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Background: Pancreatic ductal adenocarcinoma (PDAC) remains treatment refractory.
Immunotherapy has achieved success in the treatment of multiple malignancies.
However, the efficacy of immunotherapy in PDAC is limited by a lack of promising
biomarkers. In this research, we aimed to identify robust immune molecular subtypes of
PDAC to facilitate prognosis prediction and patient selection for immunotherapy.

Methods: A training cohort of 149 PDAC samples from The Cancer Genome Atlas
(TCGA) with mRNA expression data was analyzed. By means of non-negative matrix
factorization (NMF), we virtually dissected the immune-related signals from bulk gene
expression data. Detailed immunogenomic and survival analyses of the immune molecular
subtypes were conducted to determine their biological and clinical relevance. Validation
was performed in five independent datasets on a total of 615 samples.

Results: Approximately 31% of PDAC samples (46/149) had higher immune cell
infiltration, more active immune cytolytic activity, higher activation of the interferon
pathway, a higher tumor mutational burden (TMB), and fewer copy number alterations
(CNAs) than the other samples (all P < 0.001). This new molecular subtype was named
Immune Class, which served as an independent favorable prognostic factor for overall
survival (hazard ratio, 0.56; 95% confidence interval, 0.33-0.97). Immune Class in
cooperation with previously reported tumor and stroma classifications had a cumulative
effect on PDAC prognostic stratification. Moreover, programmed cell death-1 (PD-1)
inhibitors showed potential efficacy for Immune Class (P = 0.04). The robustness of our
immune molecular subtypes was further verified in the validation cohort.
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Conclusions:By capturing immune-related signals in the PDAC tumor microenvironment,
we reveal a novel molecular subtype, Immune Class. Immune Class serves as an
independent favorable prognostic factor for overall survival in PDAC patients.
Keywords: pancreatic ductal adenocarcinoma, immune molecular subtypes, non-negative matrix factorization,
immunotherapy, immunogenomics
INTRODUCTION

Pancreatic ductal adenocarcinoma (PDAC) is a fatal disease with
a 5-year overall survival rate of approximately 9% (1, 2).
Surgical resection remains the only curative method, and evolving
adjuvant chemotherapy regimens have shown limited efficacy in
improving long-term outcomes (3). The emergence of immune
checkpoint blockade therapies has shed light on the treatments
of PDAC patients. However, according to recent clinical trials,
only a minority of PDAC patients benefit from immunotherapy
(4). Moreover, although various predictive biomarkers for
immunotherapy have been developed for solid tumors, none have
proven their efficacy inPDACpatients (5–7).Thus, it is necessary to
develop new biomarkers for immunotherapy with particular
emphasis on PDAC.

Recently, a series of other molecular subtype classifications
based on high-throughput expression profiling data were
developed for PDAC, with the aim of prognostic stratification.
These classifications included a three-subtype classification
[classical, quasimesenchymal (QM), and exocrine-like] based on
microdissected samples (8) and a four-subtype classification
[squamous, pancreatic progenitor, immunogenic, and aberrantly
differentiated endocrine exocrine (ADEX)] based on bulk samples
(9). However, given that these classifications were developed using
different sources of samples and different techniques, their
prognostic values need to be validated in more datasets (10, 11).
Moreover, these classifications were based on tumor cells rather
than microenvironment compartments of PDAC. The tumor
microenvironment of PDAC comprises an admixture of multiple
cell types within the extracellular matrix, including cancer-
associated fibroblasts (CAFs) and various kinds of immune cells
(12, 13). As a robust method for unsupervised class discovery, non-
negative matrix factorization (NMF) has shown the capability to
detect context-dependent molecular signals from these distinct
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compartments (14). Moffitt et al. used NMF to virtually
microdissect bulk RNA sequencing data and identify tumor
subtype classification (classical and basal-like) and stroma
subtype classification (normal and activated) (15). Nevertheless,
few molecular classifications have focused on the immune
compartments of PDAC or been correlated with the treatment
efficacy of immunotherapy. Thus, further research should focus on
identifying immune molecular subtypes based on the virtual
microdissection of immune-related signals within the tumor
microenvironment to facilitate prognostic stratification and
discover effective biomarkers for immunotherapy (16).

The current research applied theNMFmethod to virtually dissect
immune-related signals fromgeneexpressiondataofPDACsamples.
We identified an immune molecular subtype, Immune Class, based
on the tumor immune microenvironment of PDAC. Detailed
immunogenomic profiling showed that Immune Class had several
characteristics, including more active immune cytolytic activity,
higher immune cell infiltration, higher tumor mutational burden
(TMB), and lower copy number alterations (CNAs) than
Nonimmune Class. Immune Class also served as an independent
favorable prognostic factor for overall survival. In addition, our
immune molecular subtypes might complement the current
classification systems and facilitate personalized immunotherapy.
Our findings provide a comprehensive understanding of the
immunological landscape in PDAC and deserve further validation
in PDAC patients treated with immunotherapy.
MATERIALS AND METHODS

PDAC Datasets and Samples
We analyzed the mRNA gene expression data from a cohort of 764
patients with pancreatic cancers (Figure 1). A cohort of 149 PDAC
samples from The Cancer Genome Atlas (TCGA) was used as the
training cohort. Public level 3HT-seq fragments per kilobase of exon
model per million mapped fragments (FPKM) data were
downloaded from the TCGA data port (https://portal.gdc.cancer.
gov/, accessed September 16, 2020) (17). The corresponding
clinicopathological information was collected at the same time,
including survival time, survival status, age, sex, TNM stage,
histological grade, and etc. Only primary PDAC tumor samples
were included fordownstreamanalyses.Atotalof5000geneswith the
highest median expression in the samples were retained for NMF
analysis. Five publicly available datasets with a total of 615 samples
were further used for validation (series: GSE85916, GSE71729,
GSE57495, GSE21501, and E-MTAB-17951). In these datasets,
gene expression was profiled using different microarray platforms
([HG-U219] Affymetrix Human Genome U219 Array,
Rosetta/Merck Human RSTA Custom Affymetrix 2.0 microarray,
July 2021 | Volume 12 | Article 690056
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Agilent-014850WholeHumanGenomeMicroarray 4x44KG4112F,
and Illumina humanWG6 BeadChip v3). The gene expression data
were downloaded from the Gene Expression Omnibus (GEO)
(https://www.ncbi.nlm.nih.gov/geo/) and Array Express (www.ebi.
ac.uk/arraryexpress). The probe IDs were transformed to gene
symbols with GEO platform files, and probes mapping to the same
gene symbol were collapsed by mean expression. Samples were
normalized using to each other using quantile normalization with
the R package “limma” (18). The key information of these five
datasets is summarized in Supplementary Table 1.

