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A B S T R A C T   

—The automatic identification of human physical activities, commonly referred to as Human 
Activity Recognition (HAR), has garnered significant interest and application across various 
sectors, including entertainment, sports, and notably health. Within the realm of health, a myriad 
of applications exists, contingent upon the nature of experimentation, the activities under scru-
tiny, and the methodology employed for data and information acquisition. This diversity opens 
doors to multifaceted applications, including support for the well-being and safeguarding of 
elderly individuals afflicted with neurodegenerative diseases, especially in the context of smart 
homes. Within the existing literature, a multitude of datasets from both indoor and outdoor en-
vironments have surfaced, significantly contributing to the activity identification processes. One 
prominent dataset, the CASAS project developed by Washington State University (WSU) Uni-
versity, encompasses experiments conducted in indoor settings. This dataset facilitates the 
identification of a range of activities, such as cleaning, cooking, eating, washing hands, and even 
making phone calls. This article introduces a model founded on the principles of Semi-supervised 
Ensemble Learning, enabling the harnessing of the potential inherent in distance-based clustering 
analysis. This technique aids in the identification of distinct clusters, each encapsulating unique 
activity characteristics. These clusters serve as pivotal inputs for the subsequent classification 
process, which leverages supervised techniques. The outcomes of this approach exhibit great 
promise, as evidenced by the quality metrics’ analysis, showcasing favorable results compared to 
the existing state-of-the-art methods. This integrated framework not only contributes to the field 
of HAR but also holds immense potential for enhancing the capabilities of smart homes and 
related applications.   
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1. Introduction 

Currently, the Internet of Things (IoT) has enabled the development of various applications that support decision-making processes. 
One of the sectors where these applications have had a significant impact is the health sector, where it is now possible to carry out 
remote monitoring of sensitive variables, aiding in the treatment and monitoring of various types of diseases. The pathologies that 
significantly impactf the global health system include those related to dementia, especially in the case of older adults. Dementia is 
conceptually defined as a syndrome that, depending on its state (early, intermediate, or advanced), brings side effects such as loss of 
memory, reasoning ability, behavior, and the ability to perform daily activities. 

HAR has established itself as a line of research that has enabled the combination of the Internet of Things using different types of 
sensors (wearable, object, and environmental) and artificial intelligence, which allow for the monitoring of various activities carried 
out in both indoor and outdoor environments. The health sector stands out among the wide application sectors, providing a new 
scenario for experimentation to support the monitoring of adult patients with neurodegenerative diseases, such as dementia. 
Throughout the investigative processes, different experimentation scenarios have been developed specifically in indoor environments, 
generating diverse datasets. These datasets allow the incorporation of various techniques and models based on artificial intelligence to 
predict the different human activities carried out, support the monitoring, and evolution of patients. 

The Casas Kyoto dataset was developed by WSU and is part of the Center for Advanced Studies in Adaptive Systems (CASAS) 
project. It compiled a data repository related to activities of daily living in indoor environments, allowing for the evaluation of an 
individual’s daily activities in an intelligent environment. It contains data representing events from sensors that detect the movement 
of individuals in the indoor environment. The paper is organized as follows: In Section 2, the Casas Kyoto dataset and its imple-
mentation with different sensors are described. Furthermore, in Section 3, we present the related work and applications of supervised 
and unsupervised techniques in the recognition of human activity. Afterwards, Section 4 describes the adopted methodology, and 
finally, Section 5 explains the experimentation. 

This article aims to contribute to the field of human activity recognition using a semi-supervised ensemble learning approach on the 
Casas Kyoto dataset [1]. It proposes to develop a system that combines multiple machine-learning models using ensemble techniques 
to enhance accuracy and robustness in activity identification. These contributions include the design and implementation of an 
innovative ensemble-based approach, as well as a comprehensive evaluation of performance using standard metrics such as precision, 
recall, and F1-score. The main objective is to enhance activity recognition capabilities in the context of the Casas Kyoto dataset and 
provide results that drive advancements in this research area, with potential applications in developing home monitoring systems and 
improving the quality of life for individuals. 

To address concerns about robustness and generalization, this article explicitly details how the proposed models and ensemble 
techniques improve the system’s ability to function effectively under various conditions and with different types of data. The meth-
odology outlined in this work focuses on how the selected and combined models can generalize learnings from one dataset to another, 
maintaining a high degree of accuracy and reliability in different scenarios. This discussion focuses on the implementation of strategies 
to mitigate model overtraining, a critical consideration in machine learning models. The emphasis is on ensuring that these models 
exhibit robust performance not only during training but also demonstrate the ability to adapt and make accurate predictions when 
presented with new, previously unseen data [2,3]. This approach reflects accurate robustness and generalization in the practice of 
human activity recognition. 

