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Abstract

Background—Prolonged storage of transfused red blood cells (RBCs) is associated with 

hemolysis in healthy adults and inflammation in animal models. We aimed to determine whether 

storage duration affects markers of hemolysis (e.g., serum bilirubin, iron, and non-transferrin-

bound iron (NTBI)) and inflammation (e.g., interleukin (IL)-8 and monocyte chemoattractant 

protein (MCP)-1) in transfused very low birth weight (VLBW) infants.

Methods—Blood samples from 23 independent transfusion events were collected by heel stick 

before and 2–6h after transfusion.

Results—Serum iron, total bilirubin, NTBI, and MCP-1 levels were significantly increased after 

transfusion of RBCs (P<0.05 for each comparison). The storage age of transfused RBCs positively 

correlated with increases in NTBI following transfusion (P<0.001; R2 = 0.44). No associations 

between storage duration and changes in the other analytes were observed.

Conclusions—Transfusion of RBCs into VLBW infants is associated with increased markers of 

hemolysis and the inflammatory chemokine MCP-1. RBC storage duration only correlated with 

increases in NTBI levels following transfusion. NTBI was only observed in healthy adults 

following 35 days of storage; however, this study suggests that VLBW infants are potentially more 
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susceptible to producing this pathological form of iron, with increased levels observed after 

transfusion of only 20-day old RBCs.

Introduction

Transfusions of packed red blood cells (RBCs) are life-saving and vital to caring for very 

low birth weight (VLBW; <1250g) neonates. These infants require transfusions throughout 

their hospital stay primarily due to anemia of prematurity, which results from diminished 

RBC production, shortened RBC lifespan, and iatrogenic blood loss from frequent lab draws 

required for monitoring (1). At our center, and many others, infants are regularly exposed to 

older blood products due to the current policy of using dedicated blood donors. This policy 

designates a specific packed RBC unit, derived from one donor, to one infant, from which 

the infant receives RBCs each time a transfusion is required until the expiration date. This 

policy was initially instituted to reduce exposure to multiple donors and decrease 

transmission of viral pathogens (2). A consequence of this practice is that neonates receive 

older, stored RBCs with each subsequent transfusion. Several retrospective studies suggested 

that certain morbidities, such as necrotizing enterocolitis, sepsis, bronchopulmonary 

dysplasia, and retinopathy of prematurity, may be associated with RBC transfusions (3–5); 

in contrast, other studies did not observe such associations (6, 7).

In the United States, the Food and Drug Administration (FDA) mandates that RBCs may be 

stored for a maximum of 42 days (8). Approximately half of transfused RBC units are stored 

for 21 days or longer (9, 10). During storage, RBCs undergo mechanical and biochemical 

changes that reduce their recovery in vivo; this is termed the “RBC storage lesion” (11, 12). 

Damaged RBCs are rapidly cleared from the circulation by reticuloendothelial macrophages, 

mostly within the first hour post-transfusion (13). The catabolized hemoglobin iron is then 

released and binds to circulating transferrin in plasma; however, when the rate of iron egress 

from the macrophage exceeds transferrin-binding capacity, non-transferrin-bound iron 

(NTBI) is produced (14, 15). NTBI may cause oxidative damage and increase infectious risk 

(16). Studies in healthy adult human volunteers suggest that NTBI is not produced following 

transfusion unless the RBCs are stored for 35–42 days (17). Nonetheless, VLBW infants 

may have impaired hepcidin responses and decreased transferrin levels, resulting in a 

decreased capacity to handle the iron released following transfusion of older, stored RBCs 

(18–20). Thus, it is possible that NTBI is observed in transfused neonates following 

transfusion of RBCs stored for less than 35 days (18).

Furthermore, in murine and canine studies, increased NTBI levels and enhanced pro-

inflammatory cytokine responses were observed in animals transfused with older RBCs (21–

23). This inflammatory response may contribute to the mechanisms responsible for some 

adverse effects of RBC transfusions (23). Because the risk of acquiring serious neonatal 

morbidities may be associated with RBC transfusions, and because adult and animal studies 

suggest that longer storage duration prior to transfusion may increase adverse effects, we 

examined whether there is a relationship in transfused VLBW infants between the age of 

stored RBCs and circulating post-transfusion NTBI, serum iron, total bilirubin, and pro-

inflammatory cytokine levels.
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Methods

Study Participants

Parents of preterm infants with birth weight less than 1250g were approached for consent 

from August 2013 through December 2014 at the Morgan Stanley Children’s Hospital of 

New York Presbyterian Hospital-Columbia University Medical Center, a level IV Neonatal 

Intensive Care Unit. Patients were included if inborn or transferred from an outside hospital 

at less than 7 days of life. Patients were excluded if they had been transfused with platelets 

or fresh frozen plasma within 4 hours of the tested RBC transfusion or were in a moribund 

condition. Parental consent was obtained from all study patients upon enrollment.