Virtual Dissection of Immune-Related
Gene Expression Signals and
Unsupervised Class Discovery
The tumor, stromal, and immune cell gene expression signals in
the training TCGA-PDAC cohort were deconvoluted and
virtually microdissected using NMF as previously described
Frontiers in Immunology | www.frontiersin.org 3
(14, 15) with the R package “NMF” (19). k = 9 was selected as
the number of factorization factors because it could achieve high
cophenetic coefficients and provide effective deconvolution of the
TCGA-PDAC cohort in terms of immune-related signals. The
coefficient matrix and basis matrix are displayed in
Supplementary Table 2. We applied a previously reported
immune enrichment score calculated by single-sample gene set
enrichment analysis (ssGSEA) (20) to obtain the immune-related
NMF factor. The nine NMF factors were compared to the
immune enrichment score, and the NMF factor with the
highest level of immune enrichment score was subsequently
referred to as the immune factor (Supplementary Figure 1A).
The top-ranked genes by their loadings of the immune factor are
herein referred to as exemplar genes (Supplementary Table 3).
The top 100 exemplar genes of the immune factor were subjected
to Gene Ontology (GO) enrichment and Kyoto Encyclopedia of
Genes and Genomes (KEGG) pathway analyses (21–23). A false
FIGURE 1 | Flow chart of the study. A total of 764 PDAC samples were included in this study. A training cohort (TCGA-PDAC) including 149 samples was virtually
microdissected to identify immune molecular subtypes. Detailed immunogenomic characterization was performed between the two immune molecular subtypes.
The Immune Classifier was adopted in five independent validation datasets to validate the immune molecular subtypes.
July 2021 | Volume 12 | Article 690056
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discovery rate (FDR)-adjusted P-value < 0.05 was considered as
the criterion for significant enrichment for GO terms and KEGG
pathways. Subsequently, the top 50 exemplar genes of the
immune factor were selected for unsupervised consensus
clustering to divide the TCGA-PDAC cohort into two immune
molecular subtypes: Immune Class and Nonimmune Class
(Figures 2C, 3). Finally, the subtypes obtained from consensus
clustering were further refined with the R package “Random
Forest” (24); thus, the final Immune Class and Nonimmune Class
were identified. The multidimensional scaling (MDS) plot and
confusion matrix are displayed in Figures 2A, B.
Frontiers in Immunology | www.frontiersin.org 4
Molecular Characteristics of the Immune
Molecular Subtypes and the Generation of
Immune Molecular Subtype Classifiers
Sets of previously reported immune- and stroma-related gene
expression signatures representing immune cell infiltration and
immune responses are summarized in Supplementary Table 4.
We applied these gene sets to characterize the immune molecular
subtypes using ssGSEA and nearest template prediction (NTP).
ssGSEA was conducted using the R package “GSVA” (25), and
NTP was conducted using an R version of the GenePattern
module NTP (26, 27). The Estimation of Stromal and Immune
A B

C

FIGURE 2 | Immune molecular subtypes determined after consensus clustering and random forest refinement. (A) Consensus clustering of the TCGA-PDAC cohort using
the exemplar genes was further refined using random forest as illustrated in the multidimensional scaling (MDS) plot. Purple dots indicated patients classified as Immune
Class according to consensus clustering, and blue dots indicates patients classified as Nonimmune Class. (B) Heatmap of confusion matrix exhibited the correction rate of
random forest classifier compared with consensus clustering. (C) Heatmap displayed the overlap between NMF factors, immune factor weight, immune enrichment score,
consensus clustering using exemplar genes, and immune molecular subtypes. The expression of exemplar genes was illustrated at the bottom heatmap.
July 2021 | Volume 12 | Article 690056
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FIGURE 3 | Identification of PDAC immune molecular subtypes. Consensus-clustered heatmap of the TCGA-PDAC cohort using exemplar genes of the immune
non-negative matrix factorization (NMF) factor. Immune Class was indicated in purple and constituted 30.8% (46/149) of the TCGA-PDAC cohort. Single sample
gene set enrichment analysis (ssGSEA) was performed using a series of gene sets, including signatures of innate and adoptive immune response. The enrichment
score of ssGSEA was displayed in the heatmap. Wilcoxon rank sum test compared ssGSEA enrichment scores of the immune-related signatures between Immune
Class and Nonimmune Class. Methylation estimated leukocyte percent, Bailey’s classification, Collison’s classification, and Moffitt’s tumor classification, Dijk’s 4-tier
classification, pancreatic adenocarcinoma molecular gradient (PAMG), mutation signature groups and methylation clusters were also shown at the top panel. Tcm
cells, central memory T cells; Tem cells, effector memory T cells; TFH cells, T follicular helper cells; Th17 cells, T helper 17 cells; Treg cells, Regulatory T cells; Tgd
cells, gd T cells; NK cells, natural killer cells; DC, dendritic cells; iDC, immature dendritic cells; aDC, activated dendritic cells; pDC, plasmacytoid dendritic cells; T/NK
metagene, T cell/NK cell metagene; B/P metagene, B cell/plasma cell metagene; M/D metagene, monocyte/dendritic cell metagene; TITR, tumor infiltrating regulatory
T cells; IFN-g, interferon-g; TGF-b, transforming growth factor-b; TBRS, TGF-b response signature; ECM, extracellular matrix.
Frontiers in Immunology | www.frontiersin.org July 2021 | Volume 12 | Article 6900565
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cells in MAlignant Tumor tissues using Expression data
(ESTIMATE) algorithm was used to calculate the immune
enrichment score and the stromal enrichment score with the R
package “ESTIMATE” (20). Differential analyses between the two
immunemolecular subtypes revealed differentially expressed genes
(DEGs). Linear models were used to identify DEGs with the R
package “limma” (18). An FDR < 0.05 combined with |log2(fold
change)| ≥ 1.5 was set as the threshold for DEG identification. The
DEGs reaching the threshold were considered the Immune
Classifier. Genes whose expression was higher in Immune Class
than in Nonimmune Class were considered as classifier genes of
Immune Class, and vice versa. Gene set enrichment analysis
(GSEA) was utilized to identify differential enrichment of the
immune-related pathways, infiltrating immune cells, and immune
responses (28). GSEAwas performed using GSEA software version
4.1.0 from the Broad Institute, and gene sets (as gene symbols
version 7.2) were downloaded from the Molecular Signatures
Database (http://software.broadinstitute.org/gsea/msigdb). The
normalized enrichment score (NES) was obtained by 1000
permutations. Gene sets with a p-value < 0.05 and an FDR < 0.25
were considered significantly enriched. All heatmaps were
generated using the R package “pheatmap”.