Fig. 1. Sensors in human activity recognition [1].  
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2. Conceptual information 

2.1. Human activity recognition 

Systems based on the recognition of human activities make use of both signals and images from various types of sensors found in a 
given physical space in the indoor environment (room, bathroom, living room, kitchen, closet, etc.) or can also be used by individuals. 
The cellular technology has become highly relevant due to the amount of data that can be processed and transmitted by smartphones in 
their continuous use by individuals [4]. The high usability of smartphones in various datasets is supported by the fact that, in addition 
to their processing capacity, they have become another personal accessory for people due to their portability. They also enable 
interaction with different applications and the mass sending of information anytime and anywhere [2]. Some other HAR applications 
focus on the use of integrated cameras in indoor environments that can capture different activities carried out by individuals and 
sensors located in different parts of the body that denote the activity that is being carried out [3] as mentioned in Fig. 1. 

Both in mobile devices and indoor environments, HAR-based systems utilize various types of sensors. Among these sensors, we can 
highlight positioning, proximity, temperature, accelerometers, gyroscopes, magnetometers, and microphones, among others. One of 
the sensors widely employed for detecting human activities is inertial sensors, based on the principles of inertia, which dictates the 
inclination of bodies to maintain their velocity, typically in uniform rectilinear motion. Among the array of sensors conventionally 
utilized in HAR, the accelerometer stands out, facilitating the measurement of acceleration in m/s2, alongside the gyroscope, which 
measures or tracks rotational motion [5]. This set of sensors allows for capturing highly relevant information from the monitoring of 
both physical and physiological components of people. This has become a field of research for the scientific community that, through 
data analysis and image processing, strives to identify the different activities that are carried out in both indoor and outdoor 
environments. 

2.2. Casas Kyoto dataset 

The Center for Advanced Studies in Adaptive Systems (CASAS) project was developed by Washington State University [1]. This 
project compiled a repository of data related to activities of daily living in indoor environments. One of the datasets within this re-
pository is Daily Life 2010–2012 Kyoto, which is widely used to evaluate the daily activities of an individual in a smart home (SH). The 
dataset contains sensor events that detect the movement of individuals in the indoor environment. 

These datasets represent sensor events collected in the WSU smart apartment testbed. The data represent participants performing 
five Activities of Daily Living (ADL). These are routine activities that people tend to do every day as part of their regular self-care and 
independent living. ADLs are a key measure in assessing an individual’s functional status, especially in contexts such as healthcare and 
gerontology. The ability to perform ADLs is often used to gauge an individual’s level of independence and to identify any difficulties 
they might be experiencing in their daily life. In the apartment, these activities are as follows:  

1. Make a phone call. The participant moves to the phone in the dining room looks for a specific number in the phone book, dials the 
number, and listens to the message.  

2. Wash hands. The participant moves into the kitchen sink and washes his/her hands in the sink, using hand soap and drying their 
hands with a paper towel.  

3. Cook. The participant cooks a pot of oatmeal according to the directions given in the phone message.  
4. Eat. The participant takes the oatmeal and a medicine container to the dining room and eats the food.  
5. Clean. The participant takes all the dishes to the sink and cleans them with water and dish soap in the kitchen. 

Among the sensors that were used to carry out the experimentation process are, see Table 1: 

3. Related works: applications of supervised and unsupervised techniques in the recognition of human activities 

Table .2 summarizes key findings from various studies focused on human activity recognition using different datasets and 

Table 1 
Summary of sensors used in the dataset.  

Sensors Name Description 

M01.M26 Motion Sensors. 
I01.I05 Item sensors for oatmeal, raisins, brown sugar, bowl, measuring spoon. 
I06 Medicine container sensor 
I07 Pot sensor 
I08 Phone book sensor 
D01 Cabinet sensor 
AD1-A Water sensor 
AD1-B Water sensor 
AD1-C Burner sensor 
Asterisk Phone usage  
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Table 2 
Supervised and unsupervised techniques in the recognition of human activity.  

Reference Summary of methods Dataset Results Identified Weaknesses Improvements Proposed in This 
Article 

[6] This paper investigates and 
compares a range of classical 
machine learning and deep learning 
techniques for human activity 
recognition. Through a 
comprehensive analysis, various 
techniques are evaluated to identify 
the classifier that exhibits the most 
effective recognition performance. 
The experimental findings highlight 
the superiority of the established 
Deep Neural Network (DNN) model. 

UCI 
Machine 
Learning 
dataset. 

