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Abstract
A change in visual perception is a frequent early symptom of multiple sclerosis (MS), the pathoaetiology of which remains 
unclear. Following a slow demyelination process caused by 12 weeks of low-dose (0.1%) cuprizone (CPZ) consumption, 
histology and proteomics were used to investigate components of the visual pathway in young adult mice. Histological 
investigation did not identify demyelination or gliosis in the optic tracts, pretectal nuclei, superior colliculi, lateral geniculate 
nuclei or visual cortices. However, top-down proteomic assessment of the optic nerve/tract revealed a significant change in 
the abundance of 34 spots in high-resolution two-dimensional (2D) gels. Subsequent liquid chromatography-tandem mass 
spectrometry (LC-TMS) analysis identified alterations in 75 proteoforms. Literature mining revealed the relevance of these 
proteoforms in terms of proteins previously implicated in animal models, eye diseases and human MS. Importantly, 24 
proteoforms were not previously described in any animal models of MS, eye diseases or MS itself. Bioinformatic analysis 
indicated involvement of these proteoforms in cytoskeleton organization, metabolic dysregulation, protein aggregation and 
axonal support. Collectively, these results indicate that continuous CPZ-feeding, which evokes a slow demyelination, results 
in proteomic changes that precede any clear histological changes in the visual pathway and that these proteoforms may be 
potential early markers of degenerative demyelinating conditions.
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electrophoresis · Mass spectrometry

Introduction

The optic nerve/tract is responsible for the relay of informa-
tion from the retinal ganglion cells to the primary visual cor-
tex via the lateral geniculate nucleus (Rizzo 2005; Selhorst 

and Chen 2009). Any insult to the optic pathway results 
in changes in visual perception (Athappilly et al. 2008;  
Dutton 2004; Kiyota et al. 2017). A common example of this 
is optic neuritis, a demyelinating and acute inflammatory 
disorder (Costello 2016; Kale 2016). Optic neuritis has been 
attributed to several aetiologies including genetics, inflam-
mation, infections and exposure to toxic substances, and it Mohammed S. M. Almuslehi and Monokesh K. Sen contributed 
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is highly associated with multiple sclerosis (MS; Costello 
2016; Kale 2016); however, the pathoaetiology of optic 
neuritis and MS-associated changes in vision is not clearly 
defined. It has been suggested that central nervous system 
(CNS) demyelination and inflammation are initiated in a 
slow and progressive manner that may start several years 
prior to the onset of clinical symptoms (Jones-Odeh and 
Hammond 2015; Olesen et al. 2019; Sen et al. 2020a; Stys 
et al. 2012). Moreover, changes in visual perception (e.g. 
blurring, eye fatigue, lack of sharpness and ocular pain) can 
also be seen in other neurodegenerative disorders such as 
Alzheimer’s and Parkinson’s diseases (Colligris et al. 2018; 
Kesler and Korczyn 2006). Like MS, in which the mecha-
nism of visual disturbances is still unknown, the pathoaetiol-
ogy of visual disturbances in Alzheimer’s and Parkinson’s 
has also not been identified.

These demyelination-related changes can be investigated 
using the cuprizone (CPZ) (bis(cyclohexanone)oxaldihydra-
zone) animal model (Sen et al. 2019b, 2020a). This model 
was initially used to study de- and re-myelination and the 
innate immune response (Goldberg et al. 2015; Kipp et al. 
2009; Matsushima and Morell 2001; Praet et al. 2014; Sen 
et al. 2019b). More recently, the CPZ model has been modi-
fied to investigate adaptive immune responses in the CNS 
(Almuslehi et al. 2020; Caprariello et al. 2018; Sen et al. 
2019a). In this model, animals are fed CPZ, which is pref-
erentially toxic to mature oligodendrocytes, inducing oligo-
dendrocytosis (i.e. loss or degeneration of oligodendrocytes) 
and subsequent demyelination, as well as micro- and astro-
glial activation (Almuslehi et al. 2020; Sen et al. 2019a, 
2020b, 2022). The mechanisms underlying oligodendrocy-
tosis induced by CPZ are still poorly understood. It has been 
proposed that the metal (e.g. copper) chelating properties 
of CPZ disrupt metabolic processes in oligodendrocytes 
due to the inhibition of mitochondrial enzymes (reviewed 
in Sen et al. 2019b, 2022). However, very little is known 
about the actions of CPZ on the visual pathway, and much 
of what is reported is contradictory (reviewed in Sen et al. 
2019b). One histological investigation found a reduction of 
myelin basic protein in optic nerves (Namekata et al. 2014), 
whereas no loss of myelin protein was observed in other 
studies (Araujo et al. 2017; Goldberg et al. 2015; Sen et al. 
2020b; Yang et al. 2009). However, different experimental 
paradigms were used in these studies (e.g. dose, duration of 
CPZ-feeding and (immuno)histological staining techniques). 
Thus, feeding C57Bl/6 mice with 0.2% CPZ for 12 weeks 
led to a reduction of myelin basic protein in the optic nerve, 
which was unchanged in the first 6 weeks of CPZ-feeding 
(Namekata et al. 2014). Yet, feeding 0.2% CPZ for 3 or 
5 weeks did not produce any changes in mRNA expres-
sion of myelin basic protein in optic nerve (Araujo et al. 
2017). Another investigation showed no changes in myelin 
proteolipid protein when mice were fed with 0.25% CPZ 

for 5 weeks (Goldberg et al. 2015). Likewise, we showed 
that feeding 0.2% CPZ for 5 weeks did not result in loss 
of myelin in the optic nerve/tract when silver staining was 
used for myelin detection (Sen et al. 2020b). These findings 
indicate that changes in optic nerve/tract myelin status may 
rely on the dose of CPZ, duration of exposure or method 
used to assess myelin status. However, using an autoimmune 
animal model of (later stage) MS, ultrastructural analysis of 
optic nerves in mice subjected to experimental autoimmune 
encephalomyelitis (EAE) showed axonal demyelination rela-
tive to healthy control mice (Manogaran et al. 2019).

Apart from histological alterations, several studies have 
investigated proteome changes in the CNS of CPZ-fed mice 
(Martin et al. 2018; Partridge et al. 2016; Sen et al. 2019a; 
Szilagyi et al. 2020; Werner et al. 2010). However, proteome 
investigations of the optic nerve/tract of CPZ-fed mice have 
not been reported in the literature. Likewise, no proteomic 
investigation of optic nerve/tract was found for any other ani-
mal models (e.g. EAE (Krishnamoorthy and Wekerle 2009)). 
Proteomic investigation of the visual pathway has been pro-
posed as an approach to better understand the pathoaetiology 
of eye diseases and identify early biomarkers (Semba et al. 
2013). Accordingly, this study used coupled histological and 
proteomic analyses to assess alterations in the visual path-
way following 12 weeks of 0.1% CPZ-feeding; this treat-
ment paradigm was chosen because it induces comparable 
demyelination and gliosis in the corpus callosum but less 
suppression of the peripheral immune system than 0.2% CPZ 
(Almuslehi et al. 2020; Sen et al. 2019a). Due to this slow 
demyelination process, we hypothesized that CPZ-induced 
changes in the proteome of the visual pathway would be con-
sistent with those underlying changes in visual perception in 
MS and other neurodegenerative eye diseases.

Here, the histological investigation focussed on the visual 
pathway (Huberman and Niell 2011; Seabrook et al. 2017) 
from the optic nerve/tract to the visual cortex, including its 
subcortical relay nuclei (pretectal, superior colliculi and tha-
lamic lateral geniculate nuclei). The proteomic investigation 
was carried out using optic nerve/tract tissue that extended 
from the posterior part of eyeballs to the end of the vis-
ible part of the optic tract (posterior to the optic chiasm 
and before the lateral geniculate body) in order to ensure 
there was no contamination with other CNS tissue/proteins. 
The other visual components (e.g. pretectal nuclei, superior 
colliculi, lateral geniculate nuclei and visual cortex) were 
excluded from the proteomic analysis.

