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Temporal dynamics of muscle, 
spinal and cortical excitability and 
their association with kinematics 
during three minutes of maximal-
rate finger tapping
Elena Madinabeitia-Mancebo1,4, Antonio Madrid1,4, Amalia Jácome2, Javier Cudeiro1,3 & 
Pablo Arias1*

We tested peripheral, spinal and cortical excitability during 3 minutes of unresisted finger tapping at 
the maximal possible rate, which induced fatigue. Subsequently, we studied the temporal dynamics 
of muscle fatigue, expressed in the tapping movement profile, and its relationship to neural systems 
using mixed model analyses. The tapping rate decreased by 40% over the duration of the task. The 
change in the amplitude of the range of motion was not significant. The excitability of the flexor and 
extensor muscles of the index finger was tested via evoked potentials obtained with various types 
of stimulation at various levels of the motor system. The change in spinal excitability with time was 
evaluated considering the simultaneous changes in muscle excitability; we also considered how spinal 
excitability changed over time to evaluate cortical excitability. Excitability in the flexor and extensor 
muscles at the different levels tested changed significantly, but similar excitability levels were observed 
at notably different tapping rates. Our results showed that only 33% of the decrease in the tapping rate 
was explained by changes in the excitability of the structures tested in the present work.

Determining the central mechanisms involved in muscle fatigue is important from a physiological perspective 
and can also have relevant implications from an applied perspective when we refer to sports, ergonomics or cer-
tain pathological conditions.

These mechanisms have been studied thoroughly in the case of isometric muscle contractions; they include 
changes in excitability both at the spinal cord and M1 networks1–8.

Another type of muscle activity corresponding to the contractions performed during rhythmic repetitive 
movements (RRMs) is essential in daily living and may result in fatigue. Traditionally, their central expressions 
of fatigue have been studied at the point at which an activity has been completed9,10, which is a limitation because 
the CNS recovers very quickly when the activity ends11,12. Several works recently tested fatigue at the central level 
immediately following the end of unresisted RRMs without allowing time for CNS recovery5,13,14. The reduction 
in the maximal movement rate was greater after 30 s of finger tapping (ft) than that after 10 s, and the reduction 
was accompanied by an increase in the excitability of M1 GABAb interneurons, which was more pronounced after 
30 s of performing the task5,13. Interestingly, spinal excitability, which was tested by measuring cervicomedullary 
evoked potentials (CMEPs), increased during the waning of the tapping rate14, which is essentially different from 
the outcome when fatigue is caused by isometric exercise performed for the same duration and executed with the 
same body segment14.

However, the description of how corticomuscular excitability changes with RRM fatigue development has 
not been performed, as previously done for isometric activities15–17. Another un-resolved point is whether the 
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changes in excitability along fatiguing RRMs are explicative for the changes observed at the kinematics of the 
movement.

In this work, we have evaluated the temporal-dynamic changes in muscle fatigue during maximal rate finger 
tapping. We recorded motor evoked potentials (MEPs) “in hand muscles induced” by single-pulse transcranial 
magnetic stimulation (TMS) over the contralateral M1. We also conditioned this MEP (MEPc) using a previous 
pulse (paired-pulse TMS). In another session in which the same subjects participated, CMEPs were induced by 
single-pulse TMS at the cervicomedullary junction level, and compound muscle action potentials (CMAPs) were 
obtained by percutaneous electrical stimulation of Erb’s point. Potentials were acquired while the subjects per-
formed 3 minutes of ft at the maximum possible rate. Each subject completed two sessions, and the changes in ft 
during the task in the two sessions were compared.

Based on previous studies employing much shorter task durations5,14, our hypothesis is that the ft rate will 
decrease very rapidly during the first few seconds of the task; then, with task progression, the decrease in the ft 
rate should attenuate. The ft movement amplitude will change more shallowly5,13,14. We previously demonstrated 
a rapid decrease in the ft rate at 30 s and showed that this decrease occurred with increased levels of spinal excita-
bility. Therefore, we do not expect that a reduction in spinal excitability produces the decrease in the tapping rate 
along the task; rather, we hypothesized that the key mechanism is likely increased inhibition or lack of facilitation 
at supraspinal levels.

Methods
Participants.  Ten of 14 healthy participants completed the two scheduled sessions (5 women; age range [19-42 yrs];  
all right handed). The four participants who withdrew from the study refused to participate in the session that 
included CMAP and CMEP testing due to the discomfort produced by these types of stimulation. The data 
obtained from these participants were not included in the data analyses. The two sessions, which occurred in 
a randomized order across the participants, were identical except for the type of stimulation received. None of 
the participants took drugs or performed strenuous physical labour during the week prior to the experimental 
sessions. The study was approved by the Ethics Committee of the University of A Coruña. The methods used in 
this study conformed to the principles set forth in the Declaration of Helsinki, and all of the participants signed 
informed consent forms.

Protocol.  The participants executed ft at their maximal possible rate from the very beginning to the end of 
the 3-min task while receiving verbal encouragement. The instructions given to the subjects were “Tap with the 
index finger at your maximal possible rate from the very beginning and along the whole task, which lasts 3 min”. No 
instructions regarding the range of motion (ROM) amplitude of the movement were provided.

Each participant’s dominant hand was firmly but comfortably fixed to a 3D hand-fixation structure with the 
thumb in abduction (Fig. 1a)13. Ft was executed on a force sensor (Biometrics P200, UK) while index finger 
movement was monitored with an electrogoniometer (Biometrics S100). A Biometrics K800 unit amplified the 
signals from both sensors and sent them to a CED1401 (unit-1). Signal 6.0 software (Cambridge, UK) sampled 
the recordings at 10 KHz and stored them in a computer for off-line analysis.

The signal from the goniometer was also sent to another CED1401 (unit-2, sampling rate 100 KHz) controlled 
by Sequencer (Cambridge, UK). The sequencer used an algorithm to trigger stimulation at specific points in the 
tapping cycle (see below for further details). These triggers were also sent to the CED1401 unit-1 to determine the 
timing of stimulation for posterior signal analysis.

