCBI re-
quires short introns to be removed, cutoffs recommended by
NCBI may be more stringent than what you want, as they are
set to reduce the amount of erroneous data being entered into
NCBI. For example, prediction of single base introns might not
be errors and may represent true data. It is up to the user to
dictate what cutoffs they want to define to remove or flag for
manual review. To address these short introns, the user sim-
ply applies option -ris (REMOVE INTRONS SHORTER THAN)with
a value of 10 bp. GAG will discard any mRNA containing an
intron shorter than the minimum of 10 bp. A comparison of
the genome content before and after removal is printed to the
.stats file. If the user instead wishes to only flag features that
meet these criteria and not remove them, alternatively the -fis
(FLAG INTRONS SHORTER THAN) option could be used, which
instead adds a GAG FLAG annotation to the attributes column of
the .gff3 file describing the reason for flagging, allowing man-
ual review of flagged features in a genome browser. GAG will
automatically update all parent and child features (gene or



Genome Annotation Generator 3

Table 1: Options for GAG

Option Type of function Description

-a <annotation file> Annotate Adds functional annotations present in annotation file to .gff and .tbl
-t <.bed file> Trim Removes regions of genome indicated in .bed file from .fasta and .gff3
-fix start stop <no value> Fix Adds or corrects start and stop codon features to .gff3
-fix terminal ns <no value> Fix Removes any trailing ends from contig ends in assembly, updates .gff3 coordinates
-rcs <integer> Remove Remove CDS shorter than <integer>
-rcl <integer> Remove Remove CDS longer than <integer>
-res <integer> Remove Remove exons shorter than <integer>
-rel <integer> Remove Remove exons longer than <integer>
-ris <integer> Remove Remove introns shorter than <integer>
-ril <integer> Remove Remove introns longer than <integer>
-rgs <integer> Remove Remove genes shorter than <integer>
-rgl <integer> Remove Remove genes longer than <integer>
-fcs <integer> Flag Flag CDS shorter than <integer>
-fcl <integer> Flag Flag CDS longer than <integer>
-fes <integer> Flag Flag exons shorter than <integer>
-fel <integer> Flag Flag exons longer than <integer>
-fis <integer> Flag Flag introns shorter than <integer>
-fil <integer> Flag Flag introns longer than <integer>
-fgs <integer> Flag Flag genes shorter than <integer>
-fgl <integer> Flag Flag genes longer than <integer>

coding sequence (CDS) entries) to reflect removal of mRNA fea-
tures. Available flag or removal options are listed in Table 1.

Another review for submission might be that all coding re-
gions be a minimum length. For this example we use 150 bp
in length, which is suggested by NCBI [29,30]. To add this ad-
ditional level of filtering, a second option can be used: -rcs
150, to REMOVE CDS SHORTER THAN 150 bp. When the genome
is written to the output folder, GAG will write a file called
genome.removed.gff containing all the features left out of the final
version. It is important to remember that CDS cutoffs at 150 bp
will possibly remove some biologically correct amino acids.

GAG supports 2 straightforward correction, or fix, tools. If the
user’s GFF3 file does not explicitly indicate the presence of start
and stop codons or if there is reason to believe there are errors
in ORF prediction in the provided GFF file, GAG can a add start
and stop feature to the GFF file. The user simply issues the com-
mand with the option –fix start stop and these features will be
added to the GFF3 file and their existence noted in the table file.
A second issue that can arise in a draft genome assembly is for a
contig or scaffold to have a string of ambiguous bases (Ns) at the
very beginning or end of the contig. These should be removed
from the assembly; this can be done using the –fix terminal ns
option, as they can be misinterpreted as scaffold gaps. Remov-
ing these regions from the genome will disrupt the parity be-
tween coordinates in the .fasta genome file and the .gff3 annota-
tion file. GAG will automatically update coordinates in the .gff3
file to reflect any regions removed from the sequence file. During
execution of tbl2asn or submission to NCBI, it may be identified
that regions of the genome may be contaminated with a micro-
bial, vector, or sequencing adapter sequence as part of the “con-
taminate screen” step. A .bed formatted file can be supplied with
the -trim option, containing regions of the assembly to exclude,
either ranges within a contig or scaffold, or an entire scaffold.
GAGwill update both the .fasta and .gff3 files so that coordinates
are still synchronized. This is a particularly difficult operation to
perform without a specialized tool.