We used a well-established, high-resolution top-down 
proteomic analysis — two-dimensional gel electrophore-
sis coupled with liquid chromatography and tandem mass 
spectrometry (2DE/LC-TMS) — rather than the inferred 
sequencing of canonical proteins (i.e. shotgun proteomics) 
in order to resolve and identify proteoforms (i.e. protein spe-
cies), the active biological entities (Aebersold et al. 2018; 
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Carbonara et al. 2021; Coorssen and Yergey 2015; Oliveira 
et al. 2014; Sen et al. 2021; Zhan et al. 2019). Following 
identification, proteome changes in the optic nerve/tract 
of the CPZ model were compared to published proteome 
data on eye diseases, MS patients and MS animal models 
from analyses of a variety of samples including cerebrospi-
nal fluid (CSF), CNS tissue and tears to search for possible 
correlations.

Materials and Methods

Animals and Feeding

Adult (7-week old) male C57Bl/6 mice (n = 20) were pur-
chased from the Animal Resources Centre, Australia (www. 
arc. wa. gov. au). Mice were acclimatized for 1 week and 
housed (2 animals/ventilated GM500 cage, Tecniplast, Italy) 
in a controlled environment (12-h light/dark cycle, 50–60% 
humidity and 21–23 °C) in the animal facility (School of 
Medicine, Western Sydney University). Standard rodent 
powder chow (Gordon’s Specialty Stockfeed, Australia) and 
water were available ad libitum.

Age-/weight-matched mice were randomly divided into 
control (Ctrl) or CPZ groups (n = 10 mice/group). CPZ 
(Sigma-Aldrich, St. Louis, MO, USA; 0.1% w/w) was mixed 
with powdered chow and fed to mice for 12 weeks to induce 
a slow progressive oligodendrocytosis and demyelination 
(i.e. more reminiscent of MS (Sen et al. 2020a)). The pow-
dered chow was prepared daily without (for Ctrl group) and 
with CPZ and provided in excess (ad libitum) in a single 
shared feeder per cage. At the end of 12 weeks, all mice were 
euthanized for histological and proteomic analyses.

Histology and Immunohistochemistry

Quantitative histological examination was performed as pre-
viously described (Almuslehi et al. 2020; Sen et al. 2019a, 
2020b). Briefly, mice (n = 5/group) were deeply anaesthe-
tized with isoflurane (2–3%) and perfused transcardially with 
cold 0.9% saline followed by 4% paraformaldehyde (PFA, 
in 0.1 M phosphate buffer). Brains (with attached optic 
tracts) were extracted from the skulls, sectioned coronally 
(40 µm) and transferred either mounted onto 0.4% gelatine-
coated slides (for silver staining) or to 6-well plates contain-
ing 0.01 M phosphate buffer saline (PBS) (free-floating for 
immunohistochemistry).

Silver staining was performed as described previously 
(Almuslehi et al. 2020; Pistorio et al. 2006; Sen et al. 2019a, 
2020b). Briefly, mounted tissue sections (40 µm coronal) were  
air-dried for 48 h and immersed in 10% natural formalin 
(Sigma-Aldrich) for 2 weeks at room temperature (RT) 
(~ 22 °C). Brain sections (with attached optic nerve/tract) 

from Ctrl and CPZ-fed animals were processed in parallel 
(i.e. in the same solutions and at the same time) to main-
tain the consistency of staining in both groups. Slides were 
then washed with distilled water and incubated in pyri-
dine (VWR, USA): acetic anhydride (Merck, Germany) 
solution (ratio 2:1) for 30 min at RT. Sections were then 
rehydrated sequentially with decreasing concentrations of 
ethanol (80, 60, 40 and 20%) for 20 s in each concentra-
tion and washed using distilled water. In the next step, the 
slides were immersed in ammoniacal silver nitrate (Chem-
Supply, Australia) containing developing solution (mixture 
of sodium carbonate, ammonium nitrate and silver nitrate) 
for 45 min at RT. Sections were then washed for 30 s with 
a bleaching agent (potassium ferricyanide; BDH chemicals, 
UK) to de-stain over developed sections. This was followed 
by dehydration in sequential increasing concentrations of 
ethanol (20, 40, 60, 80 and 100%) for 20 s in each. Finally, 
sections were cleaned by xylene (VWR, USA) for 5 min and 
covered with mounting medium (Merck, USA), sealed with 
coverslips (Knittel Glass, Germany) and air-dried for 72 h. 
Silver-stained sections were imaged with bright field micros-
copy (Olympus Carl Zeiss, Jena, TH, Germany). ImageJ 
software (https:// imagej. nih. gov/ ij/) was used to analyse the 
images, and the results were plotted as the reciprocal of the 
light intensity to measure the amount of myelin (Sen et al. 
2019a, 2020b).

For immunofluorescence staining, free-floating coro-
nal CNS tissue sections (40 µm) were bathed with warm 
(40–50 °C) 0.01 M PBS to remove residual gelatine. Non-
specific binding of antibodies was minimized by immersing 
tissue sections into 10% normal goat serum (Sigma, USA) 
at RT for 2 h. Sections were then transferred into primary 
antibodies diluted with 0.01 M PBS plus 0.1% Triton X-100 
(TX-100, Amresco). Ionized calcium-binding adaptor mol-
ecule 1 (rabbit anti-IBA 1, 1:1000; Wako, Chuo-Ku, OSA, 
Japan) and glial fibrillary acidic protein (mouse anti-GFAP 
Alexa 488, 1:1000; Merck-Millipore, Burlington, MA, USA) 
primary antibodies were used for the detection of microglia 
and astrocytes, respectively. All primary antibodies were 
incubated for 12 h at RT while shaking on an orbital shaker 
(50 rpm). Sections were then washed in 0.01 M PBS and 
incubated in secondary Alexa Fluor 555 conjugated anti-
body (for IBA 1 only) for 2 h at RT with agitation on the 
orbital shaker. Following three washes in 0.01 M PBS, sec-
tions were mounted on glass slides and covered with 1.5 µg/
mL vectashield plus 4′,6-diamidino-2-phenylindole (DAPI, 
Vector Laboratories) to stain the nuclei and then sealed with 
coverslips (Knittel Glass, Germany). Tissue sections were 
dried for 30 min at RT and stored at 4 °C in the dark until 
imaged. GFAP and IBA 1 stained sections were imaged 
using a fluorescence microscope (Olympus Carl Zeiss, 
Germany). Quantification of the fluorescence intensity of 
the stained sections was carried out using ImageJ software 
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(Sen et al. 2019a, 2020b). The anatomical locations of visual  
pathway components were determined using the Mouse Brain 
Atlas and previous analyses of the mouse CNS (Paxinos and  
Franklin 2012; Sen et al. 2020b).

Top‑Down Proteomics: Two‑Dimensional 
Gel Electrophoresis (2DE) and Liquid 
Chromatography‑Tandem Mass Spectrometry

High-resolution 2DE was carried out using the optimized 
method described in detail in earlier studies (Butt and Coorssen  
2005, 2013; Gauci et al. 2013; Noaman et al. 2017; Sen et al. 
2019a; Wright et al. 2014) and summarized in Fig. 1. Briefly, 
optic nerves/tracts (from the posterior part of the eyeballs  
to the contact area of the optic tract with the brain tissue,  
i.e. before the lateral geniculate body) were harvested and 
rinsed immediately with ice cold 0.01 M PBS (containing a 
protease/kinase/phosphatase inhibitor cocktail). The nerves/
tracts of each group were pooled due to the very small amount 
of material and homogenized in the deep-frozen state and 
solubilized in HEPES hypotonic lysis buffer (isotonicity of 
the solution restored by adding 2 × PBS and ultracentrifuged 
at 125,000 g, 4 °C for 3 h to separate total soluble proteins 
(SP) from membrane proteins (MP). The resulting pellet was 
resuspended into 1 × PBS and ultracentrifuged (125,000 g, 
overnight at 4 °C) to solubilize and separate the remaining 
SP proteins (Butt and Coorssen 2005); the two supernatants 
were then combined to yield a total soluble proteome sam-
ple. The EZQ Protein Quantitation Kit (Life Technologies, 
Eugene, OR, USA) was used according to the manufacturer’s 
instructions to measure the total protein concentration in each 
fraction (SP and MP), with bovine serum albumin (Amresco, 
Solon, OH, USA) as the standard. Proteoforms were then 