Surface EMG recordings were acquired with a Digitimer D360 (bandpass 3–3000 Hz, gain x250) and sent to 
CE1401 unit-1. Three different hand muscles were monitored: the first dorsal interosseous, extensor indicis, and 
flexor digitorum superficialis (FDI, EXT, and FDS, respectively) muscles. The FDI and EXT are the specific flexor 
and extensor muscles, respectively, of the index finger. Prior to protocol execution, the subjects performed active 
extension of the index metacarpophalangeal joint to determine their maximal active ROM.

Stimulation.  We evaluated neuromuscular transmission and muscle excitability via CMAPs by stimulating 
Erb’s point (Digitimer DA7AH stimulator; pulse width 200 µsec). The cathode was placed on Erb’s point in the 
supraclavicular fossa, and the anode was placed over the acromion. At rest before ft, the stimulus intensity was 
increased stepwise to determine the intensity at which the M-waves stopped increasing in all the tested muscles. 
During the task, we used an intensity 50% greater than the supramaximal intensity for stimulation. The intensities 
used ranged from 75 to 160 mA.

Stimulation of corticospinal axons with a Magstim 2002 magnetic stimulator connected to a 110 double-cone 
coil was used to test spinal excitability. The centre of the coil was placed over the inion (slightly lateral in some 
subjects), and the direction of the monophasic-pulse current flowed down in the coil. The stimulus intensity was 
adjusted to induce CMEPs ≈5–10% of the CMAP size obtained at rest prior to execution of the protocol (Table 1).

Corticospinal excitability was tested by measuring the MEP amplitude induced by single-pulse TMS over M1 
with a MagPro X100 with the MagOption and monophasic pulses. Postero-anterior currents were induced in the 
brain by a figure-eight coil (MC-B70) placed over the hot-spot of the FDI muscle. The hot-spot was defined as 
the coil position at which the largest and more consistent MEPs were evoked at rest on the FDI muscle, before 
the fatiguing protocol. This was tested by delivering single TMS pulses at suprathreshold intensity. This position 
on the scalp was marked with a pen for monitoring coil placement during the session. For testing excitability 
during FT, the stimulus strength was adjusted to achieve MEPs ≈5–10% of the CMAP size obtained at rest prior 
to execution of the protocol. A paired-pulse paradigm was also used to assess short intracortical inhibition. With 
the same system, we tested M1 short intracortical inhibition using a subthreshold conditioning stimulus preced-
ing (by 2 ms) the aforementioned single-pulse MEP. This inter-stimulus interval is suggested to reflect GABAa 
synaptic excitability, whereas shorter ISI are more likely bound to tonic extrasynaptic GABA activity18. At rest 

https://doi.org/10.1038/s41598-020-60043-0


3Scientific Reports |         (2020) 10:3166  | https://doi.org/10.1038/s41598-020-60043-0

www.nature.com/scientificreportswww.nature.com/scientificreports/

prior to execution of the protocol, the intensity of the conditioning stimulus was set to produce MEPc values 
≈75% of the unconditioned MEP; the Table 2 shows these scores in % of the stimulator output and relative to 
the active and resting motor thresholds –AMT and RMT. AMT and RMT were determined based on standard 
procedures19, before task execution. Setting this level of inhibition prevents floor effects and enables detection of 
increases or decreases in inhibition in M1 during the task; these changes in inhibition are key mechanisms related 
to fatigue5,13,14,17.

Timing of stimulation.  Recorded potentials were acquired in two different sessions. One session tested 
CMAPs and CMEPs, and the other session tested MEPs and MEPc values; the order of the sessions was coun-
terbalanced across participants. During individual sessions, the two types of recorded signals were alternated in 
their acquisition.

We began each session by recording 10 potentials of each type at rest (baseline). The participants were then 
prompted by an auditory cue to begin ft.

During execution of the ft task, the stimulation triggers were locked to the tapping cycle. To accomplish this, 
CED-Sequencer software analysed the signal from the goniometer, and stimulation was applied during the con-
tact phase of the tapping cycle (each tapping cycle had a contact phase and a movement phase; Fig. 1b), which was 
carried out by analysing consecutive time-bins of 24.6 ms. The average value in each bin (the signal was sampled 
at 100 KHz) was compared to the value in the previous bin, and the slope was determined. Two consecutive 
conditions were required to trigger stimulation. The first condition was a score (a difference between consecutive 
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Figure 1.  (a) The 3D fixation system and hand preparation for the experiments. (b) An example of recordings 
(CMAP-CMEP session); the shaded area corresponds to the 2 s prior to the trigger, and kinematics were 
computed throughout the 3-min task in this time-window. The activities of the three recorded muscles (the FDI, 
EXT, and FDS) are shown, as well as the goniometric recording (in black) and the pulses of the TTL triggers 
(grey).

CMAP CMEP MEP MEPc

Amplitude Rms Amplitude Rms Amplitude Rms Amplitude Rms

FDI (mV)
MEAN 18.288 4.216 0.874 0.263 1.937 0.476 1.382 0.345

SEM 1.383 0.334 0.406 0.101 0.438 0.100 0.372 0.085

EXT (mV)
MEAN 10.521 2.923 0.519 0.211 0.826 0.252 0.617 0.204

SEM 1.226 0.348 0.155 0.041 0.222 0.053 0.188 0.041

FDS (mV)
MEAN 7.753 1.963 0.432 0.164 0.311 0.133 0.264 0.122

SEM 1.053 0.320 0.109 0.021 0.048 0.010 0.026 0.004

Table 1.  Peak-to-peak amplitudes and RMS values of the potentials at baseline (the mean and standard error of 
the mean (SEM)) across participants.
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bins) <−6000 units of a 32-bit integer, which is equivalent to a slope of −1.16 mV/sec and determines the point 
of change from extension to flexion during finger movement (when the finger begins to move downward). The 
second condition was set to >−1 unit of a 32-bit integer, which is equivalent to a slope of −2.33−9 V/sec (≈0) 
and determines when the finger stops moving (the start of the contact phase). When the sequence of the first and 
second conditions was detected, stimulation was delivered.