At present, GAG has simple commands to remove or flag in-
trons, exons, coding regions, and genes based on minimum or
maximum lengths, which will also edit or remove any parent or
child feature from the annotation file so as not to create incom-
plete feature annotations. It can also remove features from a list,

which is useful in cases where a genome submission is rejected
and a list of invalidmRNAs and genes is provided. In addition, all
discarded features are retained in a “genome.removed.gff” file,
and the entire editing session is documented so that the user
can retain the filtering criteria used on the particular dataset.

GAG supports 2 methods to add functional annotations to
a genome. First, it can read an annotated GFF3 file containing
gene names, protein products, cross-references to databases,
and ontology terms following GFF3 qualified nomenclature in
the attribute column of the GFF3 file [31–34]. Any annotations
present will be automatically carried over to the NCBI fea-
ture table file. For users with annotations from another source,
GAG can read them from a simple tab-delimited file. The an-
notations supported by the current version of GAG are Name
(for genes), Dbxref, Ontology term, and product (for descriptive
mRNA products). These are also written to a new GFF3 file,
so GAG can be utilized as a tool to also functionally anno-
tate a GFF3 file. Detailed instructions for running GAG, exam-
ples for each of the main functions (e.g., removing features,
adding start and stop codons, trimming features, adding an-
notations) as well as formats and conversion tools for func-
tional annotations are available on the GAG software web-
site webpage: http://genomeannotation.github.io/GAG/, and a
stable release (version 2.0.1) is available in an accompany-
ing Gigascience database and Code Ocean entries [35,36] and is
shared through SciCrunch under (Genome Annotation Genera-
tor, RRID:SCR 016053).

Implementation

GAG is written in Python 2.7. It has no dependencies beyond the
standard library. The program is modular, abstracting biological
concepts such as Sequence, Gene, and CDS into classes thatmay
be incorporated into other software tools. In addition, the code
is covered by a suite of unit and integration tests, allowing de-
velopers to modify or add to the code base with reduced risk of
introducing errors. It should be easily executable by the novice
programmer with only basic command-line experience but also
powerful enough to be implementedwithin robust genomic data
processing pipelines.

http://genomeannotation.github.io/GAG/


4 Geib et al.

Conclusion

GAG can be easily expanded in the future to support more spe-
cific needs of researchers and less common annotation types
and to integrate conversion of common functional annotation
output formats (e.g., InterProScan, BLAST, Blast2Go) for addition
to NCBI annotation table formats. Currently, GAG is an inter-
mediate but critical tool, it fits between a simple format con-
version tool and more sophisticated annotation editors. In fu-
ture developments of GAG, we plan to allow the integration of
multiple lines of evidence supporting gene models to help users
discriminate apparently high-quality annotations from annota-
tions with little support or possible errors. This could rapidly
improve and standardize manual annotation efforts in systems
and user groups that are not integrated into genome center an-
notation pipelines.

Availability of supporting data

Snapshots of the software and accompanying files are available
from the GigaScience GigaDB database [35], and the algorithm
is also accessible in the Code Ocean cloud-based compu-
tational reproducibility platform [36] https://codeocean.com/
2018/02/06/genome-annotation-generator-ncbi-for-submission/.

Availability and requirements

� Project name: Genome Annotation Generator
� Project home page: https://github.com/genomeannotation/
GAG

� Operating systems: Linux, Windows, OS
� Programming language: Python
� Other requirements: Python 2
� License: MIT
� SciCrunch RRID:SCR 016053

Abbreviations

BLAST: Basic Local Alignment Search Tool; bp: base pair; CDS:
coding sequence; GAG: Genome Annotation Generator; NCBI:
National Center for Biotechnology Information; WGS: whole
genome sequencing

Competing Interests

The authors declare that they have no competing interests.

