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BACKGROUND Ejection fraction (EF) estimation informs patient plans in the ICU, and low EF can indicate ventricular

systolic dysfunction, which increases the risk of adverse events including heart failure. Automated echocardiography

models are an attractive solution for high-variance human EF estimation, and key to this goal are echocardiogram vector

embeddings, which are a critical resource for computational researchers.

OBJECTIVES The authors aimed to extract the vector embeddings from each echocardiogram in the EchoNet dataset

using a classifier trained to classify EF as healthy (>50%) or unhealthy (<¼ 50%) to create an embeddings dataset for

computational researchers.

METHODS We repurposed an R3D transformer to classify whether patient EF is below or above 50%. Training,

validation, and testing were done on the EchoNet dataset of 10,030 echocardiograms, and the resulting model generated

embeddings for each of these videos.

RESULTS We extracted 400-dimensional vector embeddings for each of the 10,030 EchoNet echocardiograms using

the trained R3D model, which achieved a test AUC of 0.916 and 87.5% accuracy, approaching the performance of

comparable studies.

CONCLUSIONS We present 10,030 vector embeddings learned by this model as a resource to the cardiology research

community, as well as the trained model itself. These vectors enable algorithmic improvements and multimodal

applications within automated echocardiography, benefitting the research community and those with ventricular

systolic dysfunction (https://github.com/Team-Echo-MIT/r3d-v0-embeddings). (JACC Adv. 2024;3:101196) © 2024

The Authors. Published by Elsevier on behalf of the American College of Cardiology Foundation. This is an open

access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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EDV = End-diastolic Volume

EF = Ejection fraction

ESV = End-systolic Volume

R3D = 3-Dimensional ResNet
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BACKGROUND. Heart failure is the chronic
impairment of the heart’s ability to pump
blood, affecting approximately 6.2 million
people in the US and appearing on 350,000
death certificates in 2018.1 Moreover, it ac-
counts for $30.7 billion of annual healthcare
expenditures.2 Fortunately, effective in-
terventions prolong life and reduce
morbidity when heart failure is detected
expediently.3 Left ventricular dysfunction,
caused by defectiveness of the left ventricle,
raises the risk of heart failure,4 making its
diagnosis critical to improving patient care.
Key to heart failure diagnosis is echocardiography,
ultrasound of the heart, which measures left ven-
tricular ejection fraction (EF). EF is the fraction of
blood that exits the left ventricle during the systolic
phase of the cardiac cycle. It is calculated by dividing
end-diastolic volume from end-systolic volume
(EF ¼ EDV/ESV).

Currently, manual echocardiography suffers from
physician bias and lack of standardization. Further, a
dearth of trained cardiologists in rural or low resource
settings limits its accessibility to patients.2 Auto-
mated EF prediction is thus a key goal that would
facilitate early ventricular dysfunction detection.5

RELATED WORK. Available to researchers, the
EchoNet Dynamic dataset was published in 2020, as
were several video-based EF classifiers. The best of
these models, an architecture with R2þ1D
spatial þ temporal convolutions, achieved an AUC of
0.97 when utilized for the same healthy/unhealthy EF
E 1 Example of a Shortcut (“Skip”) Connection Within a

al Block

t models use residual blocks with shortcut (“skip”) con-

s across their convolutional layers. This connects layers

a residual block that otherwise have no direct back-

ation between them.
classification task.6 Another group approached the
regression problem by predicting continuous EF
values with an R-squared of 0.95 on their proprietary
database of 50,000 echocardiograms.7

In 2022, video action recognition neural networks
achieved an accuracy of 90.17% for binary EF classi-
fication using a Gate Shift Network with a BNIncep-
tion backbone.8 Other echocardiogram models have
detected hypertrophic cardiomyopathy, cardiac
amyloidosis, and pulmonary arterial hypertension
with C statistics of 0.93, 0.87, and 0.85, respectively.9

Automated echocardiography is achievable, with
deep learning being its key enabling technology.

VECTOR EMBEDDINGS. Key to deep learning
research are trained models and vector embeddings.
Vector embeddings are lists of numbers, numerical
representations of input data learned by a model.
Their applications to deep learning and thus to
automated echocardiography are vast.

Firstly, vector embeddings enable active learning
or the optimal selection of training data that maxi-
mizes its representativeness, uncertainty, and di-
versity. Vector embeddings of the chest X-rays have
allowed active selection methods to improve the F1
score of disease classification algorithms by 27%.10

Vector embeddings of echocardiograms could enable
active learning to improve cardiac disease classifica-
tion too.