Study Design

This single-center, prospective, observational study evaluated the relationship between the 

age of transfused RBCs and serum iron, total bilirubin, NTBI, and circulating inflammatory 

cytokines. Standard leukoreduced, irradiated, CMV-negative, packed RBCs stored in an 

additive saline solution were transfused via a peripheral intravenous line over 4 hours, as per 

protocol at our center. Twenty-two of 23 independent transfusions used RBCs stored in AS-3 

(Nutricel®) storage solution; one transfusion was of RBCs stored in citrate-phosphate-

dextrose-adenine (CPDA-1). All RBC units were standard packs of RBCs obtained from the 

local supplier; in most cases, the parent bag was irradiated prior to aliquoting into syringes 

for administration to the neonates in the study as needed. Transfusions were given at the 

discretion of the neonatology medical team, among whom transfusion practices are similar. 

The general transfusion threshold practice for VLBW infants in the NICU is to maintain 

hematocrit >35% for those with severe cardiopulmonary disease requiring mechanical 

ventilation with significant oxygen requirement in the first week of life, >30% for moderate 

cardiopulmonary disease and for major surgery in hemodynamically stable infants, and 

>20% for growing stable infants without any oxygen requirement (the thresholds maybe 

slightly higher for ELBW infants). A pre-transfusion, 1ml heel stick or venous blood sample 

was drawn within 1-hour before transfusion and another 1ml sample was drawn at 2–6 hours 

(target 4 hours) post-transfusion. Infants were transfused between 10–20 ml/kg as clinically 

indicated (17.0 ± 3.3 ml/kg; mean ± SD) plus an additional 2ml to account for the blood 

obtained for this study. The study protocol was approved by the Columbia University 

Medical Center Institutional Review Board.

Laboratory Methods

Samples were collected in an additive free, serum separator tube, allowed to clot for 20 

minutes, and then centrifuged at 2800 × g for 10 minutes. Serum aliquots were frozen at 

−80 °C until testing. NTBI was measured using an ultrafiltration colorometric assay (24, 

25). Serum iron was measured by a colorometric method following the manufacturer’s 

instructions (Iron/TIBC Reagent Set, BQ Kits). Bilirubin was measured using standard 

clinical laboratory methodology in the New York Presbyterian Hospital Clinical Laboratory. 

IL-8 and MCP-1 were measured by solid phase sandwich ELISA (R&D Systems) following 

the manufacturer’s instructions.
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Data Analysis

For each study patient, infant and maternal medical records were reviewed and clinical 

characteristics noted. Power analysis was not performed for this convenience sample. 

Difference between means was assessed by paired t-test. Correlation with storage age was 

determined by Pearson linear regression. Multivariable regression was used to test for 

potential confounding by volume of RBCs transfused (ml/kg), sepsis/bacteremia (yes/no), 

and requirement for intubation (yes/no). A value for p less than 0.05 was considered 

significant. Prism (GraphPad Software, Inc.; San Diego, California) was used for all 

analyses.

Results

Demographics and Clinical Characteristics

From August 2013 through December 2014, we enrolled 23 infants transfused with RBCs. 

Clinical characteristics of these infants are provided in Table 1. Median gestational age was 

26 weeks (range 23–30 weeks) and median birth weight was 745g. Median pre-transfusion 

hematocrit was 29% and median storage age of transfused RBCs was 9 days (range 1–34 

days).

Effect of RBC storage age on markers of extravascular hemolysis

The study subjects demonstrated increased serum total bilirubin (mean change = 0.45 

mg/dL; P<0.05), iron (mean change = 21.4 µg/dL; P<0.01), and NTBI (mean change = 0.37 

µM; P<0.05) levels post-transfusion, as compared to pre-transfusion (Figure 1). However, 

only the change in circulating NTBI level was significantly and positively associated with 

RBC storage duration (P<0.001, R2=0.44; Figure 1f). This relationship was not affected by 

volume of RBCs transfused, presence of sepsis/bacteremia at the time of transfusion, or 

requirement for intubation in multivariable regression (data not shown). Furthermore, the 

lower limit of detection of the NTBI assay used is 0.87 µM (25). All (3/3) transfusions of 

RBC stored for ≥20 days and 10% (2/20) of transfusions of RBC stored for <20 days were 

above the lower limit of detection at 4 hours after transfusion and below this limit prior to 

transfusion (P<0.01 by Fisher’s Exact Test). Of note, the three transfusions of RBC stored 

for ≥20 days also were stored for 13, 21, and 28 days following irradiation.