Correlations of the Immune Molecular
Subtypes With Immunogenomic Features
CNA data generated by GISTIC2.0 were obtained from the Broad
Institute GDAC FireBrower (http://firebrowse.org). Arm-level
amplifications and deletions were defined by gains or loss in each
chromosome. The numbers of both arm- and focal-level CNAs
were compared between Immune Class and Nonimmune Class
using theWilcoxon rank-sumtest.Themutationdataof theTCGA-
PDAC cohort were downloaded from the TCGA data portal
(https://tcga-data.nci.nih.gov/tcga), and TMB was calculated as
the number of nonsynonymous mutations per million bases. We
used the MutSig2.0 approach (29) to identify and visualize
significantly mutated genes (SMGs) with the R package
“Maftools” (30), and mutations in known driver genes of PDAC
and genes in the WNT/b-catenin pathway were visualized in an
oncoplot. Illumina Infinium human methylation 450K array data
was downloaded from UCSC Xena (http://xena.ucsc.edu/).
Pathological tumor cellularity, ABSOLUTE purity, DNA
hypermethylation purity, and the DNA methylation-estimated
leukocyte fraction were obtained from a previous study on the
genomic characterization of PDAC (31). Twenty-two
subpopulations of tumor-infiltrating lymphocytes (TILs) were
analyzed using the CIBERSORT algorithm (https://cibersort.
stanford.edu/) in R (32). A list of immunomodulatory genes was
obtained from a previous publication (33), and the mRNA
expression profiles of these genes were compared between
Immune Class and Nonimmune Class.

Combination of the Immune Molecular
Subtypes and Other PDAC Molecular-
Subtype Classifications
The correlations between our immune molecular subtypes
(Immune Class and Nonimmune Class) and previously
Frontiers in Immunology | www.frontiersin.org 6
reported PDAC molecular subtypes were analyzed. Bailey et al.
reported a four-subtype classification of pancreatic cancer:
squamous, progenitor, immunogenic, and ADEX (9). Collison
et al. reported a three-subtype classification: QM, classical, and
exocrine-like (8). Moffitt et al. proposed two classifications of
pancreatic cancer through virtual microdissection of the tumor
epithel ium and stromal components in the tumor
microenvironment (15). The tumor classification contained the
classical and basal subtypes, whereas the stromal classification
contained the activated and normal subtypes. We defined these
four molecular subtype classifications in each sample from the
TCGA-PDAC cohort using the published classifier genes. The
distribution of the aforementioned classifications in immune
molecular subtypes was compared using Fisher’s exact test. A
Sankey diagram was generated using the R package “networkD3”.
Cramer’s V statistic was applied to measure the similarity between
two categorical variates, herein different PDAC molecular subtype
classifications. A Venn diagram comparing the classifier genes of
different classifications was plotted using the R package
“VennDiagram”. The association between clinicopathologic
characteristics and overall survival in the TCGA-PDAC cohort
was analyzed using uni- andmultivariateCox proportional hazards
(CoxPH) regression models. Kaplan-Meier survival analysis was
employed to visualize the overall survival, and the log-rank test was
used to compare differences among different curves. A forest plot
was plotted using the R package “forest plot”. PDAC molecular
classifications in some recent studies were also reproduced in the
TCGA-PDAC cohort. Hierarchal clustering was performed using
the function “hclust” in R. Pancreatic adenocarcinoma molecular
gradient was generated using the R package “pdacmolgrad”.
Consensus clustering was performed using the R package
“ConsensusClusterPlus”. Mutation signatures were downloaded
from COSMIC (https://cancer.sanger.ac.uk/signatures/) and
identified using the R package “deconstructSigs”.
Validation of the Immune Molecular
Subtypes in Independent
External Datasets
The expression of a customized 795-gene NanoString panel in 32
patients receiving sequential cytotoxic T lymphocyte-associated
antigen-4 (CTLA-4) inhibitors and programmed cell death 1
(PD-1) inhibitors was profiled in a previous study (34). Subclass
mapping was performed via a bioinformatic approach to identify
common subtypes between independent cohorts (35). The
similarity of the expression of these genes between patients in
the TCGA-PDAC cohort and immune checkpoint blockade
responders was evaluated using subclass mapping in the
GenePattern SubMap module. The Immune Classifier genes
were used to predict immune molecular subtypes in five
independent external validation datasets using NTP. Immune-
related gene signatures (Supplementary Table 4) further
validated and characterized the presence of immune molecular
subtypes in these validation datasets. Treatment response to
immunotherapy was also predicted in the validation datasets
using SubMap.
July 2021 | Volume 12 | Article 690056
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Statistical Analysis
All statistical analyses were conducted in R software (version 4.0.1)
(http://www.r-project.org). Correlations between continuous
variables and immune molecular subtypes were analyzed using
Student’s t-test and the Wilcoxon rank-sum test for normally
distributed and nonnormally distributed data, respectively.
Correlations between categorical variates and immune molecular
subtypes were analyzed using the chi-square test or Fisher’s exact
test. Survival analysis, including CoxPH regression, Kaplan-Meier
survival analysis and log-rank tests, was performed using the R
packages “survival” and “survminer”. A two-sided P value < 0.05
was considered statistically significant.
RESULTS

