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Abstract

Background: While recent integrative analyses of copy number and gene expression data in breast cancer have
revealed a complex molecular landscape with multiple subtypes and many oncogenic/tumour suppressor driver
events, much less is known about the role of DNA methylation in shaping breast cancer taxonomy and defining
driver events.

Results: Here, we applied a powerful integrative network algorithm to matched DNA methylation and RNA-Seq
data for 724 estrogen receptor (ER)-positive (ER+) breast cancers and 111 normal adjacent tissue specimens from
The Cancer Genome Atlas (TCGA) project, in order to identify putative epigenetic driver events and to explore the
resulting molecular taxonomy. This revealed the existence of nine functionally deregulated epigenetic hotspots
encompassing a total of 146 genes, which we were able to validate in independent data sets encompassing over
1000 ER+ breast cancers. Integrative clustering of the matched messenger RNA (mRNA) and DNA methylation data
over these genes resulted in only two clusters, which correlated very strongly with the luminal-A and luminal B
subtypes. Overall, luminal-A and luminal-B breast cancers shared the same epigenetically deregulated hotspots but
with luminal-B cancers exhibiting increased aberrant DNA methylation patterns relative to normal tissue. We show
that increased levels of DNA methylation and mRNA expression deviation from the normal state define a marker of
poor prognosis. Our data further implicates epigenetic silencing of WNT signalling antagonists and bone
morphogenetic proteins (BMP) as key events underlying both luminal subtypes but specially of luminal-B
breast cancer. Finally, we show that DNA methylation changes within the identified epigenetic interactome
hotspots do not exhibit mutually exclusive patterns within the same cancer sample, instead exhibiting
coordinated changes within the sample.

Conclusions: Our results indicate that the integrative DNA methylation and transcriptomic landscape of ER+
breast cancer is surprisingly homogeneous, defining two main subtypes which strongly correlate with luminal-
A/B subtype status. In particular, we identify WNT and BMP signalling as key epigenetically deregulated tumour
suppressor pathways in luminal ER+ breast cancer, with increased deregulation seen in luminal-B breast cancer.

Background
Large-scale integrative analyses of copy number and
gene expression data in breast cancer have revealed a
complex molecular landscape with many putative driver
events [1–4]. The most prominent driver events
identified (or confirmed) by these studies include

amplification of oncogenes like ERBB2, CCND1,
ZNF218 or EMSY, as well as deletion of tumour
suppressors like TP53 and PTEN. The largest study to
date, performed by the Molecular Taxonomy of Breast
Cancer International Consortium (METABRIC), sug-
gests that many more putative driver events exist, with
many of these being specific to certain breast cancer
subtypes [4]. By clustering over all copy number-driven
gene expression changes, this same study further
exposed the underlying complexity, inferring the exist-
ence of at least 10 breast cancer subtypes, called intrin-
sic clusters (IC) [4, 5].
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Another mechanism that can lead to deregulation of
gene expression in cancer is aberrant DNA methylation.
In particular, changes in DNA methylation patterns
occurring in the vicinity of gene promoters have long
been recognized as a mechanism of tumour suppressor
inactivation or oncogene activation [6–8]. In spite of
this, the integrative analysis of DNA methylation and
gene expression data in breast cancer remains largely
unexplored [2, 9]. In fact, to date, the largest study to
perform DNA methylation profiling of breast cancer
revealed five methylation subtypes with three of these
clusters correlating with three of the well-known intrin-
sic subtypes of breast cancer, specifically, with the basal,
luminal-A and luminal-B subtypes [2]. However, rela-
tively little is known about how breast cancers would
cluster if we were to perform an explicit integrative
analysis of DNA methylation and gene expression.
Thus, we here aimed to perform a comprehensive ana-

lysis of the integrative DNA methylation gene expression
landscape of breast cancer. In doing so, we wanted to
address the following key questions. First, how does the
molecular taxonomy of breast cancer look like when
viewed from the perspective of DNA methylation-driven
gene expression changes? Second, are their specific sig-
nalling pathways which are epigenetically deregulated
and how does this epigenetic deregulation vary across
breast cancer subtypes? Third, do putative epigenetic
driver events targeting specific gene modules or signal-
ling pathways exhibit a mutually exclusive pattern of
deregulation within individual tumours, similar to what
is observed at the copy number level [10]? In order to
address these questions, we decided to apply a functional
supervised algorithm, called Functional Epigenetic
Modules (FEMs) [11, 12], which performs an integrative
analysis of DNA methylation and gene expression data
at a system level. The system-level integration is done
using a comprehensive high-quality protein-protein
interactome (PPI) as a scaffold, whereby functionally
related genes occupy proximal positions in the network.
The FEM algorithm then infers interactome hotspots of
simultaneous differential DNA methylation and expres-
sion, allowing putative driver events to be identified [11].
The feasibility of the FEM algorithm to uncover

driver events in cancer was demonstrated by us previ-
ously [11, 12]. Indeed, perhaps one of the clearest
examples of an epigenetic aberration constituting a
driver event was found in the context of endometrial
cancer [12]. Specifically, this study showed that DNA
methylation-induced silencing of a gene called HAND2
was causally implicated in endometrial carcinogenesis.
In fact, it was shown how DNA methylation-induced
suppression of HAND2 inactivates the progesterone
receptor signalling pathway, which is the key tumour
suppressor pathway in this type of cancer. Integration

of DNA methylation data with a human interactome
was also shown to be a fruitful approach leading to
novel insights in other contexts. For instance, DNA
methylation changes occurring in ageing do not happen
randomly in the context of protein interaction networks
[13], but tend to cluster in such networks, targeting
specific pathways, in the same way as gene expression
changes do in the context of disease phenotypes [14].
Given the success of FEM to identify causal epigenetic
events in endometrial cancer and key pathways in
ageing, we were impelled to explore the systematic ap-
plication of FEM in the context of breast cancer and
specifically to estrogen receptor (ER)-positive (ER+)
breast cancer.