resolved in the first dimension based on net charge (isoelec-
tric point, pI) and by size (i.e. approximate molecular weight) 
in the second dimension. Total protein extract (100 µg) was 
passively loaded onto immobilized pH gradient (IPG) strips 
(7 cm, non-linear, pH 3–10; Bio-Rad, Hercules, CA, USA) 
at RT for 16 h. The strips were then subjected to isoelectric 
focusing (IEF, first dimension) using the Protean IEF appa-
ratus (Bio-Rad, USA; 17 °C, 10,000 V, 37,500 VH) with  
multiple replacements of the electrode wicks during volt-
age ramping to facilitate effective desalting. Then, follow-
ing incubation of the resolved IPG strips with reducing and  
alkylating reagents as well as SDS, the strips were loaded 
horizontally on the top of hand-cast (8.4 cm × 7 cm × 0.1 cm) 
SDS-PAGE gels, and electrophoresis was carried out at 4 °C 
with an initial voltage of 150 V for 5 min followed by 90 V 
for 3 h using the Mini-PROTEAN Cell (Bio-Rad, USA). 
Resolved proteoforms were then detected by incubation in 
colloidal Coomassie Brilliant Blue (cCBB, G-250, Amresco, 
USA) for 20 h followed by de-staining with 0.5 M NaCl (5 
times × 15 min). The cCBB dye was used for in-gel proteo-
form detection due to its established high sensitivity, repro-
ducibility and compatibility with mass spectrometry analysis 
(Gauci et al. 2013; Sen et al. 2019a; Wright et al. 2014). Gels 
were imaged individually on the Typhoon™ FLA-9000 gel 
imager (GE Healthcare, USA) using the same setting for all 
gels (100 µm resolution, 685/ > 750 nm excitation/emission 
and 600 V photomultiplier tube). For each group (Ctrl or 
CPZ), replicate 2DE gels (n = 3) for each SP and MP frac-
tion (i.e. 6 gels per group in total) were resolved to ensure  
reproducibility and thus reliability of the results.

Quantitative analysis of gel images was carried out by 
using Delta2D (version 4.0.8, DECODON Gmbh, Ger-
many) as described previously (Sen et al. 2019a). Briefly, 
gel images were grouped for each fraction in each experi-
mental group (e.g. SP gels for Ctrl group). In each com-
parison (e.g. SP of Ctrl group vs SP of CPZ group), gel 
images were warped and fused using ‘union fusion’ to create 
a master gel image. Spots of the master image were then 
transferred to each image in their group to ensure that the 
spots consistently matched (100% matching) in all technical 
replicates (n = 3) in each group. Gel edges and the molecular 
weight marker lanes were excluded manually. Background-
subtracted spot volumes were then tabulated as grey values, 
including fold changes, relative standard deviation (RSD) 
and p values (t- test). Following the assessment of changes 
in fluorescent spot volumes in the CPZ group gels compared 
to Ctrls, candidate spots were selected for further analysis 
(i.e. proteolytic digestion and LC-TMS). This selection was 
based on specific criteria: p value (p <0.05), ratio of grey 
value > 1.5-fold (Ctrl vs CPZ) and relative standard deviation 
(RSD) < 30%. Alterations in the ratio (fold change between 
CPZ and Ctrl gels) for each selected spot were determined 
by dividing the average (n = 3) grey value of a given spot in 

Fig. 1  Overview of the top-down proteomic analysis of the optic 
nerve/tract. The top-down proteomic analysis consisted of 6 general 
steps. (1) Optic nerve/tract samples were collected after dissection 
(pooled from 5 animals/treatment group) and snap frozen with liquid 
nitrogen. (2) Samples were homogenized in a deep-frozen state (i.e. 
automated frozen disruption), solubilized and fractionated into total 
soluble and membrane proteomes. (3) Proteoforms were resolved 
based on charge (pI) using immobilized pH gradient strips and then 
by size (~ MW) using SDS-PAGE and detected using cCBB. (4) 
Spots were analysed using Delta 2D software to identify quantita-
tive differences between the Ctrl and CPZ groups; these spots were 
excised from the gel and digested using trypsin. (5) Peptides were 
analysed by LC-TMS, and the corresponding canonical amino acid 
sequences of the resolved proteoforms were identified using Protein-
Lynx Global Server (PLGs) and Swiss-Prot databases. (6) Litera-
ture mining and bioinformatic analyses were used to assess potential 
functions and interactions. Abbreviations: Ctrl, control mice; CPZ, 
cuprizone-fed mice; MW, molecular weight; pI, isoelectric point; 
SDS-PAGE, sodium dodecyl sulphate poly acrylamide gel; LC-TMS, 
liquid chromatography-tandem mass spectrometry; EAE, experimen-
tal autoimmune encephalomyelitis; ED, eye disease; cCBB, colloidal 
Coomassie Brilliant Blue dye; IPG strips, immobilized pH gradient 
strips

◂

1 3

Journal of Molecular Neuroscience  (2022) 72:1374–14011378



the CPZ optic nerve/tract gels by the average grey value of 
the corresponding spot in the Ctrl gels. Molecular weight 
(MW) and isoelectric point (pI) of all selected spots were 
determined using standards, as previously described (Sen 
et al. 2019a). Briefly, three calibration gels (including both 
MW markers and pI standards for 2DE, Bio-Rad) were used 
to establish the experimental MW and pI of resolved proteo-
forms. The coefficient of variation (standard deviation/mean) 
of 2DE standards (n = 3) was 1.9% for the MW migration 
and 0.8% for the pI. In the experimental gels (n = 12), the 
coefficient of variation was 3.3% for MW marker. Experi-
mental MW and pI values were plotted relative to theoretical 
values (obtained from ProteinLynx Global Server) to iden-
tify the variations that indicate post-translational modifica-
tions of proteins (i.e. proteoforms). The changes were con-
sidered significant when the experimental values fell below 
or above the confidence intervals (95%) of the MW and pI 
calibration curve.

The selected spots were excised manually and digested 
using 12.5 ng/µL trypsin (Promega Corporation, USA) at 
4 °C for 8 h. The resulting peptides were analysed using 
LC-TMS on a Xevo QToF mass spectrometer (Waters, USA) 
as described (Asgarov et al. 2021; Sen et al. 2019a; Wright 
et al. 2014). ProteinLynx Global Server (PLG) software 
(version 2.5, Waters Corporation, USA) and the Swiss-Prot 
(Mus musculus, mouse) database (www. wehi. edu. au) were 
used for data acquisition and processing, respectively, with 
the following settings: minimum fragments per peptide, 3; 
minimum peptides per protein, 2; minimum fragments per 
protein, 7; maximum false-positive rate, 4; maximum protein 
mass, 250,000; fixed modifications, carbamidomethyl (C); 
variable modifications, oxidation (M); missed cleavages, 1; 
peptide tolerance, automatic; and fragment tolerance, auto-
matic. Finally, identified proteoforms in each spot had to 
satisfy specific criteria (i.e. protein score ≥ 100, sequence 
coverage ≥ 5%, unique matched peptides ≥ 3 and the false-
positive rate < 0.01%) in order to be included for further 
assessment.

Bioinformatics and Literature Mining

Functional annotations of identified proteoforms were 
assessed via bioinformatic analyses (Asgarov et al. 2021; Sen 
et al. 2019a, 2021). Briefly, the UniProt accession number, 
gene ID and subcellular localization of the canonical protein 
corresponding to each identified proteoform were obtained 
from the publicly accessible UniProt database (www. unipr ot.  
org). Protein analysis through evolutionary relationships 
(PANTHER, www. panth erdb. org) was used to define canoni-
cal protein classes and biological processes (Mi et al. 2018). 
In addition, identified protein species were further charac-
terized and grouped to investigate their potential interaction 
with other proteins (protein–protein interactions (PPI)) using 

the search tool for the retrieval of interacting genes/proteins 
(STRING, string-db.org) database (Szklarczyk et al. 2018). 
A PPI map was then generated using STRING in which each 
node represents one canonical protein (indicated by gene ID) 
and the connecting lines represent confidence/strength of 
association (i.e. increasing line thickness reflects the poten-
tial for interaction). Finally, a comprehensive PubMed lit-
erature search (www. ncbi. nlm. nih. gov/ pubmed/) was applied  
to identify the molecular functions of the proteoforms and 
their relevance to previous associations with animal models 
of MS (e.g. CPZ, EAE) and MS itself (Table 1). Moreover, 
previously identified changes in the abundance of canonical 
proteins in different CPZ (4), EAE (13) and MS (13) stud-
ies using various samples other than optic nerve/tract (e.g.  
cerebrum, CSF, tears) were also compared with the current 
data. Out of six MS-like animal models — EAE, CPZ, eth-
idium bromide, lysolecithin, diphtheria toxin and Theiler’s 
virus (Procaccini et al. 2015; Ransohoff 2012; Traka et al. 
2010) — proteomic studies were only found for two: EAE 
and CPZ. Additionally, to compare the identified proteo-
forms in this study with eye diseases (e.g. optic neuritis, dry  
eye disease and neuromyelitis optica), these studies were  
also included (Bai et al. 2009; Jung et al. 2017; Olesen et al. 
2019).