Identification of the Immune Molecular
Subtypes Through Virtual Microdissection
With the aim of virtually microdissecting immune-related signals
from bulk gene expression data, we performed unsupervised NMF
analysis of 149 PDAC samples in the TCGA cohort (training cohort,
Figure 1). Among the different expression patterns determined by
NMF, one was correlated with a previously reported immune
enrichment score reflecting the presence of infiltrating immune
cells in tumor tissues (Supplementary Figure 1A) (20). Thus, this
expression patternwas regarded as the immuneNMF factor, and the
top-rankedgeneswith thehighestweight contributing to the immune
NMF factor were considered as exemplar genes. Enrichment
analyses of GO terms and KEGG pathways on exemplar genes
provided additional evidence of immune-related functions and
signaling (Supplementary Figures 1B, C and Supplementary
Table 5). For example, enriched biological processes included the
response to interferon-gamma (IFN-g) and positive regulation of
T cell activation. By utilizing consensus clustering on exemplar
genes and random forest refinement (Figures 2A, B), immune
molecular subtypes were identified and further referred to as
“Immune Class” and “Nonimmune Class” (Figure 2C). Immune
Class accounted for 30.8% (46/149) of the training cohort and
exhibited higher expression of exemplar genes and higher immune
enrichment score than Nonimmune Class (Figures 2, 3).

ssGSEA revealed significant enrichment of a series of gene sets
associated with innate and adaptive immune cell subpopulations,
including B cells, cytotoxic T cells, and natural killer cells (NK cells),
in Immune Class (all P < 0.0001) (Figure 3). Significant enrichment
of tumor-suppressing Th1 cells, not tumor-promoting Th2
cells (P = 0.38), was also observed in Immune Class (P = 1.5e-07).
Similarly, we found enrichment of a proinflammatory M1
macrophage signature (P = 6.3e-04) rather than an anti-
inflammatory M2 macrophage signature (P = 0.61) in Immune
Class. A six-gene IFN-g signature that was reported to induce
programmed death ligand 1 (PD-L1) expression and predict the
therapeutic efficacy of the PD-1 inhibitor pembrolizumab in head
andnecksquamouscell carcinoma(34)wasalsosignificantly enriched
inImmuneClass (P=1.6e-04).Othersignatures significantlyenriched
in Immune Class included tertiary lymphoid structure, immune
cytolytic activity, WNT/b-catenin and transforming growth factor
(TGF-b) pathway, and stromal enrichment score (all P < 0.0001).
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Class comparison analysis revealed 95 genes that were
significantly overexpressed in Immune Class and 5 genes that
were significantly overexpressed in Nonimmune Class
(Supplementary Table 6). The Immune Classifier was further
built based on the expression of this set of 100 genes
(Supplementary Table 7). The Immune Classifier was mainly
composed of immune-related genes, for example, B cell surface
markers such as CD19, membrane spanning 4-domains A1
(MS4A1, CD20), CD79A and CD79B, and T cell surface markers
such as CD2, CD3D, CD3E, and CD5. Several immunoglobulin
geneswere also overexpressed in ImmuneClass and included in the
Immune Classifier, such as the Fc fragment of IgE receptor II
(FCER2), Fc receptor-like 1/2/3 (FCRL1/2/3) and joining chain of
multimeric IgA and IgM (JCHAIN). Furthermore, chemokine
receptor and ligand genes, such as C-X-C motif chemokine ligand
12/13 (CXCL12/13), C-C motif chemokine ligand 19/21 (CCL19/
21), and C-C motif chemokine receptor 4/7 (CCR4/7) were
presented in the Immune Classifier. Granzyme genes (granzyme
K/E,GZMK andGZME) were also overexpressed in ImmuneClass,
indicating the cytotoxic activity of T cells and NK cells. Similarly,
GSEA was employed to analyze the enrichment of immune cells,
IFN-a and IFN-g responses, tumor necrosis factor-a (TNF-a)
signaling, Janus kinase/signal transducer and activator of
transcription (JAK/STAT) signaling, and WNT/b-catenin
signaling (all p < 0.05 and FDR < 0.25, Supplementary Figure 2
and Supplementary Table 8).

In conclusion, by performing virtual microdissection in
PDAC, we identified an immune molecular subtype named
Immune Class and demonstrated the potential of Immune
Class to capture signatures of immune cell infiltration, innate
and adaptive immune responses, and immune-related pathways
such as interferon signaling and WNT/b-catenin signaling.

Correlations Between the Immune
Molecular Subtypes and
Immunogenomic Characteristics
Several previous studies have correlated certain immunogenomic
characteristics with immune cell infiltration and the antitumor
immune response. In a recent study, the number of major
histocompatibility complex (MHC) Class I-associated neoantigens
and driver gene mutations reflected the cytolytic activity of local
immune infiltration (35). In particular, a higher neoantigen load and
more abundant CD8+ T cell infiltration stratified pancreatic cancer
patientswhosurvived longer survival andmightguide theapplication
of immunotherapies (36). It was also demonstrated that TMB and
CNAs were associated with CD8+ T cell infiltration and immune
cytolytic activity and served as independent predictive factors for the
immune checkpoint blockade response (35, 37, 38). To further
demonstrate the biological relevance of Immune Class, we carried
out detailed immunogenomic profiling including CNAs, TMB,
tumor neoantigens, TILs, etc. Immune cytolytic activity was higher
in ImmuneClass than inNonimmuneClass (P=4.2e-13), aswere the
immune enrichment score (P = 1.8e-14) and the methylation-
estimated leukocyte fraction (P = 9.3e-14) (Figure 3). For CNAs, it
is worth noting that patients classified as Immune Class had
relatively fewer both arm-level amplifications and deletions. In
particular, Immune Class had a median of 0 arm-level
July 2021 | Volume 12 | Article 690056
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amplifications (range 0-18) and 2 arm-level deletions (range 0-21)
versus amedianof3arm-level amplifications (range0-23)and7arm-
level deletions (range 0-22) in Nonimmune Class (P = 0.00012, and
P = 1.9e-06 respectively, Figure 4A). It was also demonstrated that
Immune Class harbored a median of 0 focal amplifications (range
0-5) and a median of 0 focal deletions (range 0 to 24), both of which
were lower in Immune Class than in Nonimmune Class with a
median of 0 focal amplifications (range 0-22) and amedian of 9 focal
deletions (range 0-25) (P = 6.8e-09, and P = 9.4e-09 respectively,
Figure 4B). Notably, TMB (P = 8.7e-05, Figure 4C) but not
neoantigen count (P = 0.37, Figure 4D) was higher in Immune
Class than in Nonimmune Class. These results demonstrate that
patients within Immune Class have several immunogenomic
characteristics, such as higher immune cytolytic activity, a higher
leukocyte fraction, a higher TMB, and fewer arm- and focal-level
CNAs than patients within Nonimmune Class.