As lists of numbers, vector embeddings are valu-
able features for medical classification models. Vector
embeddings of Mel Frequency Cepstral Coefficient
features from heart sounds were found to achieve a
16% performance improvement on heart sound clas-
sification performance.11

Each dimension of an embedding shares a repre-
sentative meaning. This means that knowing the
values of one embedding allows one to find similar
embeddings, enabling similarity search. Pretrained
embeddings have allowed researchers to retrieve
similar CT and MR scan frames from a query image.12

With echocardiogram embeddings, such retrieval
systems could be implemented in echocardiography.

Tantalizingly, visual embeddings can combine
with embeddings of other data types for multimodal
applications. Using a TriNet that incorporates both
chest x-ray embeddings and medical report text em-
beddings, one group developed a model that can
generate the text of a medical report given a chest x-
ray image.13 This is possible because both data types
can be encoded into embeddings which could be
compared.

NOVELTY AND CONTRIBUTION. To the best of our
knowledge, none have released a dataset of vector



FIGURE 2 Distribution of Ejection Fraction for All Echocardiograms

EF is a percentage between 0 to 100. Echocardiograms in the EchoNet dataset had an EF distribution specified by this figure, with a left skew

and a mode around 60%. A class cutoff of EF ¼ 50% results in a class imbalance.

TABLE 1 Cohort Split Based on Ejection Fraction

Class Description Num Videos Percentage Name

1 EF <50% 2,246 22.4% Unhealthy

0 EF $50% 7,784 77.6% Healthy

This is an imbalanced dataset, as 22% of echocardiograms are of the positive class.
We attempted using undersampling and oversampling to mitigate the class
imbalance problem.

EF ¼ ejection fraction.
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embeddings for echocardiograms. Vector embeddings
must be generated by a trained model, which is a
time-consuming and computationally expensive
process. Releasing pre-trained embeddings would
therefore spare researchers’ significant time and
computational costs when developing the embedding
applications described earlier.

To this end, we analyzed echocardiograms from
the EchoNet dataset to predict low EF (below 50%)
utilizing a video transformer. We provide both the
vector embeddings for all 10,030 echocardiograms
learned by our model and the trained model itself for
researchers to generate embeddings for their own
echocardiograms. These resources are accessible
through the GitHub repository link and will democ-
ratize access to echocardiogram representations for
researchers, thus advancing automated echocardiog-
raphy for patient care.

METHODS

R3D TRANSFORMER MODEL. Embeddings come from
trained models. For videos, an initial neural network
(the “backbone”) first extracts visual features from
each frame which video transformers then process.
An ideal backbone is deep, as architectures with more
layers tend to perform better on image data.14

Further, it should be memory efficient and
ideally pretrained.

Visual Geometry Group (VGG16), Residual Net-
works (ResNet18), and InceptionV3 are all deep and
pre-trained backbones with 16, 18, and 43 layers
respectively. ResNet18, however, has the least
parameters (11.2 M) than InceptionV3 (21.8 M) and
VGG16 (138.4 M), making it the most memory-
efficient option. It also owes its performance to re-
sidual blocks with a shortcut connection that allows
the direct backpropagation of a gradient to earlier
layers. This eases gradient calculations and mitigates
overfitting (see Figure 1).

Of ResNet18-based video transformers, 3-
Dimensional ResNet (R3D) is among the best-
performing approaches to the EF classification
problem.5 Designed for video learning,15 R3D is espe-
cially apt for videos because it uses 3D convolutional
filters that span both spatial and temporal dimensions,
allowing it to learn spatiotemporal patterns. R3D
uses spatiotemporal kernels of shape 3 � 3 � 3.

Our R3D model comes from PyTorch and was pre-
trained on the Kinetics-400 dataset, which consists
of clips of human actions.16 With this transfer
learning, we initialized our R3D with weights already
tuned to human action recognition.

We fine-tuned the R3D as a classifier to predict
whether EF was above or below 50%, which is the
cutoff for reduced EF used in related papers. In



TABLE 2 R3D Model Performance Across Class Imbalance Mitigation Strategies

Mitigation Strategy Accuracy AUC Precision Recall Specificity F1 Score AUPRC BCE Loss

Undersample 0.774 0.897 0.496 0.842 0.754 0.624 0.776 0.465

None 0.875 0.916 0.789 0.604 0.954 0.684 0.798 0.310

Oversample 0.865 0.918 0.682 0.744 0.900 0.711 0.807 0.318

To undersample, we sampled from themajority class to reduce it in size to that of the minority class. To oversample, we sampled from theminority class with replacement to inflate in
size to that of the majority class. Using the data without these measures resulted in the lowest BCE loss, so we did not use oversampling or undersampling for our final model.