Thus, stimulation was applied in all cases with the finger in the same relative position of the tapping cycle 
during the stationary phase when the angular velocity is zero. After one stimulus was delivered, the sequencer 
stopped calculating slopes from the goniometer for 4 seconds to restrict the frequency of stimulation, which can 
modulate excitability. At the end of the four-second period, the sequencer re-started the calculation as described 
above and subsequently applied stimulation again; the second stimulation always involved a different modality. 
Notably, however, the start of the contact phase did not occur immediately after the 4-s time lag. For this reason 
and because we had programmed 45 triggers during the protocol, the duration of the task was slightly longer than 
three minutes.

In the MEP-MEPc sessions, the stimulation during ft started with MEP testing in half of the subjects and 
with MEPc testing in the other half of the subjects. Similar alternation in the order of testing was used in the 
CMAP-CMEP sessions.

Analysed variables.  Ft frequency.  In a time window of 2 s immediately prior to the TTL (see the 
grey-shaded area in Fig. 1b), the median frequency of all cycles was calculated from the goniometric recordings. 
We used customized MATLAB (The MathWorks, Inc) programs to perform these analyses5,14,20.

Ft range of movement (ROM) amplitude.  We defined the peak ROM amplitude as the difference in the gonio-
metric recordings between the peak score of the movement phase and the median score of the preceding contact 
phase for each tapping cycle (Fig. 1b), which was calculated in the same time window as that described above. We 
considered the median of all cycles as the representative score.

Root mean square (RMS) of the CMAP, CMEP, MEP, and MEPc values.  The RMS was calculated from the areas 
of the recorded potentials. We used the RMS rather than the peak-to-peak amplitude as the analysed variable 
because this parameter has been shown to be less dependent on phase cancellation21,22.

RMS of EMG voluntary activity.  We computed the RMS of the EMG background activity during the contact 
phase, this was the phase at which stimulation was applied. The RMS magnitude of this activity was made relative 
to the RMS of the CMAP. Customized Matlab programs were used for this purpose.

Data processing.  The rate of ft was expressed for each subject as a % of his/her maximal tapping rate during 
the task regardless of when it was achieved. Similarly, finger-tapping ROM is given as a % of the maximal ROM 
during the active extension executed before ft started.

For the potentials, we first calculated the median of the 10 events acquired at rest prior to execution of the task 
(baseline); the obtained values are shown in Table 1. Next, each potential acquired during the tasks was normal-
ized to the corresponding baseline score, which applied to the CMAPs, CMEPs and MEPs but not the MEPc value; 
the MEPc value during the task was normalized to the unconditioned MEP during baseline.

As mentioned above, in session 1, the MEPs and MEPc values were acquired in an alternating manner, as were 
CMEPs and CMAPs in session 2. Therefore, for the subsequent statistical analyses, we imputed the score of an 
MEP at an MEPc event time point by calculating the mean score considering the time points immediately before 
and after that time point. For example, MEP#2 was the mean of MEP#1 and MEP#3; similarly, MEPc#3 was the 
mean of MEPc#2 and MEPc#4. For the imputation of events #1 and #45 (for which no prior or subsequent events 
were available to make imputations), event #1 was considered equal to event #2, and event #45 was considered 
equal to event #44. We proceeded in a similar manner for CMEP and CMAP imputations.

Statistical analyses.  Statistical analyses of the aforementioned variables, as well as of the CMEP scores 
relative to the CMAP scores (the CMEP/CMAP ratio), were performed, which allowed us to estimate changes in 
spinal excitability considering the changes that occurred at the same time in muscle excitability and neuromus-
cular transmission. In the same manner, we calculated the MEP/CMEP and MEPc/MEP ratios. Also, the RMS of 
the EMG voluntary activity was made relative to the CMAP-RMS.

Linear mixed-effects models were used to describe the task progression (in time) of the ft rate, the ROM ampli-
tude, and excitability scores. For the excitability scores, we considered the RMS of the potentials (normalized in 
relation to baseline) and the ratios mentioned above. Accordingly, we fitted fourth-order polynomials in which 
the subjects were modelled as random effects.

Finally, we examined associations between changes in ft profiles (the ft rate and ft ROM amplitude) and 
changes in excitability over time. Therefore, a linear mixed-effects model was used to explain changes in ft fre-
quency and ROM amplitude as a function of time and excitability (CMAP, CMEP/CMAP, MEP/CMEP and 
MEPc/MEP), with random effects on the subject. “Linear and quadratic functions were explored”:

α α α β β= + + + + + εY (T) (T) (X ) (X )i 0 1 i 2 i
2

1 i 2 i
2

where Yi is the ft profile (the frequency or ROM amplitude), Xi is the excitability score (CMAP, CMEP/CMAP, 
MEP/CMEP or MEPc/MEP), Ti is the time (TLL event number) in task progression, and ε indicates the residual 
error of the model.
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The normalizing scores for ft frequency (i.e., the maximal frequency at any time point in the task) and ampli-
tude (the maximal active ROM before the task) in the two sessions were analysed using Student’s t-test to identify 
differences between sessions.

Previously to the above-mentioned analyses, the variables compared using a t-test and the residuals of the 
nonlinear mixed effects models passed the normality tests.

We performed statistical analyses using R software (nlme package). Based on previous recommendations23, we 
set p < 0.01 as the level of significance due to the relatively small sample size of our study.

Results
Table 1 shows the baseline potential scores (obtained prior to task execution) used to normalize the scores during 
task execution. The intensity of TMS (for MEP and CMEP) was selected to obtain potentials of ≈5–10% of the 
CMAP size in the corresponding muscle; the stimulation parameters in both sessions are showed in Table 2.

The maximal active finger index extension ROM (averaged across participants) acquired before execution 
of the 3-minute task was 50.6° (SEM = 3.3) for session 1 and 51.9° (SEM = 2.3) for session 2; these values were 
not significantly different (t9 = 0.75, p = 0.4) (these scores are equivalent to 100% in the ROM amplitude of the ft 
graphs, Fig. 2). The maximal ft frequencies during the task (equivalent to 100% in the frequency of the ft graphs, 
Fig. 2) were 5.7 Hz (SEM = 0.26) and 6.0 Hz (SEM = 0.25) in sessions 1 and 2, respectively; these values were not 
significantly different (t9 = 1.9, p = 0.1).