We next sought to correlate the immune molecular subtypes
with TIL subpopulations, immunomodulatory gene expression,
and mutations in known driver genes of PDAC and genes in the
WNT/b-catenin pathway. After deploying the CIBERSORT
approach, macrophages accounted for the highest proportion of
infiltrating immune cells in PDAC (Supplementary Figure 3B).
Immune Class exhibited higher infiltration of memory B cells,
CD8+T cells, gdT cells, activatingNKcells, and activating dendritic
cells (all P < 0.001,Figure 4E), which are critical in the adaptive and
innate immune responses. In contrast, Nonimmune Class was
enriched in M0 and M2 macrophages, yet no significant
difference in M1 macrophages was observed. Moreover, we
analyzed the expression of immunomodulatory genes, including
both immunostimulatory and immunoinhibitory molecules that
were critical for immunotherapy by supporting the immune
response (39). The expression of immunomodulatory genes
varied between immune molecular subtypes (Supplementary
Figure 3A). The expression of immune checkpoint molecules
such as CTLA4 and CD274 (PD-L1), as well as IFNG in IFN-g
signaling, was higher in Immune Class. Furthermore, the immune
molecular subtypeswere correlatedwithmutations inknowndriver
genes of PDAC and genes in the WNT/b-catenin pathway
(Figure 5). Immune Class had significantly fewer mutations in
WNT/b-catenin pathway genes than Nonimmune Class (3/
(45×12) versus 19/(101×12), P = 0.079). Additionally, there were
significantly fewer mutations in SMAD4 in Immune Class than in
Nonimmune Class (7/45 versus 33/101, P = 0.032). Nevertheless,
therewasnodifference in themutationratesbetween ImmuneClass
and Nonimmune Class in terms of other PDAC driver genes, such
asKRAS,TP53, andCDKN2A. Altogether, thesefindings imply that
immune molecular subtypes showed differences in TIL
subpopulations, immunomodulatory gene expression, and certain
oncogenic pathway mutations.

Correlations of the Immune Molecular
Subtypes With Clinicopathological
Characteristics and Survival Analyses
The clinicopathological characteristics of the TCGA-PDAC
cohort were summarized and compared between Immune
Class and Nonimmune Class (Supplementary Table 9).
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Immune molecular subtypes were not associated with most
clinicopathological characteristics, including age, gender,
lymph node invasion, and distant metastasis. Nonetheless,
Immune Class was more likely to be classified as stage T1/T2
(7/46 versus 14/103) and less likely to be classified as stage T3
(35/46 versus 89/103) (P = 0.035). Tumor purity was correlated
with immune and stromal cell infiltration as well as immune
cytolytic activity. Tumor purity could also confound the
interpretation of genomic profiling and classifications based on
bulk tumor samples (40, 41). Low tumor purity was associated
with Bailey’s ADEX and immunogenic subtypes and might also
serve as a prognostic factor (31, 42, 43). Thus, we collected
pathologist-reviewed tumor cellularity data and adopted different
tumor purity estimation methods in silico (Supplementary
Table 10). ABSOLUTE purity, evaluated by the whole-exome
sequencing algorithm, ranged from 9.0% to 89.0% (median,
33.5%) in the whole cohort. The ABSOLUTE purity of Immune
Class [median (range), 18.5% (9.0%-70.0%) was significantly lower
than that of Nonimmune Class [median (range), 38% (10%-89%)]
(Figure 6A, P = 6.4e-10) (44). Tumor purity was also estimated
using DNA methylation profiles and ranged from 13.5% to 68.1%
(median, 40.2%) in the whole cohort and was strongly correlated
with ABSOLUTE purity (Spearman’s r = 0.87, p < 1e-15,
Figure 6B) (31). A binary purity classification based on regional
copy number burden indicated that Immune Class was more likely
to be classified as low purity (Figure 6C, P < 0.001) (31). In
summary, Immune Class had a lower tumor grade and lower
tumor purity than Nonimmune Class.

We next sought to explore the prognostic values of the immune
molecular subtypes along with other clinicopathological
characteristics (Table 1). In univariable Cox regression analyses,
immune molecular subtypes, together with age, lymph node
invasion status, and histological grade, were significantly
associated with overall survival. Immune Class was a favorable
prognostic factor, with a hazard ratio (HR) of 0.56 [95% confidence
interval (95%CI) 0.33-0.95, P = 0.033]. Themedian survival time of
ImmuneClasswas34.8months (95%CI=16.4-not reached),which
was longer than that of Nonimmune Class (17.9 months, 95% CI =
15.1-21.4). Kaplan-Meier curves also showed that Immune Class
was associated with better overall survival (Figure 6D). Moreover,
the HR of age was 1.02 (95%CI = 1.01-1.05, P = 0.036), and the HR
of lymphnode invasionwas 1.78 (95%CI= 1.02-3.09, P = 0.008). In
addition, the HR of poor versus moderate histological grade was
1.73 (95% CI = 1.09-2.75, P = 0.02). These four prognostic factors
were presented in a forest plot (Figure 6E) and subsequently
examined using multivariable Cox regression analysis. Older age
[HR (95% CI) = 1.03 (1.01-1.05), P = 0.026] remained an
independent unfavorable prognostic factor, whereas Immune
Class remained an independent favorable prognostic factor for
overall survival [HR (95% CI) = 0.56 (0.33-0.97), P = 0.037]
(Table 1). Additionally, various metrics of tumor purity and
immune infiltration, including ABSOLUTE/methylation purity,
the immune enrichment score, and the methylation-estimated
leukocyte fraction, were not prognostic (Table 1). Our results
indicated that Immune Class could serve as an independent
prognostic factor in PDAC.
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To further explore the relationship with other transcriptome-
based PDAC classifications, we included two another PDAC
classifications, pancreatic adenocarcinoma molecular gradient
(PAMG) (45) and Dijk’s 4-tier classification (46). The PAMG
Frontiers in Immunology | www.frontiersin.org 9
was a summary of all previous epithelial molecular classification
of PDAC, while Dijk’s 4-tier classification intend to build a
unifying transcriptome-based classifications. We reproduced
these two tumor epithelial classifications in the TCGA-PDAC
A
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C