AUC ¼ area under the receiver-operating characteristic curve; AUPRC ¼ area under precision recall curve; BCE ¼ Binary Cross Entropy; F1 ¼ Harmonic Mean of Precision and
Recall.

FIGURE 3 R3D Mo

Binary cross entropy

means 1-in-4 frame

classification.
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classification, the resulting embeddings represent the
binary difference between healthy and unhealthy
hearts, which is our current interest. R3Ds can also act
as regressors, and the embeddings from these models
reflect variation in a continuous way. This approach is
future work our group intends to develop.

COHORT SELECTION. The EchoNet dataset contains
10,030 echocardiograms. Each video has frame di-
mensions 112 � 112 and 173 frames on average
(SD ¼ 47). We did not standardize frame lengths in
our data, as adaptive pooling layers and other R3D
model features support data with inconsis-
tent dimensions.

The EF distribution was left-skewed with a mode
around 60%. The mean EF is 0.55, held down by a
group of EFs between 20 to 50% (see Figure 2). EF
del Performance for Various Sampling Periods

(BCE) loss only increases once we sample from every 6 frames. This

sampling likely does not exclude key frames necessary for EF
almost never exceeded 80% or fell below 10%. The
standard deviation is 12.

Our dataset split resulted in 7,458 training, 1,284
validation, and 1,277 test videos. Only 22% of the
training videos were class 1 (EF <50%), constituting a
class imbalance. The precise figures are in Table 1. To
mitigate this class imbalance, we experimented with
oversampling and undersampling techniques. Using
the original data resulted in the lowest binary cross
entropy loss, so the final model utilizes it (see
Table 2).

TRAINING. To increase memory efficiency, we
sampled 1 of the every 4 frames from each echocar-
diogram. To ensure this did not exclude end-systolic
and end-diastolic frames, which are critical to EF
measurement, we repeated training with sampling
periods of 8, 6, 4, 2, and 1 (original video) to compare
the effects of sampling period on model performance.
Because a sampling period of 4 resulted in similar
performance to keeping all frames (see Figure 3), we
concluded enough end-systolic and end-diastolic
frames were retained with this frame sampling strat-
egy to warrant its use.

Training utilized an L4 GPU from Google Cloud
Platform, an Adam optimizer, binary cross entropy
loss, a learning rate of 1e-5, and a weight decay of
5e-4. We also had gradients accumulate over succes-
sive mini-batches of size 20 before they updated the
model. Model performance peaked at 4 epochs of
training, which convergence likely accelerated.

CLASSIFICATION METRICS. Accuracy is a necessary
metric to compare the results of our model with those
from literature. It can become misleading, however,
when the label distribution is imbalanced. Precision
describes how well a classifier identifies relevant
(positive) data. Recall describes how well a classifier
identifies any relevant data to begin with. F1 score is
the harmonic mean of both. Specificity measures how
well a classifier identifies negative data.

In addition to AUC, we recorded AUPRC, the area
under the precision-recall curve, since it tends to
remain stable for imbalanced data like our dataset.



CENTRAL ILLUSTRATION Echocardiogram Vector Embeddings Via R3D Transformer for the Advancement of
Automated Echocardiograph

Chung DJ, et al. JACC Adv. 2024;3(9):101196.

Echocardiograms, represented as black frame sequences in the blue-shaded boxes, are fed into the R3D model, where 3D convolutions pick up spatiotemporal patterns

and eventually reduce the video into a 400-dimensional fully connected layer before the sigmoid head. We extract the last fully-connected layer as the vector

embeddings of an echocardiogram, and the principle component analysis (PCA) of these vector embeddings shows that EF patterns are preserved among them. Black

arrows ¼ show equivalence; black lines ¼ highlight dimensions; blue lines ¼ represent a 3D convolution; purple shapes ¼ the vector embeddings; blue and green

shapes ¼ convolutional and pooling layers; orange shapes ¼ fully connected and dropout layers; purple shape ¼ sigmoid layer. Our workflow is 2-fold: we train the

R3D transformer to discriminate between high and low EF and use the trained R3D to generate vector embeddings for each echocardiogram in the EchoNet dataset.
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TABLE 3 R3D Transformer Results

Model
Metric

Data Split

Training Validation Test

Accuracy 0.951 0.889 0.875

AUC 0.979 0.912 0.916

Precision 0.924 0.809 0.789

Recall 0.85 0.661 0.604

Specificity 0.98 0.955 0.954

F1 Score 0.885 0.728 0.684

AUPRC 0.949 0.811 0.798

BCE Loss 0.151 0.306 0.31

Our R3D model performance is demonstrated for each data split. Metrics like AUC
and F1 score gauge the model’s holistic discriminative ability while others like
AUPRC verify that these strong results are not the result of imbalanced data.
Metrics like recall prioritize different objectives like minimizing false negatives.
Across all metrics, model results are strong (>0.8).