Motor behaviour during the task.  The 3-min evolution of the ft profile did not differ in either frequency 
(p > 0.2) or ROM amplitude (p > 0.2) in the two sessions. The tapping frequency changed significantly during the 
task (p < 0.001) in both sessions, decreasing rapidly within the first minute, decreasing more shallowly during the 
second minute, and reaching a plateau in the third minute (Fig. 2, left panel). The total decrease in the ft rate was 
≈40%. The change in ROM amplitude during the task followed a similar trend, but the effect was not significant 
(p = 0.057) (Fig. 2, right panel).

Excitability during the task.  Figure 3 shows examples of the different potentials and their modulation 
during task execution in one participant.

First dorsal interosseous muscle.  The CMAP of the FDI changed with task execution (p < 0.001), increasing and 
reaching a maximum value at approximately 30 s and then decreasing progressively during the remainder of the 
3- min task (Fig. 4a,b).

For cmap For cmep For tms- test pulse
For tms-
condinditioning pulse

Tms 
amt

Tms 
rmt

Conditioning TMS pulse

% OF AMT %OF RMT

MEAN 105.0 95.0 57.6 30.6 40.5 47.1 76.3 65.2

SEM 8.1 2.1 1.6 1.3 1.6 1.5 3.7 2.5

Table 2.  Stimulation intensities used in the different sessions (the mean, standard error of the mean (SEM)) 
across participants. CMAP (mA), CMEP and TMS (% of stimulator output).

Figure 2.  Evolution of the ft frequency (left) and ROM amplitude (right) during the task, which did not differ 
across sessions (the MEP-MEPc session and CMAP-CMEP session). The blue and pink bands show the 99% 
CIs.
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The CMEP was approximately 5-times larger than the baseline (rest) value at the beginning of the task. The 
profile along the 3-min duration of ft is shown in Fig. 4c. Notably, however, the plotted profile is merely illustra-
tive because it does not consider the changes in the CMAPs during the task. Analysis of the CMEP/CMAP ratio 
(Fig. 4g) indicated that spinal excitability changed with time, and the change approached significance (p = 0.020). 
The ratio remained relatively stable during the first 100 s of the task but then increased to its maximal level at 
approximately 160 s of task execution (for the remaining variables, MEP and MEPc, and the remaining muscles, 
we will report the results in the same manner, and p-values will be provided for the CMAP, CMEP/CMAP, MEP/
CMEP and MEPc/MEP variables). Thus, CMEP, MEP, and MEPc values will be provided for descriptive purposes 
but will not be analysed because analyses of these values rather than their ratios is biased for evaluating spinal, 
cortical and corticocortical excitability.

Figure 4d shows the profile of the MEP during ft, and Fig. 4h considers the changes in the CMEPs during the 
task. The MEP/CMEP ratio (Fig. 4h) changed significantly with task execution (p < 0.001), increasing during the 
first half of the task and then remaining stable; however, the magnitude of the change was small.

The MEPc profile is shown in Fig. 4e; the values shown in the profile have been normalized to the uncondi-
tioned MEP scores at rest. As expected, the scores at baseline (prior to task execution; Table 1) indicate that the MEPc 
(0.345 mV, SEM = 0.085) was smaller than the MEP (0.476 mV, SEM = 0.100); thus, the conditioning pulse reduced 
the size of the MEP by approximately 26% at rest. Remarkably, however, the MEPc scores were larger than the MEP 
scores at all times during task execution, showing that the conditioning pulse, which reduced the MEP at rest, produced 
facilitation during motor execution. When considering changes in the MEPc with time in relation to the MEP baseline 
scores (Fig. 4e; MEPc-during task/MEP-during baseline), the MEPc increased progressively until nearly the end of the 
task. When this evolution is represented relative to the changes in MEPs during the task (Fig. 4i; MEPc-during task/
MEP-during task), the change over time appears less pronounced but is still significant (p < 0.01).

Extensor indicis muscle.  For the EXT muscle, the CMAP increased significantly with task progression 
(p < 0.001), although the magnitude of the change was small (Fig. 5a,b).

The evolution of the CMEPs during the task is shown in Fig. 5c (the CMEP/CMAP ratio in Fig. 5g). Spinal 
excitability changed significantly with ft execution (p < 0.001); when ft began, spinal excitability was 5-times 
greater than the excitability at rest and increased further to reach its peak after 30 s. It then decreased progres-
sively during the 2nd minute and remained stable (approximately 5-times larger than that at rest) during the final 
minute.

The change in MEPs (Fig. 5d) is shown relative to the change in CMEPs in Fig. 5h. Cortical excitability (the 
MEP/CMEP ratio) changed as the task progressed (p < 0.001) and reached its maximum value at the end of the 
task when it was ≈1.5-fold greater than that at the beginning.

The MEPc at baseline was smaller than the MEP; the conditioning pulse reduced the RMS by ≈20% 
(Table 1). Again, as in the case of the FDI, during task execution, the EXT MEPc was larger than the MEP at 
all times (Fig. 5d,e). As the task progressed, the change in the MEPc/MEP ratio approached statistical signifi-
cance (p = 0.012; Fig. 5i); the increase was small during the first 30 s of the task and then decreased slightly and 
progressively.
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Figure 3.  Examples of evoked potentials and goniometric recordings in a participant. The upper section shows 
the modulation of the different potentials in the three muscles (FDI, EXT and FDS), along task execution.
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Flexor digitorum superficialis muscle.  Although the magnitude of the change in CMAPs was discrete, the 
CMAPs decreased significantly along the ft task (p < 0.001) (Fig. 6a,b).

The profile of spinal excitability (normalized to baseline scores) is shown in Fig. 6c, and the CMEP/CMAP 
ratio is shown in Fig. 6g. The ratio changed during execution of the task (p < 0.001), increasing for the first 
30–40 s and then remaining relatively stable. The changes in the MEPs during the task (Fig. 6d) are shown relative 
to the changes in the CMEPs in Fig. 6h. The change in the MEP/CMEP ratio with ft was small in magnitude but 
statistically significant (p < 0.001)

The MEPc changes resembled the pattern observed for the other index flexor muscle (the FDI) but were 
smaller in magnitude. Remarkably, again, the MEPc at rest was smaller than the MEP on average (Table 1), but 
this pattern reversed with ft execution, and the MEPc became larger than the MEP (Fig. 6d,e). The changes in 
MEPc relative to MEP evolution during ft (Fig. 6i) were significant (p < 0.01).