FIGURE 4 | Correlation of the immune molecular subtypes with immunogenomic characteristics and immune cell infiltration. (A, B) Patients within Immune Class
showed significantly fewer both arm-level (A) or focal-level (B) amplifications and deletions compared with patients within Nonimmune Class. (C) Patients within
Immune Class showed significantly higher tumor mutational burden (TMB) compared with patients within Nonimmune Class. (D) Neoantigen count did not differ
between Immune Class and Nonimmune Class. (E) The relative proportions of 22 immune cell subpopulations estimated by CIBERSORT were compared between
the immune molecular subtypes. *p ≤ 0.05; **p ≤ 0.01; ****p ≤ 0.0001.
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cohort. Immune Class had lower molecular gradient compared
to Nonimmune Class (t-test, P = 5.1e-5, Figure 3). As for Dijk’s
4-tier classification, we found that the Immune Class had a
higher proportion of secretory subtypes compared to
Nonimmune Class (Fisher’s exact P = 0.002, Figure 3). Several
PDAC classifications based on genome and methylome were also
built recently, including mutation signature subtypes (47),
homologous recombination deficiency (HRD) (48), and
methylation clusters (49). We also reproduced mutation
signature subtypes and methylation clusters in the TCGA-
PDAC cohort. The mutation signature subtypes used NMF
and hierarchical clustering to define four major subtypes.
Nevertheless, we failed to discover correlation between the
immune molecular subtypes and mutation signature subtypes
(Fisher’s exact P = 0.91, Figure 3). We observed a higher
proportion of Methylation Cluster2 (Methylationlow/
IFNsignaturehigh) in the Immune Class (Fisher’s exact P =
3.2e-7, Figure 3), which was consistent with our findings that
Immune Class had higher enrichment of IFN-a and IFN-g
signaling. In conclusion, these results highlighted the potential
mechanisms of DNA methylation in modulating tumor immune
microenvironment. And the correlation between immune
molecular subtypes and alterations in genome and methylome
needs further research.

Combination of the Immune Molecular
Subtypes With PDAC Tumor and
Stroma Classifications for
Prognostic Stratification
Four molecular classifications of PDAC based on gene
expression profiles that were biologically and clinically relevant
in different sets of patients showed concordance to some extent
Frontiers in Immunology | www.frontiersin.org 10
(8, 9, 15). We evaluated the correlations of the immune
molecular subtypes with these classifications and further
explored the integration of immune molecular subtypes with
tumor and stroma classifications in prognostic stratification. The
classifier genes of Moffitt’s tumor, Moffitt’s stroma, Collison’s,
and Bailey’s subtypes were used to cluster patients in the TCGA-
PDAC cohort by NTP. The distributions of these four
classifications were compared with the distribution of immune
molecular subtypes using Fisher’s exact test (Supplementary
Table 11). There was no significant difference between the
distributions of Moffitt’s tumor subtypes and immune
molecular subtypes, probably because virtual microdissection
was utilized to deconvolute tumor cell signals in the study by
Moffitt et al. (P = 0.38, Figures 7A, F). Nevertheless, significant
correlations between immune molecular subtypes and other
PDAC classifications, including Collison’s subtypes, Bailey’s
subtypes and Moffitt’s stroma subtypes, were revealed (all P <
0.005). For the integration with Collison’s classification, the
proportion of the classical subtype was significantly lower and
the proportion of the QM subtype was significantly higher within
Immune Class versus Nonimmune Class (17.4% versus 43.8%,
34.8% versus 17.5%, P = 0.004, respectively) (Figure 7B). For
Bailey’s classification, the frequency of ADEX and immunogenic
subtypes was higher within Immune Class versus Nonimmune
Class (45.7% versus 5.83% and 32.6% versus 22.3%, P < 0.001,
respectively) (Figure 7C). In contrast, we also observed a lower
frequency of squamous and progenitor subtypes within Immune
Class compared to Non-Immune Class (10.9% versus 25.2%,
10.9% versus 46.6%, respectively). For Moffitt’s stroma
subtypes, we found that Immune Class was composed of a
more normal stroma subtype and a less activated stroma
subtype than Nonimmune Class (43.4% versus 8.74% and
FIGURE 5 | Mutations of the immune molecular subtypes. The distribution of mutations in known driver genes of PDAC and genes in the WNT/b-catenin pathway
across 149 TCGA-PDAC samples were visualized in the oncoplot, including somatic nonsynonymous mutations (missense, nonsense, frame shift insertion, frame
shift deletion, In-frame insertion, In-frame deletion, and splice site mutation). The mutation rates of relative genes were displayed and compared between Immune
Class and Nonimmune Class.
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23.9% versus 36.9%, P < 0.001, respectively) (Figure 7D). The
Sankey diagram illustrated the PDAC assignment according to
the immune molecular subtypes and Moffitt’s tumor/stroma
classifications (Figure 7E). Analysis based on Cramer’s V
statistic demonstrated a strong correlation between the immune
molecular subtypes and Bailey’s classifications (Cramer’s V
value = 0.54) and a weak correlation between the immune
molecular subtypes and Moffitt’s tumor classifications
(Cramer’s V value = 0.07). The overlap among the Immune
Frontiers in Immunology | www.frontiersin.org 11
Classifier genes, Moffitt’s tumor/stroma classifier genes is
illustrated in the Venn Diagram (Supplementary Figure 4A).
In conclusion, it was demonstrated that Immune Class was
correlated with a higher proportion of the QM/ADEX subtypes,
immunogenic subtype, and normal stroma subtype.