AUC ¼ area under the receiver-operating characteristic curve; AUPRC ¼ area
under precision recall curve; BCE ¼ binary cross entropy; F1 ¼ harmonic mean of
precision and recall; R3D ¼ 3-Dimensional ResNet.

FIGURE 4 AUC Curve for Training, Validation, and Test Sets

AUC (area under the curve) measures holistic discriminative ability and is 1.0 for a perfect

binary classifier. Our test AUC of 0.92 thus demonstrates a strong learned representation

by our model.
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This is because a small number of correct or incorrect
predictions can result in large changes in the receiver
operating characteristic curve but not the precision-
recall curve for imbalanced data.

EMBEDDINGS EXTRACTION. Vector embeddings for
each echocardiogram are the values of the final, 400-
dimensional hidden layer of the trained R3D trans-
former given that echocardiogram as the input. To
extract EchoNet embeddings, we fed them through
the trained R3D and extracted the final hidden layer
each time (see Central Illustration).

ETHICS STATEMENT. Our study utilized data
collected in an ethical manner by the Stanford School
of Medicine. Medical data such as echocardiograms
were obtained by controlled access and were not
distributed outside our research team. Our work
received proper ethical oversight and does not
require IRB approval.

RESULTS

The AUPRC and AUC of a random classifier is w0.5,
and for a perfect classifier, it is 1.0. Our R3D test AUC
was 0.916. (see Table 3, Figure 4). Test AUPRC was
also high at 0.798. Given how AUC can be misleading
in contexts of class imbalance, this high AUPRC value
suggests it is genuinely the strength of the R3D clas-
sifier itself that explains the high AUC.

Test specificity was 0.954, meaning the classifier
makes negative predictions correctly almost every
time. Test recall was lower at 0.604 but means that
the model still predicts the majority of ventricular
dysfunction cases correctly. Test precision, finally,
was also high at 0.789, meaning that most positive
predictions were truly ventricular dysfunction.
Together, these metrics demonstrate the strong
discriminative ability of this EF classifier. The vector
embeddings of this model, therefore, reflect an
effective learned representation of echocardiogram
data.

Using principal component analysis, a form of
dimensionality reduction, we visualized the embed-
dings in 2 dimensions to verify that they capture EF
patterns, which are visible in Figure 5.

DISCUSSION

EMBEDDING QUALITY CHECKS. Between 2019 and
2023, 4 studies also developed EF classification
models, the results of which are visible in Table 4. Our
R3D achieves an accuracy (0.875) higher than that of



FIGURE 5 A 2-Dimensional View of the EchoNet Embeddings

Condensing the embeddings from 400 dimensions to 2 principle components (PCs) results in the above scatterplot, where visible trends in EF

show that our embeddings successfully capture EF variation.
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the most recent paper (0.87), which uses a Mobile
U-Net,17 and it comes within 5 points of the best
classification accuracy achieved back in 2019 (0.92).7

Our AUC (0.916) is also higher than that of an
Inception-based classifier, the latest model with a
published AUC (0.847).8 Finally, it comes within 6
points of the best AUC (0.97) among related literature,
achieved by a 3D CNN with atrous convolutions.6

These comparisons bode well for our embeddings
because they show that the R3D model that trained
them has comparable performance to those in the
current literature.

APPLICATIONS OF VECTOR EMBEDDINGS. The vec-
tor embeddings obtained from our R3D
model encapsulate information about echocardio-
grams in a latent space, enabling diverse cardiac
care applications.
Echocard iogram-based c luster ing . Clustering an-
alyses using echocardiogram vector embeddings
could reveal subtypes within cardiac data that
represent diverse presentations of ventricular
dysfunction. Models trained on echocardiogram em-
beddings could thus help identify what medical sub-
type a cardiac patient belongs to.