Statistical Analysis and Graphing

Histology and immunohistochemistry data are presented as 
mean ± standard error of the mean. Statistical analyses (two-
tailed t test) and graphing of the histological data were per-
formed using GraphPad Prism (version 8; www. graph pad. 
com, San Diego, CA, USA) software. For proteomic analy-
sis, grey values (i.e. fluorescence intensity) of gel spots were 
analysed using the unpaired t test (within Delta 2D software). 
Significant differences between CPZ and Ctrl groups were 
considered when p < 0.05. Image processing software Corel-
DRAW (version 2019; www. corel draw. com, Canada) was 
used for image assembly in each figure.

Results

Histological Changes Following CPZ‑Feeding

Myelin silver staining was used to characterize demyelina-
tion in the corpus callosum and components of the visual 
pathway. The midline corpus callosum was used as a posi-
tive control as demyelination in this area is a hallmark of 
CPZ-feeding (Almuslehi et al. 2020; Sen et al. 2019a). In 
the Ctrl mice, the corpus callosum was darkly stained indi-
cating normal (intact) myelin sheaths, whereas in CPZ-fed 
mice, the corpus callosum showed markedly reduced sil-
ver staining (p < 0.0001) indicating demyelination (Fig. 2). 
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Quantitative analysis of the visual pathway revealed no 
significant demyelination (optic tract, p < 0.68; pretectal 
nucleus, p < 0.61; lateral geniculate nucleus, p < 0.93; and 
superior colliculus, p < 0.86) although the effect in the 
visual cortex was on the cusp of significance (p < 0.051) 
(Supplementary Fig. 1). Quantitative immunohistochemi-
cal analysis of GFAP-positive astrocytes (p < 0.0002) and 
IBA 1-positive microglia (p < 0.0022) in the CPZ-fed mice 

revealed a significant glial activation in the corpus callo-
sum relative to Ctrl mice (Fig. 2). No significant changes 
in GFAP (visual cortex, p < 0.19; optic tract, p < 0.57; pre-
tectal nucleus, p < 0.89; lateral geniculate nucleus, p < 0.82; 
and superior colliculus, p < 0.13) and IBA 1 (visual cortex, 
p < 0.14; optic tract, p < 0.96; pretectal nucleus, p < 0.51; 
lateral geniculate nucleus, p < 0.75; and superior colliculus, 
p < 0.22) were observed (Supplementary Fig. 2).

Fig. 2  Quantification of demyelination and gliosis. A Representative  
images of coronal brain sections show the midline corpus callo-
sum (CC) stained with silver, GFAP and IBA 1, respectively,  
from Ctrl and CPZ-fed mice. B Quantification of staining intensity 
(measured in arbitrary units, AU); CPZ-feeding produced significant 
reduction of silver staining (n = 5 sections/animal, 5 animals/group) 
in the CC. GFAP (3–5 sections/animal, 3–5 animals/group) and IBA 

1-stained glia (3–5 sections/animal, 3–5 animals/group) were sig-
nificantly increased in the CC. Data are presented as mean ± SEM. 
A two-tailed t test was used to determine differences between groups 
(*p < 0.05). Images and quantitative analysis of different regions  
of brain sections, stained with silver, are shown in Supplementary 
Fig.  1, and representative images and quantifications of GFAP and  
IBA 1 are shown in Supplementary Fig. 2

1 3

Journal of Molecular Neuroscience  (2022) 72:1374–14011388



1 3

Journal of Molecular Neuroscience  (2022) 72:1374–1401 1389



Changes in the Optic Nerve/Tract Proteome

A quantitative, high-resolution top-down proteomic analysis 
was used to assess the optic nerve proteome profile follow-
ing CPZ-feeding. Optic nerve samples from both Ctrl and 
CPZ groups produced well-resolved 2DE gels with spots dis-
tributed across the full range of pI and MW (Fig. 3A). Fig-
ure 3A also shows spots (circled green or red) that changed 
significantly relative to Ctrl in the soluble (SP) and mem-
brane (MP) sub-proteomes (34 spots in total). Comparative 
image analysis (Ctrl vs CPZ) revealed that 21 MP spots 
increased in fluorescent volume (i.e. proteoform abundance), 
whereas in the SP fraction, 7 spots increased and 6 decreased 
in abundance (p < 0.05) (Table 1). The average total spot 
numbers resolved in the MP fractions from Ctrl and CPZ 
groups were 851 ± 9 and 856 ± 9, respectively (n = 3 gels/
fraction); the counts for the SP fractions were 929 ± 9 and 
925 ± 8 in the Ctrl and CPZ groups, respectively (Fig. 3B). 
Figure 3C illustrates the differences between theoretical and 
experimental MW (upper panel) and pI (lower panel) of the 
identified proteoforms. While several proteoforms (~ 24%) 
had experimental values for pI and MW comparable to the 
canonical and theoretical values, the rest varied to differing 
extents from the identity line, indicating the identification 
of proteoforms, likely with critical post-translational modi-
fications (e.g. glycosylation, ubiquitination). Collectively, 
following CPZ-feeding, 79.4% of spots showed increased 
abundance (in both SP and MP fractions), whereas 20.6% 
decreased in abundance (Supplementary Fig. 3). These 34 
spots were digested using trypsin, peptides were analysed 
using LC-TMS, and high-quality hits were obtained (see 
Table 1).

2DE spots that were 100% reproducible and had signifi-
cant change in fluorescent volume across technical (n = 3) 
replicates are summarized in Table 1. The top proteoforms 
from each spot (i.e. first three proteoforms in the iden-
tification list bearing the highest scores) were tabulated 
(Table 1) along with corresponding literature mining and 

bioinformatic information (see Methods). The remaining 
identified proteoforms (i.e. beyond the top three) that sat-
isfied the selection criteria are provided in Supplementary 
Table 1. Of all the resolved spots that changed significantly 
(p < 0.05) in abundance, 70% changed by 1.5–twofold, 18% 
by 2.1–threefold and 12% by over threefold. All identified 
proteoforms had a PLG score exceeding 100, with 43% 
between 100 and 999, 18% between 1000 and 1999, 21% 
between 2000 and 2999 and 18% exceeding 3000. Similarly, 
sequence coverage was always ≥ 5% with 5–9% for 6 pro-
teins only, 10–29% for 40 proteins, 30–49% for 27 proteins 
and > 50% for 11 proteins. Moreover, each identification was 
based on at least three matched peptides: 38% based on 3–9 
peptides, 35% based on 10–19 peptides, 15% based on 20–30 
peptides, 7% based on 30–50 peptides and 5% based on over 
50 peptides. The combination of high fold change, PLG 
scores, the greater number of peptides and high sequence 
coverage indicated high confidence in the spot selection and 
proteoform identification.