The cumulative effect of different classifications based on the
tumor epithelium, stromal, and immune cells on prognostic
stratification was next explored (10). In univariable Cox regression
analyses, Moffitt’s stroma classification, instead of Moffitt’s tumor,
A B
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FIGURE 6 | Distribution of tumor purity and survival analyses in the immune molecular subtypes. (A) Patients within Immune Class showed significantly lower
ABSOLUTE purity compared with patients within Nonimmune Class. (B) ABSOLUTE purity and DNA methylation estimated purity showed strong correlation.
Spearman’s r values were evaluated independently in Immune Class and Nonimmune Class. (C) Proportions of Immune Class and Non-Immune Class were
compared in low and high tumor purity class. (D) Kaplan-Meier curves of overall survival were plotted according to the immune molecular subtypes in the TCGA-
PDAC cohort. (E) Forest plot displayed the hazard ratio and 95% confidence interval of immune molecular subtypes and several clinicopathological characteristics
for overall survival.
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Bailey’s and Collison’s classifications, had prognostic value in the
TCGA-PDAC cohort (Supplementary Table 12). The normal
stroma subtype was associated with significantly longer overall
survival than the other stroma subtypes, with an HR of 0.46 (95%
CI = 0.24-0.93, P = 0.03) (Supplementary Figure 4B). Integration
of Moffitt’s tumor/stroma classification in survival analyses did
not hamper the prognostic value of the immune molecular
subtypes (Figure 7G and Supplementary Figures 4C, D).
Patients within Immune Class and the classical tumor subtype
had the longest median survival time of 34.8 months, whereas
patients within Nonimmune Class and the basal tumor subtype
had the shortest median survival time of 12.9 months (log-rank
P = 0.009, Figure 7G). Since the difference between the activated
stroma subtype and the absent stroma subtype was not
significant for overall survival (HR [95% CI], 0.85 [0.52-1.41],
P = 0.54), we combined these two stroma subtypes into other
stroma subtypes and compared them with the normal stroma
Frontiers in Immunology | www.frontiersin.org 12
subtype. After integrating the immune molecular subtypes and
Moffitt’s stroma subtypes, we found that patients within Immune
Class and the normal stroma subtype had the best survival rate,
whereas patients within the Nonimmune Class and the other
stroma subtypes had the worst survival rate (P = 0.012,
Supplementary Figure 4C). Finally, we combined the immune
molecular subtypes with tumor and stroma classifications for
prognostic stratification. Patients within Immune Class and the
classical stroma and basal tumor subtypes had the best overall
survival rate (P = 0.024, Supplementary Figure 4D). Together,
these results showed that the combination of immune molecular
subtypes with tumor and/(or) stromal subtypes achieved a
cumulative effect on PDAC prognosis prediction.

Validation in Independent Datasets
The presence of immune molecular subtypes was further
evaluated in five independent datasets using NTP analyses with
TABLE 1 | Uni- and multivariate Cox proportional hazards regression analysis of the immune molecular subtypes and clinicopathological characteristics.

Variables Uni-variable Multi-variable

HR (95% CI for HR) P value HR (95% CI for HR) P value

Age 1.02 (1.01-1.05) 0.036 1.03 (1.01-1.05) 0.026
Sex
Female 1.00 -
Male 0.81 (0.52-1.27) 0.360

Immune Molecular Subtypes
Nonimmune Class 1.00 - - -
Immune Class 0.56 (0.33-0.95) 0.033 0.56 (0.33-0.97) 0.037

pTNM Stage
Stage I/II 1.00 -
Stage III/IV 1.05 (0.33-3.35) 0.933

Primary Tumor (T Stage)
T1/T2 1.00
T3 1.61 (0.77-3.36) 0.208
T4 1.04 (0.13-8.35) 0.969

Lymph Nodes (N Stage)
Negative 1.00 - 1.00 -
Positive 1.78 (1.02-3.09) 0.008 1.65 (0.95-2.88) 0.078

Distant Metastasis (M Stage)
Negative 1.00 -
Positive 1.95 (0.47-8.14) 0.362
Not measurable 1.01 (0.64-1.59) 0.976

Histological Grade
Moderate 1.00 - 1.00 -
Poor 1.73 (1.09-2.75) 0.020 1.76 (1.11- 2.8) 0.017
Others 0.57 (0.14-2.36) 0.435 0.47 (0.11-2.00) 0.311

Primary Site
Head 1.00 -
Tail or body 0.88 (0.48-1.64) 0.690
Others 0.14 (0.02-0.99) 0.050

History of Chronic Pancreatitis
No 1.00 -
Yes 1.04 (0.49-2.20) 0.914

ABSOLUTE Purity 2.12 (0.69-6.49) 0.191
DNA Hypermethylation Purity 3.60 (0.65-19.77) 0.141
Purity Class
Low 1.00 -
High 1.34 (0.85-2.11) 0.207

DNA Methylation Leukocyte Fraction 0.37 (0.07-1.92) 0.237
Immune Enrichment Score 0.99 (0.99-1.00) 0.082
July 2021 | Volume 12 | Article
95% CI, 95% confidence interval; HR, hazard ratio.
Bold values denote statistical significance at the P < 0.05 level.
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the 100 gene-expression-based Immune Classifier (n = 615,
Figure 1 and Supplementary Table 1). Gene expression
profiling of the validation datasets was conducted with
different microarray platforms (Illumina, Affymetrix, or
Agilent Gene chip systems) and in different types of tissue
material (flash frozen or formalin fixed paraffin embedded).
The proportion of patients classified as Immune Class showed
consistency among the validation datasets, with an average of
Frontiers in Immunology | www.frontiersin.org 13
36.4% (range 30.0%-42.8%) (Figure 8A and Supplementary
Figures 6–9). Patients in validation cohort GSE57495 were
allocated to Immune Class at a higher frequency of 42.8%,
potentially due to the different microarray platforms used
(Custom Affymetrix 2.0 microarray). Overall, the immune
molecular subtypes were successfully reproduced in the
validation datasets regardless of the platform and type of
tumor tissue used.
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FIGURE 7 | Integration of the immune molecular subtypes and other PDAC classifications. (A–D) Distribution of Moffitt’s tumor classification (A), Collison’s
classification (B), Bailey’s classification (C), and Moffitt’s stroma classification (D) were compared between Immune Class and Nonimmune Class. (E) Sankey chart
displayed the distribution of Moffitt’s tumor classification, Moffitt’s stroma classification, and immune molecular subtypes. (F) Heatmap of Cramer’s V statistic
reflected the corrections between five PDAC molecular classifications. (G) Kaplan-Meier curves of overall survival were plotted according to the immune molecular
subtypes and Moffitt’s tumor classification.
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Exploration of Potential
Immunotherapy Response
The ability of the immune molecular subtypes to predict
immunotherapy response was explored using subclass mapping
analysis. We assessed the similarity of immune-related gene
expression profiles between the TCGA-PDAC cohort and a cohort
of 32 melanoma patients receiving sequential CTLA-4 and PD-1
inhibitors (Figures 8B, C) (37, 50). Our results showed similarities
between patients within Immune Class and melanoma patients
responding to PD-1 checkpoint inhibitors (Bonferroni corrected
p-value = 0.04). The similarity of immune-related gene expression
profiles between ImmuneClass and immunotherapy responderswas
also shown in the validation cohorts (Supplementary Figures 6–9).
To further explore this similarity, we included a cohort of 65 patients
with non-small cell lung cancer (NSCLC), head and neck squamous
cell carcinoma(HNSCC)andmelanomawhowere treatedwithPD-1
inhibitors (51). Significant similarity between ImmuneClass andPD-
1 inhibitor responder was observed in the TCGA-PDAC cohort and
the E-MTAB-17951 validation cohort (Supplementary Figures 5A,
B, E, F). Thus, we showed the discrepant responses of
immunotherapy in two immune molecular subtypes, which needs
to be strengthened in PDAC patients receiving immune
checkpoint inhibitors.
DISCUSSION