Accuracy is 
75.7 % and 
90.84 %. 

These studies primarily focus on 
classic machine learning methods 
and feature engineering 
techniques, which could limit their 
effectiveness in more complex or 
varied scenarios. Additionally, 
they do not deeply explore the 
application of deep learning 
techniques. 

This article suggests the 
integration of deep learning 
approaches and a more exhaustive 
evaluation of advanced feature 
engineering techniques. This could 
provide a deeper understanding 
and more accurate classification of 
human activities. 

[7] This paper introduces a wearable 
sensor-based continuous fall 
monitoring system designed not 
only to detect fall incidents but also 
to identify falling patterns and 
associated activities, addressing the 
need for comprehensive fall risk 
prevention. These proposed models 
employ a two-layer multi- 
granularity framework and an 
emergent paradigm with marker- 
based stigmergy, enhancing context- 
aware information aggregation and 
generating a two-dimensional 
activity pheromone trail. 

Various 
datasets 

Varying 
accuracy (65 
%–96.71 %) 

Although these studies make 
advancements in fall detection and 
sensor-based activity recognition, 
they may lack generalization to 
different environments and types 
of activities. 

The current article proposes the 
use of semi-supervised learning 
techniques and the exploration of 
new algorithms that enhance 
robustness and generalization in 
various scenarios, including those 
outside the health context. 

[8] This investigation introduces a 
hierarchical framework called 
HierHAR, designed to infer ongoing 
activities through a multi-stage 
process. This framework aims to 
enhance the differentiation of 
similar activities and overall 
performance improvement. 
Notably, It advocates for a data- 
driven approach, minimizing 
dependence on extensive prior 
domain knowledge by automatically 
determining relationships among 
activities. 

UCI 
Machine 
Learning 
datasets 

KNN 95 %, 
KNN- 
Decision Tree 
– 87.01 % 

These works propose a 
hierarchical approach to human 
activity recognition that can be 
complex and specific to the 
dataset, limiting its applicability 

It is recommended to simplify the 
proposed models and optimize the 
algorithms to allow for a broader 
and more efficient application in 
various contexts. 

[9] They created a model for predicting 
activities like Cleaning, Cooking, 
Eating, Washing hands, and Phone 
Calls. The suggested approach 
introduces a novel method that 
includes preprocessing and 
segmenting the dataset through the 
use of sliding windows. 
Additionally, carried out 
experiments with different 
classifiers to identify the most 
effective choice for the model. 

UCI 
Machine 

KNN-SVM 
96.71 % and 
82.24 % 

It conducts a comparison between 
classic methods and deep learning 
techniques but without an 
effective integration of both 
approaches. 

The current article advocates for 
an integration of classic methods 
and deep learning, leveraging the 
strengths of each approach to 
improve accuracy and efficiency in 
the classification of human 
activities. 

[10] This study introduces various deep 
learning (DL) models designed for 
classifying human activities. 
Specifically, the utilization of long 
short-term memory (LSTM) is 
explored for modeling 
spatiotemporal sequences captured 
by smart home sensors. 

Various 
datasets 

Decision Tree 
60 %–96.3 % 

It focuses on the use of the 
Decision Tree algorithm, showing 
variability in performance across 
different datasets. 

It is proposed to improve the 
selection and optimization of 
algorithms to increase consistency 
and accuracy in activity 
classification, especially in more 
varied contexts. 

[11] This paper introduces an open- 
source, automatic, and highly 
configurable framework. Its purpose 
is to establish a baseline for the 
definition, standardization, and 
development of Human Activity 

MHealth 
dataset 

99.79 % y 
99.89 % 

The focus on mobile health 
systems using IoT for human 
activity recognition might be 
limited to health scenarios. 

Expand the scope of the 
application to include different 
contexts and environments, 
thereby improving the 
generalization and utility of the 

(continued on next page) 
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methodologies. These studies address the challenges of accurately classifying human activities, presenting results, identifying 
weaknesses, and proposing improvements. As we delve into the details of each study, it becomes evident that there is a diverse range of 
datasets and techniques employed. To facilitate a better understanding of the landscape, Table .1 provides a comprehensive overview 
of the referenced studies, highlighting their contributions and areas for enhancement. 