Literature Mining and Bioinformatic Analysis

A comprehensive literature search was carried out to 
investigate the linkage of identified proteoforms with MS 
and its animal models (e.g. EAE and CPZ) (Table 1 and 
Fig. 4). Twenty-two percent of the proteoforms identified 
in this study were previously identified as canonical pro-
teins in other CPZ studies, whereas the remaining 78% were 
newly identified (i.e. not reported previously in CPZ stud-
ies (Table 1). Similarly, 24% of the identified proteoforms 
were previously reported as canonical proteins in MS stud-
ies, whereas the remaining 76% were newly identified rela-
tive to the previous MS literature; in ED, the previously vs 
newly identified proteoforms were 5 and 95%, respectively. 
In EAE, 63% of proteoforms identified here were previously 
reported as canonical proteins, whereas 37% were newly 
identified in this study (Table 1). It is thus however critical 
to emphasize the identification of specific proteoforms using 
the top-down analytical approach rather than only reporting 
canonical amino acid sequences that represent any myriad of 
possible proteoforms. Subcellular localization analysis using 
UniProt revealed that 34% and 31% of the identified proteo-
forms are identified as cytoplasmic and cytoskeletal, respec-
tively; 14% and 13% of the proteoforms are, respectively, 
mitochondrial and nuclear; and a small fraction (1–3%) are 
found in endoplasmic reticulum, axon, Golgi apparatus and 
melanosomes (Fig. 4A). Protein class analysis using PAN-
THER revealed that 26% of proteoforms are involved in met-
abolic and/or cytoskeletal processes (Fig. 4B). In addition, 
other proteoforms are implicated in different molecular func-
tions including protein-binding activity modulators (11%), 
membrane trafficking (9%), protein modifying enzymes 
(7%), calcium-binding (5%) and chaperones (6%). A small 

Fig. 3  Top-down proteomic analysis. A Representative examples 
of two-dimensional gel images of the soluble and membrane sub-
proteomes from the optic nerves/tracts of naïve Ctrl and 0.1% CPZ-
fed mice. Proteoforms were resolved based on their isoelectric point 
(pI) and molecular weight (MW). Image analysis revealed a total of 
34 spots that increased (green circles) or decreased (red circles) in 
abundance in the CPZ samples relative to the controls. The identities 
of the protein species for the circled spots are shown in Table 1 and 
Supplementary Table 1. B There was no significant difference in the 
total number of spots between Ctrl and CPZ for both the resolved solu-
ble and membrane sub-proteomes. Data are presented as mean ± SEM 
(n = 3 gels/fraction, n = 5 animals/group). C Comparison between 
experimental and theoretical pI (left graph) and MW (right graph) 
of the identified proteoforms. The data in these graphs represent the 
experimental and theoretical MW and pI of the first hit of each spot 
(total number is 34 hits, represented by 34 plots in each graph). Purple 
dashed line (–-) indicates 95% confidence intervals

◂
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percentage (2%) of proteoforms functions in cell adhesion, 
transportation, extracellular matrix, intercellular signalling 
and transmembrane signalling. Furthermore, biological 
process analysis using PANTHER showed that the majority 
of the proteoforms were involved in cellular (31%), meta-
bolic (18%) and organization/regulatory (26%) processes 
(Fig. 4C). Moreover, the literature search indicated various 
molecular functions of the identified proteoforms including  
structural (36%), metabolic (24%), chaperone (15%) and sig-
nalling or myelin components (5% each) (Fig. 4D). Protein– 
protein interaction using STRING revealed a central role  
of structural proteoforms having strong interactions with 
metabolic, chaperone, signalling and myelin proteoforms, 
among others (Fig. 4E). The STRING analysis showed that 
there are direct connections between ~ 90% of proteoforms 
with the exception of seven (microtubule-associated pro-
tein 6, protein IMPACT, cytochrome b5, methylmalonate-
semialdehyde dehydrogenase, protein XRP2, haemoglobin 
subunit alpha and charged multivesicular body protein 4b) 
that are not linked in any obvious direct manner. The major 
identified interactions were between the structural proteo-
forms; 21 of the 23 identified structural proteoforms have 
well-established interactions. Interestingly, three different 
clusters of interactions were observed among actin, tubulin 
and tropomyosin; notably, some of these cytoskeletal pro-
teoforms appear to leave the SP fraction and move to the MP 
sub-proteome due to the CPZ treatment. In addition, an asso-
ciation of the identified chaperone proteoforms, including 
heat shock protein family, ubiquitin thioesterase and synu-
clein, was also indicated by the STRING analysis. Meta-
bolic and mitochondrial regulating proteoforms constituted 
another network with aconitate hydratase, citrate synthase, 
phosphoglycerate kinase and creatine kinase. In addition 
to these multiple functions and interactions of proteoforms 
(Fig. 4), bioinformatic analyses of proteoforms presented 
in Supplementary Table 1 were performed to investigate 
the localization, classes, functions and interactions. Similar 
to the findings shown in Fig. 4, over 30% of proteoforms 
are cytoplasmic (Supplementary Fig. 4A), ~ 30% are meta-
bolic interconversion enzymes (Supplementary Fig. 4B), 
over 30% are involved in cellular processes (Supplemen-
tary Fig. 4C), and 30% of the proteoforms have roles in 

metabolism (Supplementary Fig. 4D). Moreover, STRING 
bioinformatic analysis (Supplementary Fig. 4E) revealed the 
complex interaction of metabolic and structural proteoforms  
with other proteoforms consistent with the interactions as seen  
in Fig. 4E.

Discussion

This study used 0.1% CPZ-feeding for 12 weeks in young 
adult C57Bl/6 mice to investigate whether a slow and 
progressive degenerative process can induce histological 
and proteomic alterations in the axonal tracts and nuclear 
components of the visual pathway. Although histological 
changes such as demyelination and glial activation were 
evident in the corpus callosum, none of these changes was 
observed in the components of visual pathway. However, 
multiple alterations in the optic nerve/tract proteome were 
detected using a sensitive, well-established, quantitative 
top-down proteomic analysis. Subsequent comprehensive 
literature and bioinformatic analyses revealed that many of 
the proteoforms identified in the soluble and membrane sub-
proteomes of the optic nerve/tract are involved in structural 
and metabolic functions. Likely aggregation/oligomerization 
of some proteoforms was also detected.

Limited Histological Changes

Demyelination and inflammation in the components of the 
visual pathway (e.g. visual cortex, pretectal nucleus, lateral 
geniculate nucleus, superior colliculus and optic tract) are 
associated with optic neuritis (Martínez-Lapiscina et al. 
2014; Sapienza et al. 2016), and these conditions have been 
investigated in animal studies (Guido 2018; Huberman and 
Niell 2011; Seabrook et al. 2017). In a previous study, we 
found significant demyelination and gliosis in the visual cor-
tex when mice were fed with 0.2% CPZ for 5 weeks but not 
in the optic tract (Sen et al. 2020b). In the current study, the 
lack of detectable demyelination in the visual cortex might be 
attributable to the staining method or to the concentration of 
CPZ used. For example, Nile Red staining detected changes 
in the myelin components of the corpus callosum follow-
ing only 2 days of CPZ-feeding, whereas other traditional 
histological staining methods (e.g. silver or luxol-fast blue) 
detected quantifiable demyelination only after 4–5 weeks 
(Hiremath et al. 1998; Sen et al. 2020b; Teo et al. 2021). 
Additionally, demyelination has been detected in the optic 
nerve after 12 weeks of CPZ-feeding, but no other part of 
the visual pathway was assessed in that study (Namekata 
et al. 2014). In the current study, 0.1% CPZ-feeding was 
extended to 12 weeks to analyse demyelination and gliosis 
in optic tract, visual cortex, pretectal nucleus, lateral genicu-
late nucleus and superior colliculus under the conditions of a  

Fig. 4  Functional clustering and protein–protein interactions. Pie 
charts show the distribution of identified proteoforms according to 
A subcellular localizations (characterized using UniProt), B protein 
classes (categorized using PANTHER), C biological processes (cat-
egorized using PANTHER) and D molecular functions (via literature 
search). E Protein–protein interaction association network maps. The 
strength of interactions is indicated by the thickness of the lines. The 
colour coding of proteins in the STRING is based on the molecular 
functions (D). Functional clustering and protein–protein interac-
tions of the identified optic nerve proteoforms in the Supplementary 
Table 1 are shown in Supplementary Fig. 4

◂
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slow, progressive demyelination that is more reminiscent of 
MS. While demyelination and gliosis in the corpus callosum  
were observed, no significant changes occurred in any of the 
nuclei associated with the visual pathway, consistent with 
previous work by Taveggia et al. (2008). In addition, the tem-
poral response of CPZ may be due to the differential expres-
sion profiles of oligodendrocytes in different CNS regions 
(Butt et al. 1995). For example, mice haplo-insufficient  
for type III neuregulin-1 (a growth factor that promotes oli-
godendrocyte and Schwann cell development) showed less 
myelination in the corpus callosum but no effect on the optic 
nerve and spinal cord, indicating regional differences in the 
regulation of oligodendrocyte function (Taveggia et al. 2008). 
Whether these factors (e.g. neuregulin-1 expression) lead to 
the heterogeneity of oligodendrocyte distribution in the brain 
vs spinal cord or in optic nerve (Ornelas et al. 2016), as well 
as in the response to CPZ, remains untested.