EMG voluntary activity in the contact phase during the task.  Stimulation was applied during the 
contact phase of the tapping cycle. At this phase the voluntary EMG activity -RMS-, made relative to the changes 
in the RMS of the CMAP at the same time, changed significantly during task execution for the FDI, EXT, and FDS 
(p < 0.001, in all cases). However, in the three muscles, the effect was small in magnitude (section f of Figs. 4–6).

Associations between changes in excitability and motor behaviour during the task.  These anal-
yses show whether muscular excitability and neuromuscular transmission (CMAP), spinal excitability (CMEP/
CMAP) and cortical excitability (MEP/CMEP and MEPc/MEP) explain changes in ft behaviour. The significance 
of the association is shown in Table 3 (in the quadratic model, significance refers to a significant effect over the 
linear fit). The estimated models are presented in Table 4, and the significant relationships are plotted in Fig. 7. 
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Figure 4.  Behaviour of the FDI muscle during the task. The graphs show the RMS values of the CMAP (grey), 
CMEP (pink), MEP (green) and MEPc (blue) and voluntary background EMG activity (yellow) during the 
three-minute task. Sections (a,b) present the same data on different Y-axis scales; (a) optimizes the view, 
and (b) conforms to the other sections. The sections on the left (a–e) represent RMS values that have been 
normalized to the scores obtained at rest prior to execution of the task (except in the case of the MEPc, which 
was normalized to the baseline MEP). The RMS of the EMG voluntary activity at the time of stimulation is 
shown made relative to the RMS of the CMAP (f). The baseline scores (Table 1) are equivalent to the units for 
the Y-axis values. The sections on the right (g–i) depict the ratios.
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Notably, in Fig. 7, the X-axis reflects the excitability in each case rather than the time progression. In fact, the 
greatest excitability may occur at the beginning of the task (see, for instance, Fig. 4a, which shows the CMAP of 
the FDI) or at any other time.

Associations between excitability and ft pattern changes.  The excitability of the FDI muscle (a flexor muscle) 
explained the changes in ft frequency (Table 3). Figure 7a,c shows that the CMAP and supraspinal excitability (the 
MEP/CMEP ratio) increased as the tapping rate increased (Table 4). Compared to the linear model, the quadratic 
model shows a steeper increase in excitability for greater tapping rates.

The nature of the relationships depicted in the models is worth considering. For the behaviour of the CMAPs 
(Fig. 7a), the greatest excitability is associated with a tapping frequency equivalent to approximately 65% of the 
maximal tapping rate; the reason for this is explained by the CMAP profiles (Fig. 4a, also Table 4) and the tapping 
rate (Fig. 2, left panel). The fitted models represented in Fig. 4a show that the maximum CMAP score is achieved 
≈40 s after ft begins. At this time, the ft rate was ≈80% of the maximum rate (Fig. 2, left panel). On the other 
hand, similar CMAP scores can be found both at the very beginning of the task (high tapping frequency) and 
during the middle and end of the process (lower tapping frequencies) (see Fig. 4a). Therefore, very different ft 
rates occur with very similar levels of excitability (as clearly observed in the schematic representation of Fig. 8), 
which is why a significant proportion of the change in the frequency of the tapping rate (approximately 40%, see 
Fig. 2a) is not explained by changes in this excitability variable (a similar pattern is also present for the rest of the 
variables). According to the fitted quadratic model (Table 4), a change in the ft rate of up to 11% is explained by 
the CMAPs (the predicted ft rates vary from 59% for the lowest CMAP score to 70% for the highest level of excit-
ability, Fig. 7a), whereas the global change in the rate was ≈40%.
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Figure 5.  Behaviour of the EXT muscle during the task. The graphs show the RMS values of the CMAP 
(grey), CMEP (pink), MEP (green) and MEPc (blue) and voluntary background EMG activity (yellow) during 
the three-minute task. Sections (a,b) present the same data on different Y-axis scales; (a) optimizes the view, 
and (b) conforms to the other sections. The sections on the left (a–e) represent RMS values that have been 
normalized to the scores obtained at rest prior to execution of the task (except in the case of the MEPc, which 
was normalized to the baseline MEP). The RMS of the EMG voluntary activity at the time of stimulation is 
shown made relative to the RMS of the CMAP (f). The baseline scores (Table 1) are equivalent to the units for 
the Y-axis values. The sections on the right (g–i) depict the ratios.
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Figure 6.  Behaviour of the FDS muscle during the task. The graphs show the RMS values of the CMAP (grey), 
CMEP (pink), MEP (green) and MEPc (blue) and voluntary background EMG activity (yellow) during the 
three-minute task. Sections (a,b) present the same data on different Y-axis scales; (a) optimizes the view, 
and (b) conforms to the other sections. The sections on the left (a–e) represent RMS values that have been 
normalized to the scores obtained at rest prior to execution of the task (except in the case of the MEPc, which 
was normalized to the baseline MEP). The RMS of the EMG voluntary activity at the time of stimulation is 
shown made relative to the RMS of the CMAP (f). The baseline scores (Table 1) are equivalent to the units for 
the Y-axis values. The sections on the right (g–i) depict the ratios.

Muscle

Tapping Frequency Tapping Amplitude

Linear Quadratic Linear Quadratic

FDI CMAP-RMS p < 0.001 p < 0.01 N.S N.S

CMEP/CMAP-RMS p < 0.001 p < 0.001 N.S N.S

MEP/CMEP-RMS p < 0.001 p < 0.01 N.S N.S

MEPc/MEP-RMS N.S N.S N.S N.S

EXT CMAP-RMS N.S p < 0.001 N.S N.S

CMEP/CMAP-RMS p < 0.001 N.S N.S N.S

MEP/CMEP-RMS N.S N.S N.S N.S

MEPc/MEP-RMS N.S N.S N.S N.S

FDS CMAP-RMS N.S N.S N.S p < 0.01

CMEP/CMAP-RMS N.S p < 0.001 N.S N.S

MEP/CMEP-RMS N.S p < 0.01 N.S N.S

MEPc/MEP-RMS N.S N.S N.S N.S

Table 3.  Associations between changes in tapping frequency, tapping amplitude and excitability during the 
3-min task.
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A similar outcome was observed for the cortical excitability of the FDI (Fig. 7c). The change in FDI excita-
bility explains 13% of the change in the frequency of the tapping rate, corresponding to a difference in ft rates 
between 60% for the lowest values of the MEP/CMEP ratio and 73% for the highest ratio values, whereas the 
actual decrease in the tapping rate was ≈40%.