The highlighted studies contribute significantly to the understanding and enhancement of Human Activity Recognition (HAR) 
methodologies, encompassing classical machine learning and deep learning techniques. However, it is essential to acknowledge certain 
limitations within the existing literature that the authors aim to address through their proposed solutions. The current body of research 
often tends to concentrate on specific methodologies or datasets, potentially restricting the generalizability of findings to diverse real- 
world scenarios. Furthermore, some studies may lack a comprehensive exploration of the application of deep learning techniques, 
hindering their effectiveness in more complex or varied contexts. Additionally, hierarchical approaches proposed for human activity 
recognition may demonstrate complexity and specificity to particular datasets, limiting their broader applicability. The authors, in 
response to these limitations, propose insightful improvements such as the integration of deep learning approaches, exploration of new 
algorithms, and simplification of hierarchical models. Through these suggestions, the authors aim to not only contribute to overcoming 
the identified limitations but also advance the field by providing more adaptable, efficient, and widely applicable solutions for accurate 
human activity classification across diverse scenarios and environments. 

4. Methodology 

For the development of this experimentation, three important phases are contemplated, which are detailed in Fig. 2. 
Phase 1 - Semi-Supervised Dataset: In this phase, the data set is prepared to be included in the experimentation process, 

Table 2 (continued ) 

Reference Summary of methods Dataset Results Identified Weaknesses Improvements Proposed in This 
Article 

Recognition (HAR) methodologies, 
facilitating the evaluation and 
comparison of different approaches. 

approach in a variety of 
applications. 

[12] The suggested method aligns with 
an unsupervised learning approach, 
offering several benefits. These 
include streamlining future 
replication, enhancing control, and 
deepening understanding of the 
system’s internal mechanisms. The 
ultimate goal of this system is to 
simplify the adoption of this 
approach in a broader range of 
households. 

SisFall 
dataset 

Precision 
96.82 %, 
Precision 
79.99 % 

Although the study shows high 
accuracy in fall detection, it 
primarily focuses on a specific type 
of activity. 

Expand the research to cover a 
wider range of activities and 
contexts, thereby improving the 
system’s ability to recognize and 
classify various human activities. 

[13] In this study, the author introduced 
a customizable Human Activity 
Recognition (HAR) system that 
relies on an affordable and user- 
friendly Body Area Network (BAN). 

Various 
datasets 

Precision 
63.27 %– 
82.79 % 

The focus on activity recognition 
in smart homes shows variability 
in accuracy across different 
datasets. 

Implement more sophisticated and 
accurate algorithms, especially in 
the realm of deep learning, to 
improve the detection and 
classification of activities in smart 
home environments.  

Fig. 2. Ensembled method for human activity recognition.  
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managing to consolidate a dataset with the following structure. An event-based characterization process was used, considering the 
application of rank, standard deviation, bias, and kurtosis. 

Phase 2 – Clustering Approach: In this phase, three algorithms based on clustering were applied, namely: Fuzzy Clustering, 
Agglomerative Clustering, and K-means. 

Phase 3 – Classification Techniques Approach: Regarding the predictive techniques, two techniques have been used that serve to 
support the identification process after the cluster: Bagging and J48. 

Phase 4- Data Exploration and Preprocessing: Before hyperparameter selection, exploratory data analysis was conducted to 
understand the characteristics of the dataset. This process aided in identifying initial values for hyperparameters and establishing an 
appropriate search range. 

Hyperparameter selection: 
The process of hyperparameter selection was carried out following the typical phases of the knowledge discovery process, which 

include: 
Problem Understanding: In this initial phase, a solid understanding of the human activity recognition problem in the Casas Kyoto 

dataset was established. Key hyperparameters requiring adjustment were identified, such as the number of estimators in the ensemble, 
the maximum depth of decision trees, and learning rates. 

Feature Engineering: Feature engineering was performed in advance to enhance data representation. The selected or generated 
features had an impact on hyperparameters, influencing model complexity and the need for regularization. 

Model and Hyperparameter Selection: In this phase, model selection was performed, and initial hyperparameters were defined. 
An initial hyperparameter search was conducted, involving a broad exploration of possible values for each hyperparameter. 

Cross-Validation and Hyperparameter Tuning: Cross-validation was employed to assess model performance with different 
combinations of hyperparameters. This phase involved fine-tuning hyperparameters using performance metrics such as accuracy, 
recall, and F1 score in multiple iterations. 

Evaluation and Deployment: Once the optimal hyperparameters were selected, the model was evaluated on an independent test 
dataset to obtain a final performance assessment. 

Results Interpretation: The results of hyperparameter tuning were interpreted to understand how they influenced the model’s 
performance and how these findings translate into the human activity recognition task. 

Table 3 
Clustering metrics.  

Metric Formula Description. 

Silhouette Index 
S(C) =

∑
isili
n 

and sili =
(bi − ai)

max(ai, bi)
,

where ai is the average distance of object xi to all other objects in the same cluster, and 
bi is the minimum average distance of object xi to all objects in other clusters. High 
values of this index indicate a good clustering structure. 