Marked Proteomic Changes

Demyelination in the optic nerves of MS patients is inferred 
by changes in visual evoked potentials (Barton et al. 2019; 
Langwińska-Wośko et  al. 2012; Leocani et  al. 2018), 
although early changes (i.e. subtle alterations in vision) are 
not reported in the clinic until after an MS diagnosis has 
already been made. Increased abundance of inflammatory 
cytokines (e.g. tumour necrosis factor-α) and the axonal 
marker (neurofilament light chain) in the CSF have been 
proposed as early biomarkers to diagnose MS and/or optic 
neuritis in patients (Olesen et al. 2019). In addition, these 
markers could also then be considered as pre-symptomatic/
early indicators of MS risk, since optic neuritis patients often 
go on to develop MS (Costello 2016; Kale 2016). However, 
there exist issues with these and other canonical proteins 
identified to date with regard to their capacity to serve as 
selective biomarkers for MS (Sen et al. 2021).

In this study, optic nerve/tract tissue was used to inves-
tigate whether CPZ-induced changes in the proteomic 
profile could lead to the identification of candidate pro-
teoform biomarkers and/or some indication of initiating 
pathological mechanism(s). Top-down proteomic analysis 
revealed changes in the abundance of at least 75 proteoforms 
(Table 1) in the optic nerve/tract tissue, using stringent crite-
ria to ensure only the most robust identifications. To under-
stand the function of these proteoforms and their relevance 
to demyelinating CNS conditions such as MS or its animal 
models, a comprehensive literature search was carried out 
using the PubMed search engine. The identified proteome 
changes indicate a substantial similarity with those previ-
ously identified in EAE studies (Table 1). In part, this simi-
larity is likely attributable to the large number (15) of pro-
teomic studies carried out using the EAE model (Alt et al. 
2005; Dagley et al. 2014; Farias et al. 2012; Fazeli et al.  

2010, 2013; Gonzalez et al. 2019; Hasan et al. 2019; Jain 
et al. 2009, 2012; Jastorff et al. 2009; Linker et al. 2009; Liu 
et al. 2007; Raphael et al. 2017; Stoop et al. 2012; Vanheel 
et al. 2012), whereas only 6 studies used the CPZ model 
(Martin et al. 2018; Oveland et al. 2018; Partridge et al. 
2016; Sen et al. 2019a; Szilagyi et al. 2020; Werner et al. 
2010). Importantly, none of these studies investigated the 
optic nerve/tract proteome but used various other biologi-
cal samples including the CSF, brain, spinal cord and tears. 
Thus, the current study is the first to investigate changes in 
the optic nerve/tract proteome. Although not directly com-
parable, the proteomic changes found here did in part over-
lap with previously identified changes in the abundance of 
certain canonical proteins; the major difference here was 
that the use of a top-down approach enabled resolution and 
identification of critical proteoforms. Thus, several of the 
proteoform changes in optic nerve/tract correlated with 
canonical protein changes previously seen in other samples, 
including the cerebellum (Hasan et al. 2019), spinal cord 
(Fazeli et al. 2013), CSF (Liu et al. 2009), tears (Salvisberg  
et al. 2014) and blood, reported in CPZ, EAE and MS stud-
ies (Berge et al. 2019; Partridge et al. 2016; Raphael et al. 
2017). Notably, by separately analysing the soluble and 
membrane sub-proteomes and assessing proteoforms rather 
than canonical proteins, we have been able to gain more 
detailed information not available in previous studies. For 
example, neurofilament medium chain was found to increase 
in abundance in cerebral tissue from mice fed with 0.2% 
CPZ (Szilagyi et al. 2020) and the spinal cord from EAE 
mice (Farias et al. 2012; Hasan et al. 2019); the data here 
conclusively identified a decrease of one proteoform in the 
SP fraction of the optic nerve/tract tissue but a correspond-
ing larger increase in a distinctly different proteoform in the 
MP sub-proteome (Table 1). While this clearly highlights 
the essential need to resolve and identify critical proteoforms 
rather than canonical protein sequences (Carbonara et al. 
2021), as well as the potentially serious ramifications of not 
doing so, the findings may also indicate differential expres-
sion/abundance of neurofilament isoforms among different 
CNS regions, as likely already seen in the hippocampus and 
cortex (Mesulam and Geula 1991; Nakamura et al. 1992). 
Moreover, Szilagyi et al. (2020) fed 8-week male C57Bl/6 
mice with 0.2% CPZ for 4 weeks (samples analysed at 
12 weeks), whereas in the current study, mice were fed with 
0.1% CPZ for 12 weeks, suggesting that prolonged feeding 
of CPZ may alter the abundance and localization of different 
neurofilament proteoforms. Furthermore, two other studies 
(Farias et al. 2012; Hasan et al. 2019) used spinal cord from 
EAE mice suggesting that differential disease induction 
(autoimmune in EAE vs metabolic changes in CPZ) may 
also alter the abundance of neurofilament proteoforms in 
the CNS. Notably, an increase of neurofilament light chain 
in serum has been considered as a potential pre-symptomatic 
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biomarker of neurodegeneration in MS (Bjornevik et al. 
2019; Varhaug et al. 2019); however, comparable changes 
also appear in other neurodegenerative disorders as well as 
in cases of neurotrauma raising questions as to the selectivity 
of this as a biomarker for MS, unless specific proteoforms 
are found to be altered in the different conditions (Sen et al. 
2021).

Previous MS proteomic studies identified an increase in 
the abundance of heat shock protein 90-beta (HSP90β) in 
tears (Salvisberg et al. 2014) and in peripheral blood mon-
onuclear cells (De Masi et al. 2009). However, neither of 
these studies provided evidence of full length, intact species. 
On the contrary, the current study identified a reduction of 
HSP90β in the optic nerve tissue. Perhaps, the increased 
abundance of heat shock protein in tears and the circulation 
is a breakdown product of HSP90β from other CNS regions 
such as the optic nerve. This may lead to a reduction in the 
abundance of HSP90β in the optic nerve as observed in the 
current study. Of note, HSP90β exerts two potential neuro-
protective roles in the CNS tissue: firstly, it prevents protein 
misfolding and aggregation by its chaperone activity, and 
secondly, it inhibits multiple steps in the apoptosis process 
(Didonna and Opal 2019; Lanneau et al. 2007; Mosser and 
Morimoto 2004). In MS patients, these proteins (or, likely, 
proteoforms thereof) are overexpressed in neuronal cells and 
oligodendrocytes around demyelinated lesions, seemingly 
to protect these cells from degeneration (Cwiklinska et al. 
2010; Turturici et al. 2014). Other possible reasons for the 
differences in the trends of protein abundance are the use of 
different analytical techniques, experimental model or sam-
ple analysed. For example, Szilagyi et al. (2020) and Hasan 
et al. (2019), respectively, used two different labelling vari-
ations of bottom-up proteomic analysis; one identified ~ 190 
canonical proteins that appeared to change in abundance in 
the corpus callosum of CPZ-fed mice (Szilagyi et al. 2020), 
while the other identified ~ 1900 canonical protein changes 
in CNS samples from EAE mice (Hasan et al. 2019). In con-
trast, Farias et al. (2012) used a top-down (2DE) proteomic 
approach with spinal cords from EAE mice and identified 
alterations in 35 proteoforms (although only theoretical MW 
and pI were reported). Using tear samples from MS patients, 
Salvisberg et al. (2014) identified 42 canonical proteins dif-
fering in abundance between MS and control patients. Thus, 
as is often the case, bottom-up (i.e. shotgun) studies detected 
more apparent changes in the abundance of canonical pro-
teins relative to proteome changes identified using a top-
down (2DE) approach (De Masi et al. 2009; Farias et al. 
2012; Hasan et al. 2019; Salvisberg et al. 2014; Szilagyi 
et al. 2020). Does this imply differences in sensitivity of 
the methods? This seems unlikely as bottom-up peptide 
analysis generally uses less stringent sequence coverage 
than top-down and only identifies canonical proteins by 
inference to amino acid sequences. Therefore, comparable 

to its correlate transcriptomics, the identification of a large 
number of potential canonical proteins is expected using the 
bottom-up method. In contrast, the top-down approach uses 
more stringent criteria to detect changes in intact proteo-
forms (i.e. a more selective analysis). Therefore, top-down 
is likely to yield more reliable and focused data (i.e. changes 
in abundance of relevant species rather than total changes 
in a canonical protein sequence that likely represents many 
dozens of proteoforms) (Aebersold et al. 2018; Coorssen and 
Yergey 2015; Oliveira et al. 2014; Zhan et al. 2019). Thus, 
the likelihood of identifying a critical change relevant to 
underlying molecular mechanisms or the identification of a 
highly selective biomarker lies in the routine, high-resolution  
assessment of proteoforms (Sen et al. 2021).