Effect of RBC storage age on pro-inflammatory cytokines

The VLBW neonates had increased serum MCP-1 levels post-transfusion (mean change = 

386.5 µg/mL; p<0.001; Figure 2a); however, no significant changes in IL-8 levels were 

observed (Figure 2b). Furthermore, changes in MCP-1 and IL-8 levels did not correlate with 

RBC storage duration (Figure 2c,d). These relationships were not affected by volume of 

RBCs transfused, presence of sepsis/bacteremia at the time of transfusion, or requirement 

for intubation in multivariable regression (data not shown).

Discussion

This study demonstrates that transfusion of RBCs after longer refrigerator storage duration 

induces increasing circulating NTBI in VLBW preterm neonates. A recent study in healthy 
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adults suggests that NTBI is not observed after transfusion until the RBCs are stored for ≥35 

days (17). Substantial increases in circulating NTBI were also not observed in critically-ill 

children until the final two weeks of storage (26). Taken together, these results suggest that 

preterm neonates are more susceptible to producing NTBI following RBC transfusion and 

this pathologic form of iron can be observed robustly after transfusion of blood stored for 

only 20 days.

Circulating NTBI is iron that is neither bound to the physiologic iron-transport protein, 

transferrin, nor is a constituent of heme or ferritin (14, 15). In healthy individuals, little, if 

any, circulating NTBI is ever observed. Iron enters the plasma principally by recycling 

hemoglobin-iron derived from senescent erythrocytes by reticuloendothelial macrophages in 

the spleen, liver, and bone marrow (27). During routine refrigerated storage, a proportion of 

the RBCs become irreversibly damaged and are cleared by these reticuloendothelial 

macrophages (28). By FDA criteria, on average, up to 25% of the transfused RBCs may be 

rapidly cleared; because most of these damaged RBCs are cleared within the first hour of 

transfusion (13), the rate of iron influx into plasma can exceed the rate of iron acquisition by 

transferrin. This results in the production of circulating NTBI, which is a heterogeneous 

assortment of iron complexes (e.g., with albumin or citrate) (14). Neonates may be 

particularly prone to produce NTBI due to decreased concentrations of circulating 

transferrin and impaired hepcidin responses (18–20).

Accumulating evidence indicates that NTBI can cause adverse effects (16). In animal 

studies, even short durations of circulating NTBI enhanced the virulence of specific 

bloodstream pathogens (22, 23, 29, 30). In addition, increased NTBI in human serum 

samples obtained after transfusing 6-week old RBCs enhanced proliferation in vitro of a 

pathogenic strain of Escherichia coli (24). Similarly, following oral iron supplementation, 

the increased serum iron enhanced proliferation in vitro of several bacterial pathogens, 

including E. coli (31). Circulating NTBI is also associated with increased risks of infectious 

complications following myelosuppression for acute leukemia, where patients with plasma 

NTBI levels >2 µM, like those observed in this study after transfusing RBCs stored for >20 

days, had a higher risk of Gram-negative sepsis (P = 0.0004) (32). This raises the possibility 

that the NTBI produced following some RBC transfusions may be responsible for the 

purported association between RBC transfusion and necrotizing enterocolitis (3, 4). Indeed, 

recent studies identified uropathogenic E. coli, a highly ferrophilic organism, as a risk factor 

for necrotizing enterocolitis (33). Finally, by participating in Fenton chemistry, NTBI causes 

oxidative damage, cytotoxicity, and enhances endothelial expression of adhesion molecules 

(14, 15, 34, 35). Indeed, Stark et al (36) showed that malondialdehyde, a marker of oxidative 

stress, correlates with NTBI levels observed following RBC transfusions in VLBW infants.

Despite the potential for NTBI to cause harm, the randomized clinical trials assessing the 

benefit of a fresher RBC transfusion policy have not observed clinically significant 

differences in outcome. In a similar population as the VLBW infants in this study, the Age 

of Red Blood in Premature Infants (ARIPI) Trial was a double-blind, randomized controlled 

trial in 377 premature infants with birth weights <1250 grams randomized to a transfusion 

policy of “fresh” RBCs, stored for 7 days or less, as compared with the standard of care (7). 