Jaccard Index 
J(C,C∗) =

(z − n)
∑

pn2
p +

∑
pn∗2

q − z − n
,

where z =
∑

pq
n2

pq A value near 1 indicates a strong similarity between C∗ and C. 

Rand Index 

R(C,C∗) = 1+

2
∑

pq

⎛

⎜
⎝n pq

2

⎞

⎟
⎠ −

∑
p

⎛

⎜
⎝n p

2

⎞

⎟
⎠ −

∑
q

⎛

⎜
⎝n∗

q

2

⎞

⎟
⎠

(
n
2

)

A value near 1 indicates a strong similarity between C∗ and C. 

Completeness Score 
c = 1 −

H(Ypred
⃒
⃒Ytrue)

H(Ypred)

The objective of this index is to take a sample belonging to the class and observe that it 
can be assigned to the same cluster. It is determined using the conditional entropy 
H(K /C), which denotes the uncertainty of determining the correct group associated 
with a class. 

Davies and Bouldin 
Index. DB(C) =

1
k
∑k

p=1
max
q ∕= p

{
dintra(Cp)+dintra(Cq)

dinter(Cp ,Cq)

}
Small values of this index indicate a good clustering structure. 

Fowlkes and 
Mallows Index. FM(C, C∗) =

1
2
(z − n)

⎛

⎜
⎜
⎝
∑

p

⎛

⎜
⎝n p

2

⎞

⎟
⎠
∑

q

⎛

⎜
⎜
⎝n∗

q

2

⎞

⎟
⎟
⎠

⎞

⎟
⎟
⎠

1
2 

where z =
∑

pq
n2

pq A value near 1 indicates a strong similarity between C∗ and C. 

Homogeneity Score. 
h = 1 −

H(Ytrue
⃒
⃒Ypred)

H(Ytrue)

A clustering result satisfies homogeneity if all its clusters contain only data points that 
are members of a single class.  
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5. Experimentation 

5.1. Phase 1: supervised experimentation 

As described in the previous section, in the first phase of the experimentation supervised learning will be used, using algorithms 
based on conglomerate analysis. Clustering or grouping in machine learning is an unsupervised learning technique in which an al-
gorithm is given to group data sets with similar characteristics. There is, in turn, a set of metrics that can measure the quality of the 
grouping that results in clustering, among which we highlighted in Table .3: 

C and C*: These terms are used in the context of clustering indices such as the Corrected Rand Index (RCC*). A value close to 1 in 
this index indicates a strong similarity between C and C*. These terms likely represent different groupings or sets of clusters in 
clustering analysis. 

H: In the context of the Completeness Index (c = 1-H(Y_pred|Y_true)/H(Y_pred)), H refers to conditional entropy (HK/C), which 
denotes the uncertainty of determining the correct group associated with a class. Conditional entropy is used to calculate how complete 
a clustering is in terms of assigning all samples of a class to the same cluster. 

5.1.1. Scenario No.1 
Each scenario could involve varying parameters, datasets, or methodologies, providing a comprehensive understanding of how 

clustering techniques perform in different situations. In summary, scenarios set the stage for experimentation and testing as a clus-
tering technique, and are employed for both testing its capabilities under different conditions and implementing it in real-world 
applications based on the insights gained from testing. In this scenario, three clustering techniques were applied: Agglomer-
ativeClustering, Fuzzy C-Means (FCM), and KMeans working first on the detection of the ideal number of clusters, resulting in the 
number 2 as stated in Figs. 3 and 4. 

When analyzing the results of the silhouette index, it can be identified that values close to 1 describe that there is a good per-
formance regarding the intercluster relationship (cohesion), but it has difficulties for the extra clustering work (separability). 
Regarding the analysis of the Davis Bouldin index, it can be analyzed that the resulting clusters are compact, and their centers are well 
separated from each other as mentioned in Figs. 5–7. 

5.1.2. Scenario No.2 
In the second scenario, the number of clusters is increased, that is, 5 to carry out a more exhaustive evaluation of different quality 

metrics through the implementation of the three algorithms defined in the previous scenario: AgglomerativeClustering, FCM, and 
KMeans. In this experiment, it was possible to extract another group of quality metrics from the cluster grouping as described in 
Table 4. 