Our previous detailed review of proteomic studies into 
MS found that at least nine proteoforms (of septin, tubu-
lin, complement, glial fibrillary acidic protein, protein 
disulphide isomerase, calreticulin, hexokinase, aconitate 
hydratase and dynamin 1) consistently changed in abun-
dance in both MS and animal models (Sen et al. 2021). Of 
these, five proteoforms (of septin, glial fibrillary acidic pro-
tein, aconitate hydratase, protein disulphide isomerase and 
tubulin) were also identified in the current study, suggest-
ing that these may be potential early biomarkers. Opposite 
trends in abundance (i.e. increase or decrease) in different 
biological samples may also be attributed to the differential 
expression of proteins and distribution of proteoforms in 
these different samples, which depend on tissue function 
and the magnitude of pathological changes. For example, 
the spinal cords of EAE mice (i.e. the most pathologically 
affected CNS region in EAE) showed changes in the abun-
dance of 1357 (uncategorised proteins were not considered) 
canonical proteins, whereas only ~ 50 protein changes were 
found in the brain stem and cerebellum (Hasan et al. 2019). 
The literature search was thus extended to include proteome 
changes in eye disorders (ED) to investigate their potential 
relevance to optic nerve/tract proteomic changes in CPZ-fed 
mice. Only three identifications (transitional endoplasmic 
reticulum ATPase, neurofilament light polypeptide and hae-
moglobin subunit alpha) were consistent with those reported 
in CSF samples from neuromyelitis optica (Bai et al. 2009) 
and optic neuritis (Olesen et al. 2019) and in tear samples 
from patients with dry eye disease (Jung et al. 2017). These 
findings suggest a link between eye diseases and the CPZ-
induced optic nerve/tract proteome changes that requires fur-
ther study, particularly with regard to likely early changes 
prior to an MS diagnosis.

Aggregation and Oligomerization Proteoforms

The current study detected changes in 12 molecular chap-
erone proteoforms (Table 1). These changes are not unique 
to optic nerve/tract as they were reported previously in 
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other CPZ (Partridge et al. 2016; Szilagyi et al. 2020), EAE 
(Hasan et al. 2019; Jain et al. 2012; Vanheel et al. 2012) and 
MS studies (De Masi et al. 2009; Salvisberg et al. 2014). 
Decreased molecular chaperone proteoforms have been 
linked to protein aggregation (Ciechanover and Kwon 2017; 
Liberek et al. 2008), which can contribute to neurodegenera-
tion and demyelination associated with human degenera-
tive diseases (David and Tayebi 2014; Soto and Pritzkow  
2018). It has been shown that the increased expression 
of chaperones (e.g. heat shock proteins) in astrocytes and 
neurons inhibits apoptosis of these cells in rat spinal cord 
(Chang et al. 2014). Moreover, optic nerve regeneration and 
retinal ganglion cell survival in zebrafish were promoted by 
HSP70, and these processes were reduced when the HSP70 
was inhibited (Nagashima et al. 2011). Another study dem-
onstrated that neurite growth of rat retinal cells increased 
following the application of exogenous HSP αB-crystallin 
(Wang et al. 2012). Chaperones also modulate the cytoskel-
eton of neuronal cells and mediate their regeneration via 
enhancing intermediate filament assembly (Hirata et al. 
2003). These observations indicate that the increased abun-
dance of some chaperone proteoforms (e.g. HSP 70 kDa and 
HSP 47 kDa) in the present study could reflect the demands 
for these in the optic nerve/tract in order to reduce structural 
deformities and protect or regenerate neuronal tissue injured 
by CPZ exposure.

We (Sen et al. 2019a) and others (Liu et al. 2009) have 
found evidence of homo-oligomerization of proteoforms. 
The current data also suggest oligomerization (e.g. an 
approximate doubling of molecular weight) (Table 1) of 
some species such as tubulin alpha-1C chain (50.6 kDa 
monomer vs 110.6  kDa experimentally observed), ser-
ine protease inhibitor A3K (47.1 kDa vs 95.9 kDa), beta- 
synuclein (14.1 kDa vs 27.0 kDa) and charged multive-
sicular body protein 4b (24.9 kDa vs 58.4 kDa). While 
oligomerization of tubulin alpha-1C chain, serine protease 
inhibitor A3K, beta-synuclein or charged multivesicular 
body protein 4b have not previously been identified in CPZ-
fed mice, earlier studies have observed that these proteins 
do indeed oligomerize (Carrell et al. 2008; Mozziconacci 
et al. 2008). Notable in the case of beta-synuclein is that 
it forms hetero-oligomers with alpha-synuclein, and these 
were found together in the ~ 27 kDa spot (SP12) (Table 1). 
Oligomerization of proteins can lead to protein aggrega-
tion which is argued to be the cause of many neurological 
diseases including MS (David and Tayebi 2014; Michaels 
et al. 2015). In addition, gel shifts in MW and pI relative to 
theoretical values (i.e. of the amino acid sequence only) were 
also observed for some of the identified species (Table 1, 
Fig.  3C) such as neurofilament medium polypeptide 
(96.0 kDa/4.6 vs 117.3 kDa/4.7), myelin-associated glyco-
protein (70.1 kDa/4.9 vs 90.2 kDa/4.4), ATP synthase subu-
nit alpha (59.9 kDa/9.6 vs 66.3 kDa/6.8) and cytochrome c 

oxidase subunit 5B (14.1 kDa/8.5 vs 17.5 kDa/5.9), consist-
ent with post-translational modifications and thus the identi-
fication of select proteoforms (Rabilloud and Lelong 2011; 
Sen et al. 2019a).

Structural Proteoforms

In the current study, major changes in cytoskeleton proteo-
forms such as actin and tubulin were detected in the optic 
nerve/tract. The alterations of these structural proteoforms 
in this slow progressive demyelinating model may reflect 
early changes in cellular structure as a result of CPZ-feeding. 
Importantly, the present study identified an increase in the 
abundance of intermediate filament proteins such as glial 
fibrillary acidic protein and vimentin, suggesting that astro-
cytes are activated in the optic nerve/tract (Sofroniew and 
Vinters 2010). However, histological examination of glial 
fibrillary acidic protein in the optic tract did not detect any 
significant difference in glial staining intensity relative to 
the Ctrl group. This suggests that 2DE is more sensitive in 
revealing early proteoform changes, perhaps due in part to 
the larger amount of sample analysed relative to tissue sec-
tions. These proteomic data are thus indicative of notable 
structural disturbances in the optic nerve/tract following 
CPZ-feeding that might contribute to conditions such as  
MS.

Notably, actin and tubulin are often used as ‘house-keeping’  
loading controls in assays such as Western blotting, in the 
very risky and unfounded hope that they do not change under 
the conditions of the experiment (Zhang et al. 2012). The 
marked changes in abundance of these structural proteo-
forms in the current study argue strongly against this prac-
tice and are consistent with other reports cautioning against 
this (Eaton et al. 2013; Nie et al. 2017). Changes in the 
abundance of such inappropriately named ‘house-keeping’ 
proteins have also been shown in other proteomic studies, 
including CPZ (Sen et al. 2019a; Werner et al. 2010), EAE 
(Farias et al. 2012; Fazeli et al. 2010; Hasan et al. 2019) and 
MS (De Masi et al. 2009; Dumont et al. 2004; Hammack  
et al. 2004; Liu et al. 2009). Therefore, total protein concen-
trations must be assessed in each sample and equal concen-
trations used for analysis (Almuslehi et al. 2020; Hu et al. 
2016; Noaman and Coorssen 2018; Sen et al. 2019a).