Results
Identification and validation of FEM modules in ER+
breast cancer
Given that the process of cellular differentiation is
dictated by the specific activation/deactivation of signal-
ling pathways and that this is largely controlled by
epigenetics, we reasoned that putative epigenetic drivers
of cancer could be identified by integrating DNA methy-
lation with gene expression data in the context of a
functional gene network, which incorporates pathway-
level information, such as that provided by a compre-
hensive high-quality human protein interactome [15]. In
order to identify interactome hotspots of simultaneous
differential methylation and gene expression associated
with ER+ breast cancer, we applied our FEM algorithm
[11] (Fig. 1a) to the ER+ breast cancer subset of The
Cancer Genome Atlas (TCGA), encompassing Illumina
Infinium 450K DNA methylation and RNA-Seq data for
111 normal adjacent and 724 cancer samples. After
removing largely overlapping (and therefore redundant)
modules, this resulted in the identification of nine non-
redundant FEM modules, consisting of 257 unique genes
(Table 1, Methods, Additional file 1: Tables S1–S2). Of
these 257 genes, 146 were significantly differentially
methylated and expressed, with 99 of these (i.e. 68 %)
exhibiting an anti-correlation between DNA methylation
and gene expression. Thus, the FEMs were driven on
average by 38 % (99/257) of the genes making up the
modules. Network representations of the FEMs con-
firmed that they contained a significant amount of po-
tential epigenetic deregulation (Fig. 1b, Additional file 1:
Figure S1). We verified that the proportions of differen-
tially methylated and differential expressed genes in each
FEM were not strongly biased to one particular data
type, thus confirming that FEM is effective in avoiding
such bias (Additional file 1: Figure S2).
In order to validate these FEMs, we collected independ-

ent data encompassing Illumina 450K DNA methylation
profiles for 49 normal breast and 254 ER+ samples, as well
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as gene expression for 13 normal breast and 110 ER+
samples (Methods). Validation was performed in two
different ways to assess both the hotspot nature of the
FEM modules in the independent data and also to assess
the consistency of the differential methylation and expres-
sion statistics across studies. Of the nine FEMs, four
exhibited significant modularity scores in the independ-
ent data (Table 1), thus confirming their hotspot
nature. Although the other five FEMs did not pass sig-
nificance, their P values were always smaller than 0.5,
indicating that their non-significance could be due to
other factors such as the unmatched nature of the inde-
pendent DNA methylation (DNAm) and messenger
RNA (mRNA) data. Indeed, scatterplots of t-statistics
of differential methylation (and differential expression)
between the TCGA and validation sets revealed strong
agreement at both DNAm and mRNA levels for all
FEM modules (Fig. 2).

A

B

Fig. 1 The FEM algorithm and examples of FEM modules in ER+ breast cancer. a The FEM algorithm first uses gene-centred statistics of
differential DNA methylation, tg

(D) and differential mRNA expression, tg
(R), here between normal and ER+ breast cancer, to weight the edges in a

PPI network. The weight of the edge between gene g and h is constructed as indicated, where H(x) denotes the Heaviside function (H(x) = 1
if x > 0, H(x) = 0 if x < 0), which are being used to impose an anti-correlation. Hotspots of differential DNAm and mRNA expression are then
inferred by running a module detection algorithm on the PPI network, which attempts to find subnetworks that maximize the modularity
(average weight density) locally. b Examples of two FEMs centred around seed genes CAV1 and FSTL1 in ER+ breast cancer

Table 1 FEMs associated with ER+ breast cancer as inferred in
the TCGA data set

FEM seed Size Mod (TCGA) P (TCGA) Mod (VAL) P (VAL)

TGFB1I1 13 4.94 0.018 3.32 0.013

KRT18 47 4.37 0.001 1.9 0.191

LEP 13 4.57 0.049 2.89 0.045

CCL11 12 5.13 0.018 3.23 0.018

FAM107A 16 4.57 0.036 1.71 0.36

PROC 18 7.06 <0.001 1.68 0.374

FSTL1 56 3.91 0.033 2.00 0.125

MME 26 4.97 0.003 2.13 0.122

CAV1 58 3.65 0.046 2.83 0.003

Columns label the seed gene symbol of the FEM, the size of FEM, its
modularity (Mod) and P value (P) in the TCGA set, as well as the modularity
and P values in the validation (VAL) set
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In order to shed light on the biological significance of
the FEM modules, we performed GSEA using the
Molecular Signatures Database (MSigDB) [16]. The top
two enriched pathways mapped to the WNT and TGF-
beta signalling pathways (Table 2). In particular, we iden-
tified 22 genes within the CAV1 FEM, which all mapped
to the WNT signalling pathway, with 10 of these signifi-
cant at either DNAm or mRNA levels (P < 0.05) and
with 5 exhibiting simultaneous hypermethylation and

underexpression (Fig. 1b). The FSTL1 FEM contained
18 genes mapping to the TGF-beta signalling pathway,
with 7 of these exhibiting simultaneous hypermethyla-
tion and underexpression (Fig. 1b).

Integrative clustering correlates strongly with luminal
subtypes
Next, we asked whether novel ER+ subgroups could be
found by joint clustering of DNA methylation and gene

Fig. 2 Validation of FEM module gene t-statistics. For each FEM module, a scatterplot of t-statistics of differential DNAm (red) and mRNA
expression (blue) in discovery TCGA set (x-axis) against the corresponding statistics in the validation set (y-axis). Linear regression lines and
P values are given
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expression data. Matched DNAm-mRNA data for 463
ER+ breast cancers from the TCGA and for all FEM
genes which were either significantly differentially meth-
ylated or differentially expressed, or both, were used as
input to a joint latent variable model for integrative
clustering using the iCluster R package [17]. According
to the proportion of deviance (POD) score [17], we

obtained an optimal clustering solution at k = 2, i.e. there
was no statistical evidence for more than two clusters.
We observed that the two main clusters were
strongly correlated with luminal subtype status
(Fisher test P < 10−10, Fig. 3), indicating that a pro-
portion of the transcriptomic differences between
these two main ER+ subtypes is driven by underlying
differences in DNA methylation. Importantly, we ob-
served that luminal-B tumours showed higher levels
of DNA methylation deviation from the normal sam-
ples, compared to luminal-A tumours, a trend which
was also seen at the level of gene expression (Fig. 3).
The far majority of the FEM genes exhibited low
methylation levels in normal tissue, intermediate
levels in luminal-A tumours and the highest levels in
luminal-B’s. Correspondingly, gene expression levels
were lower in luminal-A and lowest in luminal-B
tumours (Fig. 3).
The homogeneity of the integrative DNAm mRNA

expression landscape led us to investigate if this was the
result of focusing on only significant genes within FEM
modules. To address this, we reapplied the iCluster algo-
rithm but now on the full set of genes exhibiting signifi-
cant differential methylation and expression between
normal and ER+ breast cancer. Specifically, we identified
a total of 4311 genes exhibiting an anti-correlative