When analyzing the results of the clustering quality metrics, the following interpretations can be made. Regarding the Silhouette 
Index, which identifies good behavior in internal clusters (cohesion) and external clusters (separability), the Agglomerative-Clustering 
algorithm presents a better result in terms of internal clusters but has difficulty with external clusters: ’ separability. As for the FCM and 
KMeans algorithms, they have better behavior in terms of separability but can improve their results in terms of cohesion. Regarding the 
Jaccard index, it allows determining the similarity between the different array data, where it can be noted that the K-means algorithm, 
belonging to the partitional category, has better performance due to its closer proximity to number 1, in contrast to the other two 
algorithms. 

Regarding the Completeness index, it allows to identification of the integrity of the points given that they are members of the same 
group, in this case again the AgglomerativeClustering algorithm has a better performance compared to the algorithms based on fuzzy 
and partitional logic. The Davis-Bouldin index determines whether the clusters are compact among themselves, generating a positive 
separation between the clusters. In the experiment conducted, the FCM-based algorithm performs better in terms of its relationship 
with the clusters. The Fowlkes-Mallows index is defined as an external evaluation method of clustering that seeks to find similarities 
between two clusters. In this specific case, the higher the value of the index, the better the result. In this experimental scenario, 
Agglomerative Clustering shows better results compared to other algorithms such as K-means and FCM. 

Regarding homogeneity, this index can identify whether all groups in the cluster belong to the same class. In this specific case, the 

Fig. 3. Clustering analysis scenario.  
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Fig. 4. Results of clustering metrics of scenario 1.  

Fig. 5. Agglomerative clustering results.  

Fig. 6. Fcm results.  
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Fig. 7. KMeans results.  

Table 4 
Results of clustering metrics of scenario 2.  

Algorithm AgglomerativeClustering K-means FCM 

n 5 5 5 
Jaccard 0.604337 0.606676 0.589671 
silhouette 0.016053 0.259136 0.021693 
Adjusted rand 0.274492 0.2469 0.226937 
completeness 0.440904 0.419267 0.386574 
Davies Bouldin 0.446221 0.452908 0.603184 
Fowlkes mallows 0.460056 0.443775 0.41732 
Homogeneity 0.34592 0.323507 0.3284  

Fig. 8. Results of AgglomerativeClustering of scenario 2.  
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clustering-based algorithm performs better than the other algorithms, see Figs. 8–10. 

5.2. Phase 2 and 3: clustering and classification approach 

After performing the unsupervised experimentation process based on the two previously defined scenarios, the second scenario was 
selected as the one that provides the best quality metrics for the formed clusters. With this selection, supervised techniques are 
implemented using hierarchy-based and partition-based algorithms, which performed the best in terms of quality metrics. After the 
class analysis process, supervised algorithms such as Bagging and J48 were used. 

5.2.1. AgglomerativeClustering with bagging 
When experimentation is performed after the grouping process, it can be observed that the Bagging algorithm, which is based on 

Fig. 9. Results of FCM of scenario 2.  

Fig. 10. Results of KMeans of scenario 2.  
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the analysis of multiple independent models and is built upon the Agglomerative Clustering algorithm, achieves a classification ac-
curacy of 95.55 % for the classes grouped in the previous stage as like described in Table 5. The acronyms used in Tables are as follows: 

In the confusion matrix, it can be identified that there is high cohesion in the identification of each of the classes associated with the 
prediction process, as can be observed in the main diagonal as stated in Table 6. 

5.2.2. Agglomerative Clustering with J48 
In the experimentation of combining the Agglomerative Clustering algorithm with the J48 tree-based algorithm, the identification 

processes for each of the classes were identified to show good performance in predicting class 3. As for classes 0 and 1, there were also 
good performances in prediction. However, there were difficulties in identifying class 2 as like mentioned in Table 7. 

When analyzing the results reported by the confusion matrix, it can be identified that there are good results in the process of 
defining the classes, even though there are difficulties in identifying class 2 as explain in Table 8. 

5.2.3. K-means with bagging 
Concerning the experimentation of partitioning algorithms such as K-means, it can be identified that it has good prediction pro-

cesses based on partitioning algorithms, although it also has difficulties in classifying class 2, where it could improve the results such as 
Table 9. 

The verification of the confusion matrix denotes good class prediction processes. However, opportunities for improvement are 
observed regarding class 2 in Table 10. 

5.2.4. K-means with J48 
Concerning the combination of partition-based algorithms and J48 decision tree-based algorithms, good results can be identified. 

However, better results are obtained using Bagging in Table 11. 
In the confusion matrix, good prediction process results for each of the different classes can be identified, showing opportunities for 

improvement in predicting classes 2 and 4, as stated in Table 12. 