Metabolic Proteoforms

Another key finding in this study was the detection of 
changes in the abundance of numerous proteoforms associ-
ated with metabolic and mitochondrial functions in the optic 
nerves/tracts. Metabolic dysregulation can lead to demy-
elination in the CPZ model (Caprariello et al. 2018; Sen 
et al. 2019a; Teo et al. 2021; Werner et al. 2010) and is thus 
hypothesized as an early dysfunction leading to MS. Despite 
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finding changes in metabolic proteoforms, no demyelination 
was detected in the optic nerve/tract. This may be attributed 
to the highly compact myelin structure in the optic nerve 
tissue which increased the intensity of silver staining (i.e. 
resulting in saturation) and thus may have limited the detec-
tion of demyelination (Sen et al. 2020a). This interpretation 
is supported by observations in the diphtheria toxin model, in  
which alterations in axonal structure were observed by ultra-
structural analysis despite no overt demyelination (Pohl et al. 
2011). Likewise, reduction of myelin basic protein in the 
optic nerve may result from metabolic turnover (Namekata 
et al. 2014). Previously, we reported that ~ 50% of proteo-
forms that changed in abundance in whole brain samples 
were metabolic (Sen et al. 2019a), whereas here, in the optic 
nerve/tract, metabolic proteoforms constituted only ~ 24%. 
Albeit an indirect comparison, this suggests less metabolic 
disturbance in the optic nerve/tract tissue relative to the 
brain, and thus, demyelination is readily evident in the cor-
pus callosum but not in the optic nerve/tract. Additional pro-
teomic studies are thus required for direct comparison (optic 
nerve/tract vs corpus callosum) to investigate the threshold 
of changes in metabolic proteoforms that are necessary for 
demyelination in optic nerve.

It might be argued that the dosage of CPZ (e.g. 0.2 vs. 
0.1%) plays a significant role in changing the profile of 
metabolic proteins. This seems less likely since a compa-
rable level of demyelination occurred by feeding mice with 
0.2% CPZ for 5 weeks or with 0.1% for 12 weeks (Sen et al. 
2019a). Likewise, feeding mice with either 0.1% or 0.2% 
CPZ for 2 weeks yielded comparable demyelination and glial 
activation in the corpus callosum (Almuslehi et al. 2020). 
Therefore, it is expected that changes in the abundance of 
metabolic proteoforms in the optic nerve/tract following 
0.1% CPZ-feeding for 12 weeks may be comparable to those 
seen in 0.2% CPZ-feeding for 5 weeks. Nonetheless, this 
does not rule out progressive but localized effects of CPZ in 
different areas of the CNS (including the optic nerve/tract). 
This study also detected changes in six proteoforms iden-
tified in our previous proteomic analysis of the brain (i.e. 
creatine kinase U-type, neurofilament light polypeptide, glial 
fibrillary acidic protein, ATP synthase subunit alpha, aconi-
tate hydratase, charged multivesicular body protein 4b) (Sen 
et al. 2019a). Among these, only 3 (creatine kinase U-type, 
ATP synthase subunit alpha and aconitate hydratase) are 
recognized to be directly involved in metabolism. Creatine 
kinase exerts a variety of bioenergetic and neuroprotective 
properties in CNS and retinal neurons including buffering 
and stabilization of intracellular energy reserves, neutraliz-
ing calcium ion fluxes, inhibition of mitochondrial perme-
ability and counteracting intracellular oxidative stress (Beal 
2011; Sia et al. 2019). ATP synthase subunit expression is 
upregulated during ocular hypertension, and it is associated 
with increased ATP concentration in the retinal ganglion of 

rats (Kanamoto et al. 2019). An in vivo study showed that 
aconitate hydratase activity increased in optic nerve tissue 
1 day following traumatic injury (Cummins et al. 2013). 
According to these observations, the increased abundance  
of creatine kinase U-type, ATP synthase subunit alpha and 
aconitate hydratase in the optic nerve/tract following CPZ- 
feeding is indicative of mitochondrial dysregulation. How-
ever, the main cluster of protein–protein interactions in our 
previous study was identified as metabolic (with malate 
dehydrogenase, succinate dehydrogenase, aspartate ami-
notransferase and oxoglutarate dehydrogenase protein (Sen 
et al. 2019a)), whereas these proteoforms were not identified 
in the current work. This suggests that minimal changes in 
the complement of proteoforms, and their interaction with 
key metabolic proteoforms (e.g. malate dehydrogenase, aco-
nitate hydratase), are required to initiate metabolic distur-
bances that can induce downstream effects (e.g. demyelina-
tion of optic nerve/tract) in the CPZ-fed mice.

Biological Functions and Interactions

Importantly, from the bioinformatic (UniProt, PANTHER 
and STRING) and literature (PubMed) analyses, complex 
linkages among identified proteoforms were indicated 
(Fig. 4). For example, the literature search linked proteo-
forms to diverse functions including structural, metabolic 
and axonal, suggesting CPZ-induced changes at multiple 
functional levels. Characterizing such potential interactions 
is important to understanding the underlying dysregulation 
of biological processes (Berggard et al. 2007; Sen et al. 
2019a). Previous studies have shown that 50–80% of pro-
teins undergo protein–protein interactions (Asgarov et al. 
2021; Berggard et al. 2007; Dagley et al. 2014; Sen et al. 
2019a). These observations are consistent with the idea that 
while proteins/proteoforms function as monomers, they also 
interact to form complexes in order to exert their molecular 
actions (Berggard et al. 2007; De Las Rivas and Fontanillo 
2010; Keskin et al. 2016; Sen et al. 2019a). Consistent with 
these observations, the current data suggest that ~ 90% of 
the identified proteoforms were interconnected, indicat-
ing molecular cross-talk (Asgarov et al. 2021; Sen et al. 
2019a). For example, myelin-associated glycoprotein, a 
molecule located in the axonal plasmalemma (inner aspect 
of the myelin sheath) of oligodendrocytes, is said to interact 
with axonal neurofilament microtubule proteins, leading to 
phosphorylation of neurofilament microtubules and mod-
ulation of axonal diameter (Nguyen et al. 2009). Another 
example is alpha-internexin, a neuronal protein implicated 
in neurodegenerative diseases, which cannot exert its effects 
independently but functions in association with other neu-
rofilament proteins such as neurofilament medium chain, 
and this interaction is necessary for the axonal transport of 
neurofilament medium chain in CNS and optic nerve axons 
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(Yuan et al. 2006). Overall, the protein–protein interaction 
analysis suggested that alterations in the abundance of the 
identified proteoforms in optic nerve/tract are likely inter-
rupting molecular cross-talk among these species, thereby 
disrupting associated biochemical reactions and perhaps 
thereby contributing to disorders such as MS.

Limitations and Future work

Despite our best efforts to minimize the experimental varia-
bles, we acknowledge certain drawbacks in the current study. 
Firstly, since 0.2% CPZ-feeding for 12 weeks can reduce 
visual function in mice (tested using multifocal electrore-
tinograms (Namekata et al. 2014)), it would be important 
to correlate molecular changes with visual status in future 
studies. Secondly, this study relied on only one time point 
(i.e. 12 weeks) of CPZ-feeding. Therefore, future studies 
should use a temporal analysis to determine the earliest 
point at which proteoform changes occur as they may iden-
tify the triggers for the cascade of molecular alterations that 
we identified here after 12 weeks of slow demyelination. 
Finally, the bioinformatic analyses employed (e.g. PAN-
THER, STRING) are based primarily on literature reports 
concerning canonical proteins rather than specific proteo-
forms or oligomers, and this may also influence interpreta-
tion of the data in terms of canonical versus actual proteo-
form changes.

Conclusions

This study was designed to investigate the effects on the vis-
ual pathway of a CPZ-feeding paradigm producing a slow, 
progressive demyelination, using both histological and pro-
teomic analyses. While no significant histological changes 
were identified, the data established marked optic nerve/tract 
proteome dysregulation, which may assist in understanding 
molecular/cellular alterations that are linked to demyelinat-
ing conditions. The data highlight the importance of using 
top-down proteomic analyses in resolving key early proteo-
form changes as these seem likely to precede demyelination 
and glial activation. Furthermore, this detailed investigation 
(histology, proteomics, bioinformatics and literature min-
ing) provides further insight into the regionally differential 
effects of CPZ on the CNS. Additionally, the current dataset 
serves as a baseline for changes in the optic nerve/tract pro-
teome of the CPZ model, in support of future studies.
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