Table 2 GSEA on FEM modules revealed strong enrichment of
two FEMs with seed genes CAV1 and FSTL1, respectively

FEM Size Enriched
pathway

Overlap Overlapping genes

CAV1 58 WNT
signalling

23 DKK1 WNT3A FZD9 WNT2
WNT7A IGFBP4

FZD8 FZD1 LRP6 FZD2 LRP5
FZD6 RSPO1

WNT5A RYK FZD5 ATP6AP2
WNT3 WIF1

WNT1 WNT7B FZD10 SFRP1

FSTL1 56 TGF-beta
signalling

18 NOG GDF5 CHRD TGFB2 TGFB1
FST TGFB3

BMPR2 GDF6 BMPR1A BMPR1B
ACVRL1

ACVR2A BMP4 BMP2 BMP7
BMP6 INHBE

Columns label the FEM module size, the main enriched pathway, the number
of overlapping genes between FEM and pathway and the overlapping genes

Fig. 3 Integrative clustering of matched DNAm and mRNA data in ER+ breast cancer. Result of the integrative iCluster algorithm on 545 ER+
breast cancer samples with matched DNAm and mRNA expression. The algorithm predicted two main clusters, which are depicted together with
the normal samples, as indicated in the top barcode. The second barcode shows the distribution of PAM50 intrinsic subtypes across the clusters.
Genes have been ordered according to the FEM module they belong too, as indicated. Left heatmap is for DNAm, right heatmap for
mRNA expression
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relation between differential methylation and differential
expression. Application of iCluster to these 4311 genes
resulted once again in an optimal two-cluster solution,
which also correlated strongly with luminal subtype
status (Additional file 1: Figure S3). Thus, the lack of
epigenetic substructure within the luminal subtypes is
not an artefact of “casting a lower net” by the use of a
PPI network in the FEM algorithm but instead indicates
that putative DNAm-driven gene expression changes are
surprisingly homogeneous, constituting a remarkably
good discriminator of luminal-A/B subtype status.
Indeed, based on the original clustering result over the
FEM genes (Fig. 3), the luminal-A/B classification accur-
acy was as high as 0.75, with an adjusted Rand index
(ARI) of 0.26. This contrasts quite significantly with
integrative clustering analyses over copy number-driven
gene expression changes, which in the METABRIC set
resulted in as many as 10 intrinsic clusters [4, 5]. In fact,
the highly heterogeneous nature of copy number-
driven gene expression changes resulted in an adjusted
Rand index of only 0.07 (as calculated over ER+ lu-
minal subtypes only). However, we note that specific
intrinsic cluster (IC) combinations (e.g. IC1 vs IC3)
could achieve higher ARI values than those obtained

from the integration of DNAm and mRNA expression
(Additional file 1: Table S3).

Luminal-A and luminal-B breast cancers are epigenetically
similar but with the luminal-B subtype exhibiting larger
deviations in DNA methylation
To quantify the previous patterns of epigenetic deregula-
tion more rigorously, we devised for each FEM module a
FEM “deviation” score, which measures the deviation of
DNAm and mRNA expression of a cancer sample rela-
tive to the normal samples (Methods). Confirming the
previous result, all FEM modules exhibited higher devi-
ation scores in luminal-B compared to luminal-A breast
cancer (Fig. 4a and Additional file 1: Figure S4). We
were able to validate this result, for instance using the
METABRIC expression data set: despite not having
DNA methylation data for these samples, the FEM devi-
ation scores derived from only using gene expression
data were always higher in luminal-B breast cancers,
validating our previous finding (Fig. 4b and Additional
file 1: Figure S5).
Importantly, we observed that the FEM deviation

scores were also significantly higher in luminal-A breast
cancer compared to normal breast tissue (Fig. 4 and

A

B

Fig. 4 FEM modules discriminate normal, luminal-A and luminal-B breast cancers. a Boxplots of FEM deviation scores for the FSTL1 and CAV1
FEMs, stratified according to normal, luminal-A and luminal-B breast cancers. Wilcoxon rank-sum test P values between normal and luminal-A, as
well as between the two luminal subtypes are shown. b Validation of (a) in the METABRIC ER+ set
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Additional file 1: Figure S4), a clear indication that
luminal-A and luminal-B breast cancers are epigeneti-
cally similar entities, with the only difference being the
larger deviations seen in the luminal-B subtype. To con-
firm this further, we posited that the same FEMs would
be retrieved had we run FEM using only luminal-A or
luminal-B breast cancers. We therefore repeated the
FEM analysis but now comparing only ER+ luminal-B
cancers to normal tissue and then again comparing ER+
luminal-A’s to normals. Confirming the epigenetic simi-
larity of both luminal subtypes of breast cancer, highly
overlapping, if not identical FEMs, were retrieved in
both separate analyses (Additional file 1: Table S4).