6. Discussion 

Through this implementation process, the assembled models based on unsupervised and supervised learning provide significant 
advantages in data processing, as explained in the improvement of predictive processes. We propose evaluating the model by hy-
bridizing selection and classification techniques with the segmented and balanced dataset labeling of activities (not identified) and 
recognizing activities using a multi-level classifier approach. This approach integrates genetic algorithms for feature selection and 
Growing Hierarchical Self-Organizing Maps for classification, based on proposals and using classifying multi-classes. One classifier 
evaluates categories of activities with a low number of instances and a low level of interactions, while another classifier evaluates 
categories of activities with a high number of instances and a high level of interactions separately. Another future work would be 
deploying a system that collects individuals’ interactions with the indoor environment of UJAmI Smart Lab. After processing the data, 

Table 5 
Quality metrics of AgglomerativeClustering with bagging.  

TP Rate FP Rate Precision Recall F-measure MCC ROC Area PRC Area Class 

0.955 0.000 1.000 0.955 0.977 0.971 0.999 0.998 0 
0.963 0.027 0.929 0.963 0.945 0.925 0.997 0.994 1 
1.000 0.011 0.857 1.000 0.923 0.921 0.989 0.735 2 
0.977 0.018 0.977 0.977 0.959 0.959 0.999 0.999 3 

TP Rate: True Positive Rate. 
FP Rate: False Positive Rate. 
Precision: Precision. 
Recall: Recall. 
F-measure: F-Measure. 
MCC: Matthews Correlation Coefficient. 
ROC Area: Receiver Operating Characteristic Area. 
PRC Area: Precision-Recall Curve Area. 

Table 6 
Confusion matrix of AgglomerativeClustering with bagging.  

a b c d e Classified as 

21 1 0 0 0 a = 0 
0 26 0 1 0 b = 1 
0 0 6 0 0 c = 2 
0 1 0 43 0 d = 3 
0 0 1 0 0 e = 4  
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Heliyon 10 (2024) e29398

12

Table 7 
Quality metrics of AgglomerativeClustering with J48.  

TP Rate FP Rate Precision Recall F-measure MCC ROC Area PRC Area Class 

0.955 0.013 0.955 0.955 0.955 0.942 0.971 0.921 0 
0.963 0.027 0.929 0.963 0.945 0.925 0.998 0.904 1 
1.000 0.021 0.750 1.000 0.857 0.857 0.984 0.750 2 
0.955 0.000 1.000 0.955 0.977 0.960 0.977 0.975 3  

Table 8 
Confusion matrix of AgglomerativeClustering with J48.  

a b c d e Classified as 

21 0 1 0 0 a = 0 
1 26 0 1 0 b = 1 
0 0 6 0 0 c = 2 
0 2 0 42 0 d = 3 
0 0 1 0 0 e = 4  

Table 9 
Quality metrics of K-means with bagging.  

TP Rate FP Rate Precision Recall F-measure MCC ROC Area PRC Area Class 

1.000 0.000 1.000 1.000 1.000 1.000 1.000 1.000 0 
1.000 0.014 0.963 1.000 0.981 0.975 0.999 0.999 1 
0.000 0.000 – 0.000 – – 0.424 0.010 2 
0.979 0.000 1.000 0.979 0.989 0.980 1.000 1.000 3 
1.000 0.011 0.857 1.000 0.923 0.921 0.989 0.735 4 
0.980 0.004 – 0.980 – – 0.993 0.974   

Table 10 
Confusion matrix of K-means with bagging.  

a B c d e Classified as 

20 0 0 0 0 a = 0 
0 26 0 0 0 b = 1 
0 0 0 0 1 c = 2 
0 1 0 46 0 d = 3 
0 0 0 0 6 e = 4  

Table 11 
Quality metrics of K-means with J48.  

TP Rate FP Rate Precision Recall F-measure MCC ROC Area PRC Area Class 

0.950 0.013 0.950 0.950 0.950 0.938 0.969 0.913 0 
0.962 0.014 0.962 0.962 0.962 0.948 0.974 0.935 1 
0.000 0.000 – 0.000 – – 0.465 0.010 2 
0.979 0.000 1.000 0.979 0.989 0.980 0.989 0.989 3 
1.000 0.021 0.750 1.000 0.857 0.857 0.984 0.750 4 
0.960 0.007 – 0.960 – – 0.976 0.935   

Table 12 
Quality metrics of K-means with J48.  

a B c d e Classified as 

19 0 0 0 1 a = 0 
1 25 0 0 0 b = 1 
0 0 0 0 1 c = 2 
0 1 0 46 0 d = 3 
0 0 0 0 6 e = 4  
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it predicts in real-time what activity the inhabitant is doing, based on the implementation of the proposed model. 
In this study, the semi-supervised ensemble learning approach has been applied for human activity recognition using the Casas 

Kyoto dataset. Supervised algorithms, such as Bagging and J48, were used, followed by clustering-based algorithms, including 
AgglomerativeClustering, FCM, and KMeans with 2 and 5 clusters, respectively. The results obtained and the implications of this study 
will now be discussed. Firstly, the results of the supervised algorithms Bagging and J48 showed promising performance in classifying 
human activities in the Casas Kyoto dataset. This indicates that the supervised approach is effective for human activity recognition 
when available labeled data. Bagging and J48 have widely used algorithms in machine learning, and their performance in this study 
supports their efficacy in the task of activity recognition. 