The change in spinal excitability (Fig. 7b) explained the change in the ft rate (Table 4). However, the relation-
ship was negative, and the reduction in the maximal tapping rate was associated with an increase in the excitabil-
ity of the motoneurons controlling the FDI muscle.

The changes in excitability recorded in the EXT muscle explained the reduction in ft frequency along the 
3-minute task, but only in the case of peripheral and spinal excitability (Table 4, Fig. 7d,e). For spinal excitability, 
the association was linear and negative. Conversely, neuromuscular transmission and muscle excitability (CMAP) 
displayed quadratic behaviour, showing that higher scores were associated with lower tapping rates.

In contrast to the other muscles, in the case of the FDS, only quadratic functions helped explain changes in the 
ft profiles considering modifications in excitability. The change in the CMAP explained the change in ft amplitude 
(Table 4, Fig. 7f). The changes in spinal and cortical excitability explained the change in the tapping rate (Table 4, 
Fig. 7g,h).

Discussion
The first objective of this work was to describe the physiological changes in excitability that occur along the cor-
ticomuscular axis during the execution of a simple unresisted repetitive movement performed at the maximal 
possible rate. The second objective was to determine whether those modifications could explain changes in motor 
execution.

Fatigue was expressed with a fast drop in the maximal tapping frequency in the first minute of task execution, 
which was modest in the second minute, and made a plateau in the third part of the task. The R.O.M amplitude 
showed a similar profile but much milder in magnitude, and the change did not reach statistical significance. 
At all the tested levels, excitability was modulated significantly along the task, but the changes in excitability 
explained a modest proportion of the tapping rate drop.

Excitability was tested during task execution and the tapping profiles analysed in time-windows of 2 s. preced-
ing stimulation, therefore avoiding the computation of the few taps disturbed by applying the stimulation. This 
methodology has been traditionally used to study fatigue during isometric contractions15–17; however, for repeti-
tive movements, the typical approach has been to begin evaluating excitability once the task ends9,10. We avoided 
this option because the CNS is known to recover very quickly after muscle contractions that lead to fatigue11,12 
and because testing excitability at rest may not be adequate to explain the changes that occur during task execu-
tion. This last point is supported by the data obtained in the present study and will be discussed later.

The execution of ft at the maximal possible rate produced fatigue very early. The instructions given to the 
subjects were to perform ft at the maximal possible rate throughout the duration of the 3-minute task without 
requirements related to ft ROM, and verbal encouragement was provided to them to tap as fast as they could. 
Under these conditions, fatigue was clearly defined as a waning of the maximal tapping rate: a very rapid decrease 
was observed in the first minute, a more modest decrease occurred during the second minute, and a fairly con-
stant ft rate was achieved during the third minute (approximately 60% of the maximal tapping rate). The ft 
ROM amplitude did not change significantly. At this point, we must consider that during a rhythmic repetitive 

Muscle

CMAP-RMS CMEP/CMAP-RMS MEP/CMEP-RMS

Linear Quadratic Linear Quadratic Linear Quadratic

FDI Tapping Frequency Tapping Frequency Tapping Frequency

α0 73.5*** 148.1*** 97.5*** 99.9*** 95.5*** 96.5***

α1 (Ti) −2.31*** −2.27*** −2.36*** −2.38*** −2.41*** −2.38***

α2 (Ti)2 0.036*** 0.035*** 0.035*** 0.036*** 0.036*** 0.035***

β1 (Xi) 20.05*** −123.8 −0.185*** −0.79*** 1.43*** −0.95

β2 (Xi)2 68.2** 0.015*** 0.57**

EXT Tapping Frequency Tapping Frequency Tapping Frequency

α0 −6.30*** 99.2***

α1 (Ti) −2.48*** −2.62***

α2 (Ti)2 0.04*** 0.04***

β1 (Xi) 203.02*** −0.63***

β2 (Xi)2 −102.01***

FDS Tapping Amplitude Tapping Frequency Tapping Frequency

α0 −0.75** 100.1*** 93.2***

α1 (Ti) −1.29*** −2.59*** −2.55***

α2 (Ti)2 0.02*** 0.04*** 0.04***

β1 (Xi) 56.0** −3.16*** 2.28**

β2 (Xi)2 −27.3** 0.187*** −0.33**

Table 4.  Estimated coefficients in the linear and quadratic models with a significant effect on finger-tapping 
behaviour. *** p < 0.001, ** p < 0.01; Yi = α0 + α1 (Ti) + α2 (Ti)2 + β1 (Xi) + β2 (Xi)2 + ε
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movement, a close inverse relationship exists between the tapping rate and ROM amplitude. Tapping at the max-
imal possible rate causes a reduced ROM amplitude; therefore, if participants were to tap with a maximal ROM, 
their maximal ft frequency would be much lower. In this case, the behaviour of the flexor and extensor muscles 
should probably be different, as would also be the case if the movement were performed against resistance. This 
is a key point that must be considered to properly understand the scope of our study: the particular relationship 
between rate and ROM amplitude was observed chiefly because subjects performed maximal-rate ft with a very 
small ROM amplitude (≈25% of the subjects’ maximal ROM amplitude).

The behaviour in the ft profile is consistent with that found in previous studies in which similar tasks were 
evaluated. Performing tapping at the maximum possible rate for 30 s has been shown to reduce movement fre-
quency by approximately 15–20%5,10,13,14, as in the present work. The temporal evolution of ft ROM showed 
changes that were less pronounced than the changes in the ft rate, which is consistent with previous works that 
used tapping tasks of much shorter durations5,13,14. As previously mentioned, since tapping at the highest rate is 
bound to produce a smaller ROM, the fatigue related to the tapping rate may not necessary be similarly linked 
to ROM.