Prognostic FEM modules in ER+ breast cancer and their
correlation to proliferation
Next, we decided to study the prognostic significance of
the identified FEM modules. For the two predicted clus-
ters (Fig. 3), we constructed representative centroids,
separately for DNAm and mRNA expression. Independ-
ent samples can then be classified into one of the two
integrative subtypes by a nearest-centroid criterion rule
(Methods). This procedure was applied to three inde-
pendent data sets, including the METABRIC mRNA
expression set [4], an independent Illumina 450K DNA
methylation set of breast cancers (“Germany” set) and a
third set (“Fleischer”) with matched 450K DNA methyla-
tion and gene expression data [9]. As a benchmark, we
compared the prognostic separability of the predicted
clusters with the luminal-A/B subtype classification
(Table 3, Additional file 1: Figure S6). As assessed in a
meta-analysis using the combined Fisher test over three
independent studies with either DNAm or mRNA data
available, we observed that both the DNAm- and
mRNA-based integrative cluster centroids were predict-
ive of prognosis (Table 3, Additional file 1: Figure S6).
Although the integrative cluster centroids did not out-
perform the existing luminal-A/B classification as a
prognostic model, they did exhibit stronger consistency
across studies as the luminal-A/B classification failed to
predict prognosis in the smaller Fleischer set (Table 3,

Additional file 1: Figure S6). Importantly, in all data sets,
samples classified into the cluster exhibiting the higher
deviation scores were associated with a poorer clinical
outcome (binomial test P = 0.03).
To further assess the significance of the FEM modules,

we clustered their FEM deviation scores in a clustering
analysis which also included activity estimates of various
signalling pathways and proliferation indices, as recently
estimated by Gatza et al. [18]. All nine FEMs clustered
together, revealing that their overall patterns of epigen-
etic deregulation are highly similar (Fig. 5). However,
this clustering is also expected given that the signalling
pathway activity estimates from Gatza et al. do not use
epigenetic information. Of note however, the FEM mod-
ules clustered most closely with a cluster of biological
pathways which included proliferation, B-MYB activa-
tion, p53 mutation, PIK3CA activation and stemness,
supporting their association with a highly proliferative
and poor-outcome ER+ breast cancer (Fig. 5). Confirm-
ing this further, an overall FEM score computed over all
significant FEM module genes correlated reasonably well
with a single-gene proliferation index (PCNA expres-
sion) (Pearson correlation ∼0.38, P < 10−10).

DNA methylation-associated expression changes are
coordinated and not mutually exclusive
One of the most interesting insights to have emerged
from TCGA studies is that functional cancer driver
events targeting a common signalling pathway often
occur in a mutually exclusive fashion within the same
tumour [10]. We asked if the same might be true for
DNA methylation changes. Specifically, it is reasonable
to ask whether key genes within FEM modules exhibit
mutual exclusive patterns or if instead they exhibit coor-
dinated changes (i.e. changes happening within the same
tumour). We note that because FEMs are inferred from
statistics of differential DNAm and mRNA expression
(which are derived from comparing phenotypes, i.e. from
comparing all samples within respective phenotypes),
there is no requirement for the changes within FEMs to
be coordinated.

Table 3 Univariate Cox regression survival analysis of the iCluster classification DNAm (iCC-DNAm) and mRNA (iCC-mRNA) centroids
in ER+ breast cancer, as well as that of the luminal subtype classification (Lum-A/B)

iCC-DNAm iCC-mRNA Lum-A/B

HR (95 % CI) P HR (95 % CI) P HR (95 % CI) P

TCGA 1.83 ( 0.86–3.90) 0.112 1.83 (0.86–3.90) 0.112 2.68 (1.20–5.99) 0.012

METABRIC NA NA 1.45 (1.20–1.75) 0.0001 1.82 (1.49–2.21) 2e-9

Germany 2.31 (1.07–4.99) 0.028 NA NA NA NA

Fleischer 2.38 (0.81–6.97) 0.103 2.03 (0.64–6.37) 0.217 0.97 (0.23–3.58) 0.961

Combined Fisher test P 0.013 0.0002 7e-9

NA not available due to missing information
Hazard Ratios (HR), 95 % confidence intervals (CI) and likelihood ratio test P values in each data set are given. The P values under a combined Fisher test is
also given
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To investigate whether patterns are coordinated or
mutually exclusive, we constructed for each FEM mod-
ule a binary representation matrix over the significantly
differentially expressed and differentially methylated
genes in the FEM and across all ER+ cancers
(Methods). Each binary entry in this matrix indicates
whether a given gene exhibits a significantly different
DNAm and mRNA level (assuming anti-correlation
between the two) from the corresponding normal tis-
sue. We observed that different genes within the same
FEM module exhibited a tendency for their DNAm
and mRNA levels to deviate from the normal tissue in
the same tumour samples (Fig. 6a, Additional file 1:
Figure S7). This was confirmed by comparing the
average Manhattan distance between pairs of genes to
that obtained by permuting sample labels (Fig. 6b,
Additional file 1: Figure S7).

Finally, to show that there is indeed a difference in the
level of mutually exclusive patterns exhibited by DNA
methylation and copy number, we compared the average
path length distance of top-ranked differentially methyl-
ated genes to top-ranked amplified/deleted genes, using
the TCGA data for which both DNA methylation and
Affy SNP data is available. Focusing on the same number
of top-ranked genes by differential methylation or copy
number change, we observed that the average shortest
path length distance between top-ranked differentially
methylated genes was indeed smaller than for the
correspondingly top-ranked amplified/deleted genes
(Additional file 1: Figure S8).

