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ABSTRACT
In this study, the complete 17,809bp mitochondrial genome of Callosobruchus maculates (F.)
(Coleoptera: Chrysomelidae: Bruchinae) was sequenced using Illumina’s HiSeq2000 platform. The mito-
genome is a double-stranded circular molecule of 17,809 bp in length with 21 transfer RNA genes, 13
protein-coding genes, and two ribosomal RNA genes as in other insects. Specially, there is a 2008 bp-
inserted segment between ND2 and tRNA-Trp from 1180 to 3187, which cannot be aligned to any
known gene of mitogenomes. To estimate the taxonomic status of Bruchinae, total 17 species from
eight subfamilies of Chrysomelidae were selected as ingroups and three species of Lamiinae as out-
groups for phylogenetic analysis based on mitogenome. The results showed that three major lineages
were formed, including a basal ‘Eumolpine’ clade (Cassidinae, Eumolpinae, Cryptocephalinae, Clytrinae),
‘'Criocerine’ clade (Criocerinae, Bruchinae) and ‘Chrysomeline’ clade (Chrysomelinae, Galerucinae s. l.).
Bruchinae showed more closed relationship with Criocerinae than other subfamilies. More thorough
taxon sampling will be needed to well understand the relationship in Chrysomelidae.
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Callosobruchus maculates (F.) (Coleoptera: Chrysomelidae:
Bruchinae) is an important insect pest of cowpea in the store
causing considerable damage to the grains. During larval
stages, it causes substantial quantitative and qualitative losses
(50–90%) manifested by seed perforation and reductions in
weight, mark value, and germination ability of seeds (Ofuya
and Osadahun 2005; Brisibe et al. 2011; Akami et al. 2016).
The beetle most likely originated in West Africa and moved
around the globe with the trade of legumes and other crops
(Tran and Credland 1995). Now, this pest of stored legumes
has a cosmopolitan distribution.

Traditionally, bean weevil was considered a separate
family within Chrysomelidae (Crowson 1955; Kingsolver 1996;
Reid 1996; Verma and Saxena 1996; Duckett 1997; Lingafelter
and Pakaluk 1997; Verma 1998), but the group was demoted
to subfamily rank in several phylogenetic studies based
on molecular data (Reid 1995, 2000; Farrell and Sequeira
2004; G�omez-Zurita et al. 2008; Bocak et al. 2014; Haddad
and Mckenna 2016). According to Bouchard et al. (2011),
Chrysomelidae contains 13 subfamilies: Sagrinae, Bruchinae,
Donaciinae, Criocerinae, Cassidinae, Chrysomelinae,
Galerucinae, Lamprosomatinae, Cryptocephalinae, Eumolpinae,
Spilopyrinae, Synetinae, and Protoscelidinae. Recently, with
the development of next-generation sequencing, a large-scale
mitogenome has been widely used to resolve the phylogeny
and evolution of organisms across the tree of Coleoptera

(Timmermans et al. 2010; Crampton-Platt et al. 2015; Gomez-
Rodriguez et al. 2015; Timmermans et al. 2016; Haddad and
Mckenna 2016; Nie et al. 2017). In this study, the
complete mitogenome of C. maculates was sequenced by
next-generation sequencing technology to estimate the taxo-
nomic status of Bruchinae.

The specimens used in this study were intercepted in
imported Vigna unguiculata from Nigeria and deposited in
the plant laboratory of Beijing Inspection and Quarantine
Testing Center. Genomic DNA was extracted by TIANprep
Midi Plasmid kit (TIANGEN, Beijing, China) and then
sequenced using Illumina’s HiSeq2000 platform (Illumina, San
Diego, CA) with 200 bp insert size and a pair-end 100bp
sequencing strategy. The sequence reads were first filtered by
the programs following Zhou et al. (2013) and then the
remaining high-quality reads were assembled using
SOAPdenovo-Trans (Xie et al. 2014). The annotations of genes
were done by Geneious 8.0.5 software (Kearse et al. 2012)
and tRNAscan-SE 1.21 (Schattner et al. 2005). In order to con-
firm the insert gene between ND2 and tRNA-Trp from 1180
to 3187, we sequenced this species twice sampling two speci-
mens using Illumina’s HiSeq2000 platform and Illumina’s
HiSeq2500 platform.

The complete mitochondrial genome (mitogenome) of
C. maculates is a double-stranded circular molecule of
17,809 bp in length (GenBank accession number: MF960125),
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with 21 transfer RNA genes (tRNA-Gln lost), 13 protein-coding
genes, and two ribosomal RNA genes as in other insects. The
overall base composition is A: 45.5%, T: 34.8%, C: 13.6%, and
G: 6.1%, with a much higher Aþ T content. Specially, there is
2008 bp inserted genes between ND2 and tRNA-Trp from
1180 to 3187, which cannot be aligned to any known gene
of mitogenome. We had blasted and tried to annotate the
insert gene. However, there was no gene matching this frag-
ment. It will be worthy to add more mitogenomes of other
species of Bruchinae to explore the potential function of
inserted genes and why the mitogenome lost tRNA-Gln.

The phylogenetic tree was reconstructed to estimate the
status of Bruchinae in Chrysomelidae. All available mitoge-
nomes of subfamilies of Chrysomelidae were downloaded
from Genbank. The acceptable sequences including 13 pro-
tein-coding genes and longer than 10K bp were kept. Total
17 species from eight subfamilies (accession numbers:
JX220988, JX412753, JX412756, HQ232809, JX412804,
MF960125, JX412832, AF467886, JX412769, JX220992.1,
MF946616, KF669870, KF658070, NC_028332, MF960109,
MF960113, MF960117) were selected as ingroups and three
species of Lamiinae (accession numbers: DQ768215,
NC_022671, FJ424074) was selected as outgroups. The com-
bined data set of 13 protein-coding gene (PCGs) were aligned
with TransAlign (Bininda-Emonds 2005). The data aligned
from 13PCGs were concatenated with Sequence Matrix v.1.7.8
(Vaidya et al. 2011). The Bayesian phylogenetic inference was
performed using MrBayes v.3.2 (Ronquist et al. 2012) based
on the combined data set of 13 PCGs. Data were partitioned
according to loci of 13 PCGs. The MCMC search was

conducted for 1,000,000 generations, and sampling was done
every 100 generations until the average standard deviation of
split frequencies was below 0.01. The first 25% of trees were
discarded as ‘burn-in’ and posterior probabilities were esti-
mated for each node.

Phylogenetic analyses (Figure 1) showed that three major
lineages were formed, including a basal ‘Eumolpine’ clade
(Cassidinae, Eumolpinae, Cryptocephalinae, Clytrinae),
‘Criocerine’ clade (Criocerinae, Bruchinae), and ‘Chrysomeline’
clade (Chrysomelinae, Galerucinae s. l.). Bruchinae showed
more closed relationship with Criocerinae than other subfami-
lies. However, more thorough taxon sampling will be needed
to well understand the relationship in Chrysomelidae because
mitogenomes of only eight subfamilies were involved in the
present study.
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