Disease c lass ificat ion . Vector embeddings can
train classifiers to automatically identify specific
cardiac conditions beyond EF. This is because a lower
EF can be caused by other conditions like coronary
artery disease or systolic heart failure.18 This extends
the model’s measurement utility to a broader spec-
trum of cardiac pathologies.

Pat ient r i sk st rat ificat ion . By incorporating
vector embeddings, new risk prediction models could
assist in stratifying patients based on their risk of



TABLE 4 Comparison of Test Accuracy and AUC With State-of-the-Art EF Classifiers

Model
Metric

Classification Approach

Our Approacha Asch et al7b Ouyang et alc Almadani et al8d Muldoon and Khan17e

Accuracy 0.875 0.92 N/A 0.902 0.87

AUC 0.916 N/A 0.97 0.847 N/A

EF classification cutoff 50% 35% 50% 50% 50%

Our model performance approaches current SOTA (state-of-the-art) classifiers developed for the same EF classification problem, underscoring its quality. Our accuracy is higher
than that of the latest model, for instance, while coming within 5 points of the best SOTA accuracy. Our AUC is also higher than that of the latest model and comes within
6 points of the best SOTA AUC. aR3D transformer, ResNet18 backbone. bUndisclosed algorithm. c3D convolutional neural network with atrous convolutions. dGSM, inception
backbone, 32-frame echocardiograms. eMobile U-Net.

AUC ¼ area under the receiver-operating characteristic curve; EF ¼ ejection fraction; GSM ¼ gate shift module.
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developing ventricular dysfunction or related com-
plications, enabling targeted interventions and
personalized treatment plans.
Echocard iograph ic report generators . When al-
gorithms can access both video and text embeddings,
it is possible to produce accurate text from medical
videos.13 The release of echocardiogram embeddings
therefore makes possible multimodal systems that
generate medical reports given an echocardiogram
input.

LIMITATIONS AND FUTURE WORK. In binary classi-
fication, the nature of a single cutoff value is limiting.
Patients with an EF above 50% would classify as
“healthy” by our framing, but they could still exhibit
myocardial disease and other clinical changes. Future
work will therefore develop a regression model to
predict continuous EF and use it to extract updated
echocardiogram embeddings. We also hope to predict
global longitudinal strain as a more dependable in-
dicator of EF.

Due to limited computational resources, this study
did not utilize data augmentation to improve R3D
performance, which has been demonstrated to suc-
cessful effect in previous comparable studies.6

Convention is to use 5 augmentations, namely color
jitter, grayscaling, grayscaling and color jitter,
increased brightness, and increased sharpness. This
multiplies the dataset size by a factor of 6.

Further, this study did not assess R3D performance
in conditions such as atrial fibrillation or in regards to
beat-to-beat variability, as this information was not
available.

Finally, we did not validate the trained R3D model
on external echocardiogram datasets, which would
have shed insight into its broader applicability.
Echocardiograms are protected patient data, and the
EchoNet dataset is to our knowledge the only one
available to researchers, meaning we could not access
an external dataset to validate on.

CONCLUSIONS

In this paper, we provide vector embeddings gener-
ated by an R3D network that we trained to classify the
healthiness of a heart based on estimated EF from
echocardiograms. This model achieves a high AUC
and accuracy, on par with current best-practice
models, supporting the quality of the embeddings.
These vector embeddings describe each of the 10,030
echocardiograms in the EchoNet dataset in 400-
dimensional latent space, constituting a valuable
resource that enables the improvement of automated
echocardiography algorithms, search tools, and
multimodal generative tools. Researchers need not
repeat our arduous training and extraction process to
develop applications that advance cardiac patient
care, as this resource is available to all to improve
outcomes for all.
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PERSPECTIVES

COMPETENCY IN SYSTEMS-BASED PRACTICE:

Residents are called to participate in systems solutions

and advocate for optimal care systems. Crucial to this

goal is the improvement of EF estimators that help

medical professionals measure EF, as this allows them to

identify patients at highest risk of heart failure. Essential

to improving these models, finally, are embeddings like

the ones presented here.

TRANSLATIONAL OUTLOOK: Vector embeddings

themselves are not medical interventions—rather, they

enable their development. Barriers to clinical translation

therefore include the unfinished work of developing

automated echocardiography models from the raw em-

beddings and echocardiograms available to the research

community. Future research directions follow the devel-

opment of the applications described in the introduction,

using our embeddings for active and deep learning algo-

rithms to improve automated echocardiography, for

echocardiogram similarity search systems and for auto-

mated echocardiography report generation.
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