Discussion
Here, we have performed a detailed integrative analysis
of DNA methylation and gene expression data in the

Fig. 5 Clustering heatmap of the nine FEM deviation and 52 pathway activity scores. Hierarchical clustering analysis of 52 pathway activity scores
from Gatza et al. (as derived in the TCGA ER+ data set) and the nine FEM scores. Colour codes: cyan = low relative activity and magenta = high
relative activity. ER+ breast cancers have been ordered according to their PAM50 intrinsic subtype
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context of ER+ breast cancer. We first performed this
integrative analysis within a system-level framework,
using the FEM algorithm to integrate both data types in
the context of a comprehensive protein interactome, in
an attempt to identify specific gene modules or signal-
ling pathways which are functionally deregulated in ER+
breast cancer as a result of underlying changes in DNA
methylation. This revealed a number of hotspots, four of
which could be validated as hotspots in an independent
(unmatched) DNA methylation and gene expression set.
Remarkably, integrative clustering of DNA methylation
and matched gene expression over the significant genes
within these FEMs only revealed two main clusters. The

same result was obtained after clustering over all genes
exhibiting anti-correlative patterns between differential
DNAm and mRNA expression, indicating that the rela-
tive homogeneity of the epigenetic landscape of ER+
breast cancer was not due to us using the FEM algo-
rithm. Importantly, the two main clusters correlated very
strongly with luminal-A/B subtype status. Indeed, our
work clearly shows that whereas the luminal-B and
luminal-A subtypes do not differ in terms of the specific
FEMs (since for both subtypes, the FEM deviation scores
are higher compared to normal tissue), they do however
differ significantly in terms of the absolute levels of
DNA methylation and gene expression deviation from

A

B

Fig. 6 FEM module genes exhibit coordinated DNAm changes. a Binary matrix representation of two FEM modules, with rows labelling
genes and columns labelling ER+ breast cancers. In the heatmap, blue indicates that the gene’s DNAm level in the given cancer sample
deviates significantly from the normal tissue values. b Comparison of the observed average Manhattan distance between FEM module
genes (red vertical line), as estimated from the binary matrix representations in (a), to the distribution of average Manhattan distances
obtained by permuting the samples within each row (1000 permutations, green density curves). Empirical P value for the observed
distance is given
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the normal reference. Specifically, luminal-B cancers
invariably showed higher levels of promoter DNA
methylation and correspondingly lower levels of gene
expression, than luminal-A cancers. Our result thus ex-
tends a previous observation by a recent study reporting
higher levels of promoter DNAm in luminal-B breast
cancer [19]: our study extends this to showing that
mRNA expression deviations, driven putatively by
underlying DNA methylation changes, are more marked
in luminal-B breast cancer compared to luminal-A’s. In
other words, the data presented here reveals that both
luminal subtypes are characterized by the same
epigenetic driver patterns, only differing in the level
of deregulation.
The relative homogeneity of the integrative epigenomic-

transcriptomic landscape of ER+ breast cancer contrasts
with the corresponding integrative landscape at the copy
number level. Indeed, the recent METABRIC study, which
performed an integrative clustering of copy number and
transcriptomic changes for genes exhibiting significant
correlations, revealed considerable heterogeneity with at
least 10 integrative subtypes across all breast cancers. An
implication of this, as we have seen, is that unsupervised
clustering of DNA methylation-induced gene expression
changes appears to discriminate luminal-A from luminal-
B tumours with a much higher accuracy than what
appears possible based on copy number data. This is inter-
esting because it suggests that DNA methylation changes
explains much more of the homogeneity in the transcrip-
tomic differences observed between luminal-A and
luminal-B breast cancers, whereas copy number changes
may explain more of the heterogeneous differences. Thus,
from a purely epigenetic perspective, our data suggests
that ER+ breast cancer consists of only two main epigen-
etic subtypes, which differ mainly in the level of epigenetic
deregulation, and not in the specific deregulated genes or
signalling pathways.
Illustrating this surprising homogeneity is a FEM mod-

ule, centred around CAV1 and which was strongly
enriched for many members of the WNT signalling
pathway. Many members of this module, including
WIF1, WNT1, SFRP1, FZD9, and FZD8 were hyper-
methylated and underexpressed in both luminal-A and
luminal-B breast cancers but exhibiting larger deviations
in DNAm and mRNA expression in the luminal-B
subtype. One potential interpretation of this is that
luminal-A and luminal-B breast cancers are epigeneti-
cally similar entities but with the higher proliferation
rate of luminal-B cancers causing increased deviations
from the normal epigenetic landscape. The moderate
significant correlation of the FEM module score with the
proliferation marker PCNA partially supports this. On
the other hand, the WNT signalling pathway has been
implicated as a key pathway underlying breast cancer

development and progression [20–27]. Indeed, DNA
methylation-induced silencing of key WNT signalling
antagonists is thought to be the prime mechanism caus-
ing nuclearization of beta-catenin and an increased cell
proliferation rate [21–23]. In the context of a cancer
stem cell model, such overactivity of WNT signalling
may increase self-renewal at the expense of differenti-
ation, an imbalance which may promote tumourigenesis
[22, 28]. Our data fully supports these models, as we also
see epigenetic silencing of many WNT signalling antago-
nists, including notably WIF1 [20] and SFRP1 [28], the
latter also being an unfavourable prognostic marker [27].
Thus, epigenetic silencing of WNT signalling antagonists
could lead to higher activity of this pathway, increasing
self-renewal at the expense of differentiation, as envis-
aged by Baylin and Ohm [28]. Interestingly, the WNT
signalling pathway was also found to represent an epige-
netically deregulated hotspot in the context of ageing,
independently of tissue type [13]. Hypermethylation of
WNT antagonists has also been shown to correlate with
a patient’s age [26]. Thus, epigenetically induced hyper-
activity of this pathway could reflect an early event in
the pathogenesis of ER+ breast cancer.
Besides WNT signalling, another important FEM

mapped to the TGF-β/BMP signalling pathways. Among
the 18 genes which mapped to the WNT signalling path-
way, 7 exhibited simultaneous hypermethylation and
underexpression. Among these, FST and FSTL1 are
known to bind activin members of the TGF-beta super-
family and function to control cellular proliferation [29].
Hypermethylation of FST/FSTL1 could directly impair
this restraint, leading to cancer progression. Supporting
this, FSTL1 appears to play a tumour suppressor role in
two other hormone-related women cancers (ovarian and
endometrial cancer) [29].
Many bone morphogenetic proteins, including