Funding

Funding for this project was provided by US Department of Agri-
culture (USDA)-Agricultural Research Service (ARS) and USDA-
Animal and Plant Health Inspection Service (APHIS) Farm Bill
Section 10007 projects 3.0251.02 (FY 2014), 3.0256.01 (FY 2015),
3.0392.02 (FY 2016).

Author contributions

S.M.G. conceived software concept. B.H., T.D., and S.M.G. de-
signed and wrote the software. B.H., S.M.G., and S.B.S. wrote the
manuscript.

Acknowledgements

We thank S. Gayle, B. Calla, and others for assisting in beta test-
ing of the software and making test datasets available to us.
Bioinformatic analysis to develop test datasets for GAG was per-

formed on computing resources at USDA-ARS Pacific Basin Agri-
cultural Research Center (Moana cluster; Hilo, HI) and the Ex-
treme Science and Engineering Discovery Environment (XSEDE),
which is supported by the National Science Foundation (grant
OCI-1053575XSEDE) utilizing allocation TG-MCB140032 to S.M.G.
Opinions, findings, conclusions, or recommendations expressed
in this publication are those of the authors and do not necessar-
ily reflect the views of the USDA. USDA is an equal opportunity
provider and employer.

References

1. Yandell M, Ence D. A beginner’s guide to eukaryotic genome
annotation. Nature Reviews Genetics. 2012;13(5):329–42.

2. Jones P, Binns D, Chang HY et al. InterProScan 5: genome-
scale protein function classification. Bioinformatics.
2014;30(9):1236–40.

3. Conesa A, Götz S, Garcı́a-Gómez JM et al. Blast2GO: a univer-
sal tool for annotation, visualization and analysis in func-
tional genomics research. Bioinformatics. 2005;21(18):3674–
6.

4. Magrane M, Consortium U. UniProt Knowledgebase: a hub of
integrated protein data. Database. 2011; 2011.

5. Cock PJA, Antao T, Chang JT et al. Biopython: freely available
Python tools for computational molecular biology and bioin-
formatics. Bioinformatics. 2009;25(11):1422–3.

6. Stajich JE, Block D, Boulez K et al. The Bioperl toolkit:
Perl modules for the life sciences. Genome Research.
2002;12(10):1611–8.

7. Gentleman R, Carey V, Bates D et al. Bioconductor: open soft-
ware development for computational biology and bioinfor-
matics. Genome Biology. 2004;5(10):R80.

8. Mungall CJ, Emmert DB, Consortium TF. A Chado case
study: an ontology-based modular schema for representing
genome-associated biological information. Bioinformatics.
2007;23(13):i337–46.

9. i5K Consortium. The i5K Initiative: advancing arthropod ge-
nomics for knowledge, human health, Agriculture, and the
environment. Journal of Heredity. 2013;104(5):595–600.

10. Genome 10K Community of Scientists. Genome 10K: a pro-
posal to obtain whole-genome sequence for 10,000 verte-
brate species. Journal of Heredity. 2009;100(6):659–674.

11. Stein LD, Mungall C, Shu S et al. The Generic Genome
Browser: a building block for a model organism system
database. Genome Research. 2002;12(10):1599–1610.

12. Rutherford K, Parkhill J, Crook J et al. Artemis: sequence visu-
alization and annotation. Bioinformatics. 2000;16(10):944–5.

13. Lee E, Helt GA, Reese JT et al. Web Apollo: a web-based
genomic annotation editing platform. Genome Biology.
2013;14(8):R93.

14. Skinner ME, Uzilov AV, Stein LD et al. JBrowse: a
next-generation genome browser. Genome Research.
2009;19(9):1630–8.

15. Robinson JT, Thorvaldsdottir H, WincklerW et al. Integrative
genomics viewer. Nat Biotechnol. 2011;29(1):24–6.

16. Butler J, MacCallum I, Kleber M et al. ALLPATHS: de novo as-
sembly of whole-genome shotgun microreads. Genome Res.
2008;18(5):810–20.

17. Gnerre S, MacCallum I, Przybylski D et al. High-quality draft
assemblies of mammalian genomes from massively paral-
lel sequence data. Proceedings of the National Academy of
Sciences. 2011;108(4):1513–8.