Interestingly, the changes in the excitability of the flexor and extensor muscles during task execution were 
significant despite the antagonistic functions of these muscles. The extensor works against gravity to lift the fin-
ger, and the flexors act to stop extension and perform flexion (Fig. 1b shows that FDI voluntary EMG activity 
is evident just before peak extension (this activity stops the extension) and just after it (when flexion is acceler-
ated)). These changes in excitability with task progression appeared at different levels of the corticomuscular axis. 
Importantly, excitability scores acquired through CMEP, MEP and MEPc are dependent on the level of motoneu-
ronal discharge (i.e., EMG background activity) at the time of stimulation. EMG background activity changes 
with task progression un-avoidably, as it is intrinsic to the execution of a fatiguing task. However, the change of 
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Figure 7.  Graphic representation of the functions explaining the association between changes in excitability 
and motor behaviour (i.e., changes in the ft frequency or amplitude). Only significant relationships are 
presented. The upper plots (a–c) represent the FDI, the middle plots (d,e) show the EXT, and the lower plots 
(f–h) show the FDS. The grey, pink and green plots depict muscle, spinal and cortical excitability, respectively. 
All significant associations were established based on the change in ft frequency except in the case of CMAP 
excitability tested on the FDS, which explained the observed changes in the ft amplitude (section f).
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EMG background activity at the time of stimulation was small. Remarkably, the computation the MEP/CMEP, 
and MEPc/MEP ratios cancels this effect out, but not in the case of the CMEP/CMAP ratio.

Focussing on evoked potentials, the effects on neuromuscular propagation were remarkable. First, they were 
small in magnitude but significant. The most impacted muscle was the FDI, for which the CMAPs increased by 
≈15% over ≈30 s and then progressively decreased. In the other two muscles, the changes in CMAPs with time 
were also significant but were less pronounced. Second, this finding indicates that the reading and interpretation 
of signals evoked at the spinal or cortical levels must necessarily consider changes in excitability at the muscular 
level and importantly, at the time of fatigue development. We addressed this relevant point by computing the 
CMEP/CMAP, MEP/CMEP, and MEPc/MEP ratios; the analyses of the raw CMEP, MEP, and MEPc values were 
not considered (although their profiles are depicted in sections c-e of Figs. 4–6). In a few previous studies, similar 
approaches have been used to evaluate the neural expressions of muscle fatigue1,14.

In contrast to the evolution of the CMAP, spinal excitability (i.e., the CMEP/CMAP ratio) exhibited a large 
change during task execution. Spinal cord excitability was approximately 5-times larger at the beginning of task 
execution than that at rest both in a specific index finger extensor (the extensor indicis) and in a specific index 
finger flexor (the first dorsal interosseous for which flexion is the essential role when the thumb is fixed in abduc-
tion13,24, as was the case in this study). Spinal excitability in the flexor digitorum superficialis was modulated to a 
lesser extent during task execution. Notably, this muscle does not act specifically on the index finger but also acts 
on other fingers. As an aside, in our experimental setup, the wrist was fixed in extension, which may contribute 
to the inhibition of this muscle at presynaptic and postsynaptic levels within the spinal cord25. For this reason, 
the change in excitability that occurs in this muscle during the task, as well as the association between changes in 
excitability and the ft profile (as discussed below), may be quite different from the changes that occur in the other 
two explored muscles. In the FDI and EXT, spinal excitability changed significantly with time, but in both cases, 
it remained well above the level of baseline excitability tested at rest, and the deviation from those elevated levels 
of excitability was small.

Cortical excitability, as measured by the MEP/CMEP ratio, changed significantly during the task in the three 
muscles. Notably, the magnitude of this change differed in the three muscles. In the two muscles that act specif-
ically on the index finger (FDI and EXT), excitability increased during the 3-min task. In the FDS, the small but 
significant increase in excitability reached a maximum at approximately 90 s, and excitability then decreased 
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Figure 8.  Representation of the poor explicative value of excitability on the tapping rate drop along the 
fatiguing task. For a same level of excitability (yellow/green and purple/blue dots at the upper plots), the 
maximal tapping rates were very different (lower plots).

https://doi.org/10.1038/s41598-020-60043-0


13Scientific Reports |         (2020) 10:3166  | https://doi.org/10.1038/s41598-020-60043-0

www.nature.com/scientificreportswww.nature.com/scientificreports/

slowly. In light of previous work that has shown a clear increase in cortical excitability, our results were to some 
extent unexpected9,10. However, some of the earlier reports acquired MEPs after fatiguing repetitive movement 
and/or by testing MEP without considering the modulation of spinal cord and muscle excitability during test-
ing9,10 (in our work and in the case of the spinal cord, this modulation was found to be large). Our protocol 
controls for these sources of bias. Some other studies in which these limitations were controlled have consistently 
shown increased excitability of inhibitory interneurons (GABAb) during fatiguing ft5. We did not specifically 
test those circuits in the present work, but the current results suggest that the increased excitability of inhibitory 
GABAb -interneurons in M15,13 is likely compensated for by changes in the excitability of some other neural pop-
ulation, as shown by the results of the MEP/CMEP ratio.

We evaluated some of the possible compensatory circuits using paired-pulse TMS with an ISI of 2 ms, likely 
testing GABAa inhibition in M126. Remarkably, a standard paired-pulse protocol for testing this form of inhibi-
tion (i.e., using as conditioning pulse intensity 90% of the AMT27) produces a very powerful inhibition on the 
conditioned MEPs; thus, this methodology might impede the detection of increased levels of inhibition gener-
ated by the task. To avoid this, at baseline, we set individualized conditioning pulse intensities producing condi-
tioned MEPs smaller the un-conditioned ones, but larger enough to permit its modulation by the execution of 
the fatiguing task. Unexpectedly, however, during task execution the effect of the conditioning pulse on the MEP 
was the opposite: it produced facilitation of M1 in all the tested muscles. We have not identified the physiological 
mechanism that underlies this observation, but it may involve changes in the excitatory/inhibitory balance of M1 
during the execution of the fatiguing task. The parameters that we used at rest were selected to permit evaluation 
of intracortical GABAa inhibition26. Interestingly, intracortical excitatory circuits can also be tested using similar 
ISI28. This is the case for short intracortical facilitation (SICF), where a subthreshold pulse (delivered 1–5 ms 
after a suprathreshold pulse) increases the MEP size, an effect that is mediated by M1 excitatory interneurons29. 
One may be tempted to speculate that in our experiment, a similar mechanism may be operating in which the 
conditioning pulse arrives at a moment at which altered excitatory/inhibitory balance is produced by the task. On 
the other hand, although our results cannot explain the mechanism underlying this observation, a very relevant 
implication of these results is the need to test fatigue expressions at the time of fatigue1,5,13,14 as the excitatory/
inhibitory balance at that time is quite different from the balance at rest9,12,30.