BMP2, BMP6, and BMP7, were also simultaneously
hypermethylated and underexpressed in the same
FEM FSTL1 module, whereas TGF-β family members
TGFB1 and TGFB3 were significantly overexpressed.
Interestingly, a recent study showed that BMP7 sig-
nificantly inhibited the TGF-β1-activated epithelial-
mesenchymal transition (EMT)-related genes in breast
cancer cells, resulting in a significant reduction in
TGF-β1-triggered cell growth and cell metastasis, sug-
gesting that the BMP7 signalling axis could be a prom-
ising pathway for therapeutic intervention in breast
cancer [30]. BMP6 has also been identified as a poten-
tial tumour suppressor associated with differentiation
and metastasis [31–36], which reverses EMT in breast
cancer by restoring E-cadherin expression [32, 36].
Epigenetic silencing of BMP2 in breast cancer has
also been found to promote breast cancer progres-
sion and drug resistance, as well defining a novel
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prognostic marker and offering novel therapeutic op-
portunities [37].
Among the other inferred FEM modules, it is worth

highlighting the following. The CCL11 FEM module was
significantly enriched for chemokines and chemokine
receptors, which were mostly hypomethylated and over-
expressed. Chemokines have been reported to influence
the metastatic potential of breast cancer [38]. Interest-
ingly, the LEP FEM module contained several G protein-
coupled receptors (GPCRs), which could play a role in
mediating the effects of chemokines. The MME FEM
module was significantly enriched for genes in endothe-
lin pathways. Previous research has found that endothe-
lin signalling plays a crucial role in cell differentiation,
proliferation and migration processes [39]. Consistent
with previous findings, we found EDN2 to be hypo-
methylated and overexpressed, whereas EDN3 was
hypermethylated and underexpressed. Finally, the PROC
FEM module was significantly enriched for genes in-
volved in the fibrin clot clotting cascade. Coagulation
and fibrinolysis are known to serve as haemostatic
elements that can facilitate the metastatic potential of
breast cancer [40]. In summary, the fact that the FEM
algorithm has retrieved many diverse signalling pathways
with important roles in breast cancer progressions
attests to the power and usefulness of this algorithm.
Another interesting observation of our study is the

absence of a mutually exclusive pattern of DNA methy-
lation changes within FEM modules. Whereas copy
number changes within signalling pathways have been
shown to occur in a mutually exclusive fashion [10], the
same does not appear to hold for DNA methylation.
This suggests that aberrant DNA methylation in cancer
is characterized by a modularity in the sense that many
components of the same gene module or pathway may
be affected in the same sample. This may not be that
surprising if one realizes that DNA methylation changes
in development exhibit a form of modularity. As con-
crete examples, we have previously observed that DNA
methylation patterns exhibit a level of correlative modu-
larity (in the context of PPI networks) in normal tissue
[13], as well as observed differentially methylated gene
modules underlying endothelial cell differentiation [11].
Moreover, a key feature of development is alterations of
DNA methylation at binding sites of tissue-specific tran-
scription factors [41], which means that common gene
targets (which are also likely to be part of the same path-
way) will exhibit similar DNAm patterns in the same
sample. Thus, there is ample data supporting the view
that in cancer, we would also observe modularity of
DNAm changes at the single-sample level.
The recent observation that DNAm changes may

mediate functional changes primarily by reorganizing
the patterns of transcription factor binding [41] also

raises an important caveat to our analysis. We focused
specifically on correlations between proximal gene
promoter DNAm and expression. Thus, while our ana-
lysis supports the view that this specific integrative
epigenetic-transcriptomic landscape is fairly homoge-
neous in ER+ breast cancer, this does not by any means
exclude the possibility that ER+ breast cancer is highly
heterogeneous in relation to the correlative patterns of
DNA methylation at distal regulatory elements and down-
stream gene expression. Further investigation of the inte-
grative epigenetic-transcriptomic landscape including distal
enhancer-promoter interactions is warranted.

Conclusions
In summary, our work demonstrates that a key compo-
nent of the integrative epigenomic-transcriptomic land-
scape of ER+ breast cancer is surprisingly homogeneous.
Specifically, we have shown that from the perspective of
proximal promoter DNA methylation changes that drive
gene expression alterations, luminal-B and luminal-A
are characterized by the same epigenetically deregulated
hotspots but with luminal-B tumours exhibiting more
aggravated levels of DNA methylation and gene expres-
sion change from the normal state. Our data point
towards WNT and BMP signalling as key epigenetically
deregulated pathways underlying both luminal subtypes,
specially luminal-B breast cancers.

Methods
Gene expression data sets
TCGA
Illumina HiSeq 2000 RNA Sequencing Version2 Level 3
data for breast invasive carcinoma samples was acquired
from the TCGA data portal. Samples were filtered to
include only 724 ER-positive breast cancers and 111 ad-
jacent normal breast tissue samples. RNA-Seq data
included gene-normalized values for 20,531 genes.
Normalized values equal to 0 were substituted by the
minimum non-zero positive value. Values were then
log2-transformed in order to regularize the dynamic
range. Inter-array normalization using the quantile
method was then performed using the limma pack-
age [42].

Yu
Expression data for 13 normal breast tissue samples and
110 ER-positive breast cancer samples encompassing
13,262 genes was obtained from Yu et al. [43].

METABRIC
Normalized Illumina HT-29 v3 expression data of the
METABRIC project (n = 1992 samples) were acquired
from the European Genome-phenome Archive at the
European Bioinformatics Institute. We used only the 774
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ER-positive breast cancer samples from the METABRIC
discovery data set, given that the validation set exhibited
significantly lower cellularity. The expression data matrix
included 24,924 genes.

Fleischer
Expression data of the study of Fleischer et al. [9] was
downloaded from GEO (accession number GSE19783).
The data matrix consisted of 104 breast cancer samples
and 19,596 genes.

DNA methylation data sets
TCGA
Illumina Infinium Human Methylation 450K level 3
DNA methylation data for human breast cancer samples
was acquired from the TCGA data portal. Samples were
filtered to include only 471 ER-positive breast cancers and
96 adjacent normal breast tissue samples. We removed
low-quality probes which lacked beta values for more than
half of the samples. The rest of the missing values were
imputed with the R package impute using k = 5 [44],
resulting in a data matrix of 395,775 CpG probes.