18. Simpson JT, Wong K, Jackman SD et al. ABySS: a parallel
assembler for short read sequence data. Genome Research.
2009;19(6):1117–23.

https://codeocean.com/2018/02/06/genome-annotation-generator-ncbi-for-submission/
https://codeocean.com/2018/02/06/genome-annotation-generator-ncbi-for-submission/
https://github.com/genomeannotation/GAG
https://github.com/genomeannotation/GAG


Genome Annotation Generator 5

19. Eilbeck K, Lewis S, Mungall C et al. The Sequence Ontology:
a tool for the unification of genome annotations. Genome
Biology. 2005;6(5):R44.

20. Eilbeck K, Lewis SE. Sequence ontology annotation guide.
Comp Funct Genomics. 2004;5(8):642–7.

21. Cantarel BL, Korf I, Robb SMC et al. MAKER: an easy-to-use
annotation pipeline designed for emerging model organism
genomes. Genome Research. 2008;18(1):188–96.

22. Holt C, Yandell M. MAKER2: an annotation pipeline and
genome-database management tool for second-generation
genome projects. Bmc Bioinformatics. 2011;12.

23. Allen JE, Salzberg SL. JIGSAW: integration of multiple
sources of evidence for gene prediction. Bioinformatics
2005;21(18):3596–603.

24. Haas B, Salzberg S, Zhu W et al. Automated eukaryotic
gene structure annotation using EVidenceModeler and the
Program to Assemble Spliced Alignments. Genome Biology.
2008;9(1):R7.

25. Stanke M, Schoffmann O, Morgenstern B et al. Gene predic-
tion in eukaryotes with a generalized hidden Markov model
that uses hints from external sources. BMC Bioinformatics.
2006;7(1):62.

26. Stanke M, Waack S. Gene prediction with a hidden
Markov model and a new intron submodel. Bioinformatics.
2003;19(suppl 2):ii215–ii225.

27. CurwenV, Eyras E, AndrewsTDet al. The Ensembl Automatic
Gene Annotation System. Genome Research. 2004;14(5):
942–50.

28. Elsik CG, Worley KC, Bennett AK et al. Finding the missing
honey bee genes: lessons learned from a genome upgrade.
BMC Genomics. 2014;15(1):86.

29. National Center for Biotechnology Information. The Gen-
Bank Submissions Handbook [Internet]; 2011.

30. National Center for Biotechnology Information. Common
Discrepancy Reports; January 2013.

31. Mungall CJ, Batchelor C, Eilbeck K. Evolution of the sequence
ontology terms and relationships. Journal of Biomedical In-
formatics. 2011;44(1):87–93.

32. Moore B, Fan G, Eilbeck K. SOBA: sequence ontology bioin-
formatics analysis. Nucleic Acids Research. 2010;38(suppl
2):W161–W164.

33. Reese M, Moore B, Batchelor C et al. A standard variation
file format for human genome sequences. Genome Biology.
2010;11(8):R88.

34. The Gene Ontology Consortium. Expansion of the gene
ontology knowledgebase and resources. Nucleic Acids Re-
search. 2017;45(D1):D331–8.

35. Bremer FT, Cannoles K, Derego T et al. Supporting data for
“Genome Annotation Generator: A simple tool for generat-
ing and correcting WGS annotation tables for NCBI submis-
sion”. GigaScience Database. 2017; http://dx.doi.org/10.5524/
100308.

36. Geib SM, Hall B, Derego T et al. Genome Annota-
tion Generator NCBI for submission [Source Code]
[Database]. CodeOcean. 2018; https://doi.org/10.24433/CO.
fceb0521-a26d-441f-9fe0-bccc6a250fc9

http://dx.doi.org/10.5524/100308
http://dx.doi.org/10.5524/100308
https://doi.org/10.24433/CO.fceb0521-a26d-441f-9fe0-bccc6a250fc9
https://doi.org/10.24433/CO.fceb0521-a26d-441f-9fe0-bccc6a250fc9