This study demonstrates the effectiveness of applying semi-supervised ensemble learning for human activity recognition using the 
Casas Kyoto dataset. The combination of supervised and semi-supervised approaches shows promise in improving classification ac-
curacy. Further research could explore other algorithms and configurations, as well as investigate the performance of different datasets 
and incorporate additional features or contextual information to enhance activity recognition. 

7. Conclusions 

This study demonstrates the effectiveness of the semi-supervised ensemble learning approach in human activity recognition using 
the Casas Kyoto dataset. The supervised algorithms Bagging and J48 achieved good classification of activities with labeled data. The 
clustering-based algorithms AgglomerativeClustering, FCM, and KMeans, with 2 and 5 clusters, proved useful in activity classification 
with unlabeled data. Combining supervised and semi-supervised approaches enhances human activity recognition. The ensemble 
approach leverages both labeled and unlabeled data, improving model performance when labeled data is limited. 

Regarding the clustering-based algorithms, FCM and KMeans with 5 clusters outperformed AgglomerativeClustering in classifi-
cation accuracy. Maximizing membership and minimizing distances between data points and cluster centroids are effective approaches 
for activity classification in the Casas Kyoto dataset. It’s important to note that these results are specific to the Casas Kyoto dataset and 
may vary in other datasets. However, they provide a solid foundation for future research in human activity recognition. 

Applying supervised algorithms (Bagging and J48) followed by clustering-based algorithms (AgglomerativeClustering, FCM, and 
KMeans) on the Casas Kyoto dataset proves effective in human activity recognition. These findings support the importance of exploring 
hybrid and semi-supervised approaches in developing machine-learning models for human activity recognition in different contexts 
and datasets. They contribute to advancing the understanding and application of artificial intelligence in the field of human activity 
recognition. 

Data availabitly 

Data is available online n at link: https://casas.wsu.edu/datasets/. We have used the dataset Kyoto 20 ADL Activities. 
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[12] Raúl Gómez-Ramos, Jaime Duque-Domingo, Eduardo Zalama, Jaime Gómez-García-Bermejo, An unsupervised method to recognise human activity at home 
using non-intrusive sensors, Electronics 12 (23) (2023) 4772. 

[13] A. Subasi, M. Radhwan, R. Kurdi, K. Khateeb, IoT based mobile healthcare system for human activity recognition, in: 2018 15th Learning and Technology 
Conference (L&T), IEEE, Feb. 2018, pp. 29–34, https://doi.org/10.1109/LT.2018.8368507. 

A.-C. Paola Patricia et al.                                                                                                                                                                                            

https://doi.org/10.1109/JSEN.2019.2898891
http://refhub.elsevier.com/S2405-8440(24)05429-X/sref10
http://refhub.elsevier.com/S2405-8440(24)05429-X/sref10
https://doi.org/10.1109/JSEN.2020.3023860
https://doi.org/10.1007/s11042-020-10447-x
http://refhub.elsevier.com/S2405-8440(24)05429-X/sref13
http://refhub.elsevier.com/S2405-8440(24)05429-X/sref13
https://doi.org/10.1109/LT.2018.8368507

	Semi-supervised ensemble learning for human activity recognition in casas Kyoto dataset
	1 Introduction
	2 Conceptual information
	2.1 Human activity recognition
	2.2 Casas Kyoto dataset

	3 Related works: applications of supervised and unsupervised techniques in the recognition of human activities
	4 Methodology
	5 Experimentation
	5.1 Phase 1: supervised experimentation
	5.1.1 Scenario No.1
	5.1.2 Scenario No.2

	5.2 Phase 2 and 3: clustering and classification approach
	5.2.1 AgglomerativeClustering with bagging
	5.2.2 Agglomerative Clustering with J48
	5.2.3 K-means with bagging
	5.2.4 K-means with J48


	6 Discussion
	7 Conclusions
	Data availabitly
	CRediT authorship contribution statement
	Declaration of competing interest
	References