Germany
Illumina 450K DNA methylation data for 49 normal
breast tissue samples and 254 ER-positive breast cancer
samples was done from samples collected within the
Bavarian Breast Cancer Cases and Controls Study 2. The
Ethics Committee of the Medical Faculty, Friedrich-
Alexander University, approved the study (Re. No.
4514), and all patients gave written informed consent.
Data are available on GEO under accession number
GSE69914. Data underwent a quality control procedure
as implemented by us previously [45]. This resulted in a
fully normalized data matrix for 485,512 CpG probes.

Fleischer
Illumina 450K methylation data from [9] were down-
loaded from GEO (same accession as gene expression
data), for a total of 285 fresh frozen tissue samples. Data
underwent quality control encompassing 468,424 CpG
probes. The samples included 46 normal breast tissue
samples from healthy women, 22 pure DCIS, 31 mixed
DCIS-IBC and 186 IBC of stage I and II. Of these, 104
IBC samples had matched expression data.

Brief review of the FEM algorithm
The Functional Epigenetic Module (FEM) algorithm is a
functional supervised algorithm which is aimed at iden-
tifying functionally related genes which exhibit both
differential DNA methylation and differential expression
in relation to some phenotype of interest [11, 12]. The
algorithm consists of three main parts: (1) assignment of
differential DNAm and mRNA expression statistics for

each gene; (2) integration of these statistics with a
protein-protein interaction (PPI) network, whereby the
edges of the network are assigned weights based on a
function of the statistics of association for the two genes
making up the edge; and (3) inference of hotspots of
differential methylation and differential expression, by
identifying subnetworks for which the average weight
density (called modularity) is maximized locally relative
to that predicted by a null distribution.
Because the statistics of differential DNA methyla-

tion are constructed at the gene level, there are many
possibilities on how to do this in the case of the Illu-
mina 450K beadarrays as there are many probes map-
ping to a given gene. As shown in Jiao et al. [11],
probes mapping to the TSS200 region of a gene are
in general the most predictive of gene expression, and
moreover for such probes, high levels of DNAm are
generally associated with underexpression. We there-
fore assign to each gene the average DNAm value of
probes mapping to within 200 bp of the TSS. How-
ever, not all genes have probes mapping to their
TSS200 region. For these genes, we use instead the
average of probes mapping to the first exon of the
gene, which as shown in Jiao et al. is the second
most predictive region of gene expression. For genes
with no probes mapping to TSS200 or first exon re-
gions, we use the average of probes mapping to
within 1500 bp of the TSS (the third most predictive
region). Probes mapping to the gene body are not
used. For each gene g, we thus obtain two statistics
of association, one at the DNAm level (tg

(D)) and an-
other at the mRNA level (tg

(R)). The statistics are in-
ferred using an empirical Bayesian method [42].
We then assign to any given edge in the network, spe-

cified by genes g and h an average integrated statistic
according to the following rule:

t Ið Þ
g ¼ H t Dð Þ

g

� �
H −t Rð Þ

g

� �
þ H −t Dð Þ

g

� �
H t Rð Þ

g

� �n o
t Dð Þ
g −t Rð Þ

g

���
���

wgh ¼ 1
2

t Ið Þ
g þ t Ið Þ

h

� � ð1Þ

where H(x) defines the Heaviside function.
Inference of hotspots/modules on the maximally

connected subnetwork of the full PPI then proceeds
using a spin-glass algorithm, as described in detail in
[13]. Very briefly, we implement a local greedy version
of the spin-glass algorithm, which aims to identify mod-
ules around each of the top-ranked differentially methyl-
ated and expressed genes. Significant modules are
obtained using two complementary significance tests,
one which uses the topological structure of the network
into account and another which does not (this one
randomizes the statistics over the network) [13].
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Identification of FEMs in ER+ breast cancer
We performed a system-level integrative analysis of
DNA methylation and gene expression data using our
previously published FEM algorithm [11, 12], in order to
identify gene modules and signalling pathways which are
functionally disrupted in ER+ breast cancer through
aberrant DNA methylation. For discovery, we used the
Illumina 450K DNAm and RNA-Seq TCGA data. The
TCGA data set consisted of 567 samples for DNA
methylation (96 normal and 471 ER positive) and 835
samples for mRNA expression (111 normal and 724 ER
positive) encompassing 395,775 CpGs and 20,531 genes.
To perform the system-level integration, we used the
PPI network from our previous works (see e.g. [11, 12]).
This resulted in X genes common across the three data
types and inference of interactome hotspots of differen-
tial methylation and expression proceeded on a con-
nected subnetwork of the PPI of Y genes. The statistics
used in the FEM algorithm to weight the edges in the
network were derived by comparing the DNAm and
mRNA profiles of normal tissue to the ER+ breast
cancer samples, using the empirical Bayes method as
implemented in the limma package. Statistics of one
data type (mRNA) were then scaled to ensure equal
variance of statistics of both data types, as described
previously [11, 12].

Validation of FEMs
As validation set, we used the Illumina 450K methyla-
tion data (Germany) and Affymetrix mRNA expression
data from Yu et al. [43]. These include 303 samples for
methylation (49 normal and 254 ER positive) and 123
samples for expression (13 normal and 110 ER positive)
encompassing 485,512 CpGs and 13,262 genes, respect-
ively. In order to validate inferred FEMs, we followed
the same procedure as described in [13]. Briefly, to valid-
ate the hotspot nature of the FEMs, the differential
methylation and differential expression statistics derived
in the new data sets were used to weight the network.
Modularity values for the previously inferred FEMs were
calculated and significance estimates obtained by ran-
dom permutation (a total of 1000 permutations) of node
statistics over the network. Significance P values in the
validation set were obtained for each FEM by counting
the number of permutations where the modularity score
(average edge weights of the FEM module) is larger than
the observed one.
The second validation compares the differential

methylation and expression statistics between discovery
and validation sets for all genes within a FEM module.
A scatterplot of these statistics should yield a signifi-
cant positive correlation. This validation tests for
consistency in the directional patterns of change but

does not assess the hotspot nature of the FEM modules
in the validation set.

iCluster
Matched DNAm and mRNA data for 463 ER+ breast
cancers from the TCGA and for all FEM genes which
were either significantly differentially methylated or
differentially expressed, or both (241 genes), were used
as input to a joint latent variable framework for integra-
tive clustering using the iCluster R package [17]. The
optimal clustering solution was obtained by examining
the proportion of deviance (POD) score for different pre-
specified numbers of clusters k (k = 2, 3, 4, 5, 6) and for
different values of the sparsity parameter λ (λ = 0, 0.01,
0.05, 0.1, 0.15). The optimal clustering solution was ob-
tained at POD = 0.0086 corresponding to k = 2 and λ = 0.1.