Despite the above-described clear and significant changes in excitability, our study was designed to answer a 
more relevant question: Do these changes in excitability explain the modifications in tapping rate or amplitude? 
To answer this question we tested the association between the changes in tapping profiles and excitability. In some 
muscles and variables only linear functions were significant. Thus, the behaviour was well explained by a lineal 
fit, the change in the tapping profile is therefore constant with the change in excitability (for instance Fig. 7e). In 
some other muscles and variables, only quadratic functions were significant (Figs. 7d,g). In those with β1 positive 
and β2 negative (Table 4 Fig. 7d), this means that there is an optimal level of excitability for behaviour, resulting 
excitability levels above and below this point in poorer performance. If β1 negative and β2 positive (Fig. 7g), there 
is an excitability level at which the behaviour was the poorest, and levels of excitability above and below produced 
better performance. Finally in some cases both linear and quadratic models were significant. This means that the 
tapping frequency (or ROM amplitude) always increases (or decreases) with excitability, but this change is not 
constant (Fig. 7c). As a whole, the results clearly showed that such dependence appears to exist, but it is fairly 
limited. Our results show that very similar levels of excitability are observed at very different ft rates (Fig. 8). This 
necessarily means that some mechanism other than the one explored in this work is responsible for a significant 
proportion of the waning of finger-tapping frequency observed during this repetitive unresisted task. It is well 
known that peripheral mechanisms related to muscle contractility, which was not tested in this work, play a major 
role in fatigue31. This has recently been confirmed using a ft task performed at the maximal possible rate and was 
shown to occur even when the duration of the task was short (30 s)13; in that case, a slowing of muscle relaxation 
was evident at the end of the task in the presence of a tapping rate decrease of ≈15%. This mechanism appears 
to be much less relevant in the case of isometric fatiguing tasks13. In the present work, we observed decreases in 
tapping rate of up to 40% at the end of the task; however, the changes in the cortical excitability (MEP/CMEP) of 
the FDI muscle, which was the parameter with the greatest explanatory value, accounted for ft rate reductions of 
only up to 13% (note that this is approximately 33% of the total decrease in frequency).

Apart from peripheral elements, central mechanisms can also coexist. At this point, one must keep in mind 
that our work explored an important but limited number of central circuits with potential relevance to fatigue. 
Other populations of interneurons (inhibitory or excitatory) may play a role in the development of fatigue. This 
appears to be the case for inhibitory GABAb interneurons5. Additionally, a putative role of other supraspinal 
structures involved in motor control (other than M1) has to be considered during fatigue development32.

Alternatively, the presence of central adaptations during fatigue might not have a correlate in excitability 
changes reflected by the MEP. For instance, the reduction in muscle force and central drive to the muscle might 
not match changes in the MEP features13,16. Following this line of thought, the central mechanism of fatigue 
during RRM might be linked to the precise sequence of activation of antagonistic muscles33. However, as far as 
the corticomuscular axis is concerned, the excitability of the structures explored in our work appears to have a 
limited impact on the inability of the subjects to maintain the maximal tapping rate during repetitive movement.

Study limitations.  Several points should be considered limitations of our study. First, the study sample size 
was small. Four of the 14 initially recruited subjects chose not to take part in the CMAP-CMEP session due to 
the discomfort produced by these techniques. Thus, only 10 participants completed the two sessions. Although 
similar sample sizes have been used in relevant studies in the field1,16, the use of larger samples would allow a more 
confident estimation of the findings. To account for this limitation, we adopted a conservative approach in our 
data analyses, and the level of significance was set at p < 0.01, as has been recently recommended23.
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Second, the extension phase of ft in our study was anti-gravitational, and the flexor muscles worked in favour 
of gravity. Since the movement was not resisted and the mass of the index finger is small (the goniometer is also 
very light), we have discussed our results as stemming from an unresisted movement, but it is true that the resist-
ance for the extensors and the flexors in our task is not exactly the same. This is important since repetitive move-
ments against higher levels of resistance might present different evolution of muscle excitability and processes 
related to muscle force production34.

Finally, during the recording of the MEP and MEPc, we focussed on the cortical hot-spot of the FDI, which has 
a main role in this task5,13,14,24, and with this hot-spot we recorded potentials in other two muscles. We adopted this 
approach since the cortical spatial distribution of neurons targeting hand muscles is overlapped. This has been 
shown previously by different image studies in human35,36 and with neuronal recordings in monkey37. Therefore, 
in our study, even though we were on the hot-spot of the FDI, we were expecting to stimulate a large proportion of 
the neuronal pool targeting the other two muscles engaged in digital movements. In fact, as observed in our work 
(Table 1), the MEP-RMS scores for the different muscles represented a similar proportion of their CMAP-RMS. 
This suggests we tested a similar proportion of the total neuronal pool in the three muscles, during TMS. For such 
reason, we believe the use of a single hot-spot is suitable for our purpose.

Conclusions
Our work shows that changes in excitability along the corticomuscular axis play a role in the fatigue that develops 
during unresisted repetitive movements but cannot fully explain the observed decrease in the tapping rate. When 
muscles that act specifically on the index finger were tested, increased spinal excitability in both the flexor and 
the extensor was associated with a lower tapping rate. The cortical excitability of the specific flexor muscle tested, 
which plays a main role in the rapid change from extension to flexion that is necessary to produce higher tapping 
rates, increased with higher tapping rates.

Data availability
The datasets generated during and/or analysed during the current study are available from the corresponding 
author on reasonable request.
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