The overall conclusion was that a fresh RBC transfusion policy did not improve outcomes in 
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premature, VLBW infants. Notably, the median age of the standard of care RBCs in that trial 

was 14.6 days. In contrast, our study, in combination with others (36, 37), suggest that there 

is very little evidence of NTBI production after transfusing RBCs stored for less than 20 

days. Thus, to the extent that NTBI is responsible for adverse effects of transfusing older, 

stored RBCs, an observable clinical difference would not be expected between the groups in 

the ARIPI trial. Furthermore, irradiation damages RBCs and prolonged storage following 

irradiation exacerbates the RBC storage lesion (38, 39). Thus, the practice of irradiating the 

parent bag prior to storage as opposed to the aliquoted syringe prior to transfusion may be 

responsible for exacerbating the hemolysis observed following RBCs stored for longer than 

20 days. It was not possible to disentangle whether the prolonged storage following 

irradiation is responsible for the increases in NTBI observed in this observational study. 

Therefore, additional studies are recommended to assess the safety of transfusing RBCs 

stored for longer than 20 days along with the effects of storage following irradiation in this 

vulnerable patient population.

Following transfusion of longer stored RBCs, a pro-inflammatory cytokine response was 

observed in animal models (21), (23). Furthermore, these studies (23) suggest that intact, but 

damaged, RBCs are responsible for this inflammatory response. Similar to other studies 

(37), post-transfusion MCP-1 levels were increased in our study; however, a correlation with 

storage age was not examined previously. Given that increases in MCP-1 levels in our study 

did not correlate with increased RBC storage duration, these increases seem unrelated to 

older RBC transfusion and may be caused by a confounding factor. For example, the first 

heel stick pre-transfusion may cause localized inflammation that is then measured by the 

second post-transfusion heel stick. Without an appropriate control group of non-transfused 

VLBW infants (for example, those getting saline or albumin infusions instead of 

transfusion), this issue is difficult to resolve. Unfortunately, for ethical reasons, it is very 

difficult to identify and justify such a control group.

Other limitations of our study include the limited laboratory outcomes assessed due to the 

limited amount of serum collected from VLBW infants. Furthermore, this single-center 

study had a convenience sample of only 23 neonates. The challenges involved in obtaining 

informed consent and collecting these precious samples make it difficult to perform larger, 

more adequately powered studies. However, our main NTBI outcome is confirmed by other 

small studies in VLBW infants (36, 40). Finally, some infants were transfused prior to 

obtaining consent for this study and only samples from transfusions following informed 

consent were collected; thus, not all samples are from the first transfusion event of life.

In conclusion, this study confirms that transfusions of RBCs after longer storage durations 

are associated with increased NTBI, particularly after 20 days of storage. Although the 

clinical consequences of these findings remain to be determined, it is evident that the 

responses to RBC transfusion in VLBW preterm infants differs from those observed in 

healthy adult volunteers (17) and in older, critically-ill pediatric patients (26). Given the lack 

of clinical evidence supporting the safety in neonates of RBC transfusions stored for greater 

than 20 days (7), the policy of using the same dedicated donor unit per neonate, in which 

subsequent aliquots are stored for longer durations, should be revisited, paying particular 

attention to those units stored for greater than 20 days.
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Figure 1. Effects of RBC transfusion on markers of hemolysis and iron status
Pre- and post-transfusion serum total bilirubin (a), iron (b), and non-transferrin-bound iron 

(c) levels. Standard box and whisker plots in which the box represents the 25th, median, and 

75th percentile; the whiskers represent 5th and 95th percentile for the value. Gray lines 

represent each subject’s pre- and post-transfusion analyte level. Linear regression of the age 

of the transfused RBC unit in days versus the change in analyte level from pre- to post-

transfusion for serum total bilirubin (d), iron (e), and non-transferrin-bound iron (f); dark 

dashed line denotes lower limit of detection for non-transferrin-bound iron (0.87 µM); 

*P<0.05; **P<0.01.
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Figure 2. Effects of RBC transfusion on pro-inflammatory chemo/cytokine levels
Pre- and post-transfusion circulating levels of monocyte chemoattractant (MCP)-1 (a) and 

interleukin (IL)-8 (b). ***P<0.001. Linear regression of the age of the transfused RBC unit 

in days versus the change in analyte level from pre- to post-transfusion for MCP-1 (c) and 

IL-8 (d).
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Table 1

Patient Demographics

Characteristic Value (N=23)

Race - no. (%)

  Caucasian 6 (26%)

  African-American 5 (22%)

  Hispanic 10 (44%)

  Asian 1 (4%)

  Mixed Race 1 (4%)

Male, - n (%) 8 (35%)

Birth Weight, grams – median [range] 745 (474–1020)

Gestational age at birth, weeks – median [range] 26 (23–30)

Age of infant at transfusion, days – median [range] 11 (4–45)

Age of transfused RBCs, days – median [range] 9 (1–34)
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