Constructing the FEM score
In order to be able to quantify the deviation in DNAm
and mRNA expression of FEM module genes from the
values in the normal reference tissue, we devised for
each module a sample-specific FEM score. Construction
of this score requires samples with both DNAm and
mRNA expression data, so this score computation was
restricted to the matched 82 normal samples and 463
ER-positive breast cancers. Deviations were calculated
using the mean and standard deviation of each gene
across normal samples. Given a FEM module, we only
use those genes which gave rise to the significance of the
module in the first place, i.e. we include only genes that
are significant at both differential DNAm and differential
mRNA levels, and which also exhibit an anti-correlation
(i.e. hypermethylated and underexpressed or hypomethy-
lated and overexpressed in ER+ breast cancer). Thus, let
g denote such a gene and s denote a tumour sample. We
then compute Z-statistics as

Z Dð Þ
gs ¼ X Dð Þ

gs −μ Dð Þ
g

σ Dð Þ
g

Z Rð Þ
gs ¼ X Rð Þ

gs −μ
Rð Þ
g

σ Rð Þ
g

where D and R stand for DNA methylation and mRNA
expression, respectively, and where μ and σ denote the
mean and standard deviation, respectively, as estimated
over the normal samples. A complication arises from the
fact that the two Z-statistics are not directly comparable
due to intrinsic factors related to each data type. Thus,
when constructing an integrated score, in order to avoid
biasing the score to one data type, we need to introduce
a scaling factor α, which will be data-type specific. To
estimate this scaling factor, we compute the standard
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deviation of DNAm and mRNA Z-statistics over all
genes (i.e. not just FEM genes) and samples, quantities
we denote by σZ(D) and σZ(R). We then define the scal-
ing factor as the ratio of the standard deviations ob-
tained from the DNA methylation and mRNA
expression Z-statistics,

α ¼ σZ Dð Þ
σZ Rð Þ ð2Þ

Finally, the FEM score of the FEM module in sample s
is calculated as

FEMS ¼ 1
m

Xm
g

Z Dð Þ
gs −αZ Rð Þ

gs

���
��� ð3Þ

where m is the number of genes in the FEM module
passing the requirements mentioned above.

Construction of iCluster centroids and classification
The iCluster algorithm over all significantly anti-
correlated FEM genes (99 genes in total) in ER+ breast
cancer resulted in only two clusters. Centroids at the
DNAm and mRNA level were constructed by averaging
the corresponding values of the samples in each cluster.
For each gene, its DNAm and mRNA profile was
centred before performing the averaging per cluster.
With the centroids thus defined, i.e. two centroids for
each of the DNAm and mRNA data, independent ER+
samples can then be classified using a nearest-centroid
classification rule. Specifically, for an independent ER+
mRNA or DNAm data set, each of the 99 genes was first
centred to mean zero. Samples were then classified using
a nearest-centroid criterion, with a Spearman rank cor-
relation coefficient defining the distance metric. For data
sets with matched DNAm and mRNA data (i.e. Fleischer
set), we thus obtained two independent classifications,
one from the DNAm and another from the mRNA data.

Coordinated vs mutually exclusive patterns
FEM modules
To determine whether DNAm-associated mRNA expres-
sion changes of FEM genes within FEM modules occur
in a coordinated or mutually exclusive manner within
individual tumour samples, we first constructed a binary
representation matrix for each FEM module using only
genes that are differentially methylated and differentially
expressed and which exhibit an anti-correlative pattern.
The binary matrix was obtained by calculating Z-statis-
tics for each gene in each tumour sample, by comparing
the DNAm and mRNA level in the sample to the normal
tissue samples. Specifically, we estimated the mean and
variance for each gene across the normal samples and
then computed the Z-statistic deviation score. Assuming
a Gaussian distribution for the normal samples, we thus

obtained two P values (one for DNAm and another for
mRNA expression) for each gene in each tumour sam-
ple. We then assigned a value of 1 to the corresponding
matrix entry if both P values were less than 0.1 and if
there is an anti-correlative pattern (i.e. hypermethylated
and underexpressed or hypomethylated and overex-
pressed); otherwise, we assigned a value of 0. The re-
laxed threshold was chosen because (i) the FEM
algorithm infers modules without imposing specific
thresholds on the statistics of differential expression and
methylation and (ii) this allowed us to assess the pat-
terns in more genes within FEMs. For each FEM, we
next estimated the average Manhattan distance (MHD)
between the rows (significant genes) of this binary
matrix. This distance was then compared to the distance
obtained by independently permutating the samples
within each row, using a total of 1000 permutations to
derive a null distribution. An overall P value was then
obtained by counting the number of permutations with
an average MHD more extreme than the observed one.

Comparison to copy number
To objectively assess the level of coordination or mutual
exclusivity of DNAm changes, we decided to compare
these changes to those at the copy number level. Thus, we
compared the distribution of the shortest paths of top-
ranked differentially methylated genes to that of the top-
ranked amplified/deleted genes, estimated in the context
of the same PPI network used in the FEM algorithm.
However, genes were ranked according to differential
DNA methylation between normal and ER+ breast cancer
without using FEM. We selected the top 100 and top 200
ranked differentially methylated genes, as well as the top-
ranked 100 and 200 genes according to copy number
change using the matched TCGA breast cancer data. The
shortest paths were then estimated between every pair of
genes in the top-ranked list, and both the distribution and
average compared between DNAm and copy number.

Additional file
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