Immunotherapy, especially immune checkpoint inhibitors, has
emerged as a new era of cancer treatment. Nevertheless, immune
checkpoint inhibitors could only benefit a minority of PDAC
patients (12). The limited clinical benefit of immune checkpoint
inhibitors achieved in PDAC patients necessitates the
identification of suitable PDAC patients. Deep understanding
of the tumor immune microenvironment was also necessary in
identifying such patients. In the current study, the NMF method
was applied to deconvolute the gene expression profiles and
identify immune molecular subtypes. We then discovered a
robust immune molecular subtype, Immune Class, which
comprised 30.8% of the cohort. Detailed immunogenomic
profiling was conducted, and a comprehensive description of
the tumor-, stromal-, immune- compartments was provided. The
presence of Immune Class reflected an active immune response
and correlated with current immunotherapy biomarkers.

In this study, we provided an immune molecular classification
that, similar to current PDAC molecular classifications, has
prognostic value in PDAC. Immune Class was an independent
favorable prognostic factor, as confirmed in both the training and
validation cohorts. Furthermore, in-depth survival analyses
confirmed that integration of the immune molecular subtypes
with Moffitt’s tumor and stroma classifications had a cumulative
effect onprognosis prediction. According toMoffitt et al., the tumor
and stroma classifications were similarly based on virtual
microdissection of the tumor epithelium and stromal
components with the NMF method (15). These findings suggest
the complex interplay among the tumor, stromal and immune
compartments and support combination therapeutic strategies
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targeting the tumor microenvironment. Upon comparison to a
melanoma cohort, we found that our Immune Class was associated
with melanoma patients responding to PD-1 inhibitors, suggesting
its potential immunotherapy efficacy. Successful reproduction in five
independent datasets suggested the robustness of the immune
molecular subtypes. Liu et al. also identified immune classification
of PDAC, but used a method of consensus clustering rather than
NMF (52). NMF can separate tumor, stromal and immune gene
expression from transcriptomic data to deconvolute context-
dependent signals. Moreover, compared to their study, we used
twice the sample size and conducted a more comprehensive
analysis including other current immunotherapy biomarkers, such
as TMB and neoantigen count. Our findings indicate the prognostic
value of our classification, but further validation in PDAC patients
receiving immune checkpoint blockade therapies is required.

Given that the tumormicroenvironment of PDAC is comprised
of an admixture of abundant stromal cells and immune cells, it is
critical to consider tumorpuritywhen interpreting the genomic and
transcriptional profiles. Because of themodest concordance among
intraplatform tumor purity estimates (40, 53), we compared the
gold-standard pathologist-reviewed tumor cellularity with
bioinformatic estimates, including ABSOLUTE purity, DNA
methylation-estimated purity, and copy number-estimated purity.
Nevertheless, in our study, DNA methylation-estimated tumor
purity and ABSOLUTE purity were well correlated. Generally,
Immune Class had lower tumor purity than Nonimmune Class,
probably due to higher immune cell infiltration in Immune Class.
Regarding prognosis prediction, the immune molecular subtypes
rather than tumor purity served as a prognostic factor.

Multiple biomarkers of response to immunotherapy have been
developed and include fourmain categories (1): antigens eliciting T
cell responses, such as TMB, CNAs, and neoantigen counts (2);
mechanisms of immune evasion, such as CTLA-4 and PD-L1
expression and certain oncogenic pathways (3); markers of
immune infiltration, such as CD8+ T cell infiltration; and (4) host
factors (54). In our study, both TMB and CNAs were associated
with the immune molecular subtypes. Although PDAC has a
relatively a lower TMB than other solid tumors (5), there was still
a tendency for a higher TMB in Immune Class. We also concluded
that patients within ImmuneClass had relatively lower both broad-
and focal-level CNAs. These findings highlight increased genomic
stability in Immune Class and the role of aneuploidy in regulating
immune response.Nevertheless, an associationbetweenneoantigen
counts and immune molecular subtypes was not identified, which
might be explained by the fact that neoantigen quality, rather than
neoantigen quantity, is responsible for the CD8+ T cell-mediated
immune response (55). In addition, the expression of
immunomodulatory genes was compared between immune
molecular subtypes to infer the potential immune evasion
mechanisms. The expression of immune checkpoint molecules,
such as PD-L1 and CTLA-4, was higher in Immune Class. Other
immunostimulatory or immunosuppressive genes, including
inducible T Cell costimulator (ICOS), 2,3-dioxygenase 1 (IDO1),
and selectin P (SELP), was also differentially expressed (13, 56, 57).

The molecular characteristics of Immune Class also included
elevated immune cytolytic activity, IFN-g signaling upregulation,
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and increased immune cell infiltration. Immune cytolytic
activity, defined as the geometric mean of GZMA and perforin
1 (PRF1) expression, is associated with resistance to and relapse
following immunomodulatory therapies (35). A six-gene IFN-g
signature that can be used to predict the response to
Frontiers in Immunology | www.frontiersin.org 15
pembrolizumab in melanoma patients was also significantly
enriched in Immune Class. In previous research, IFN signaling
was considered an important inducer of the innate and adaptive
responses and served as a new therapeutic approach in
pancreatic cancer. The upregulation of IFN signaling promoted
A
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FIGURE 8 | Analyses of potential immunotherapy response and validation in E-MTAB-17951. (A) The presence and molecular characteristics of the immune
molecular subtypes were validated in cohort E-MTAB-17951. The heatmap showed the single sample gene set enrichment analysis (ssGSEA) scores of immune-
and stroma- related signatures. Moffitt’s tumor/stroma classifications were also shown at the top panel. (B) SubMap analysis was used to evaluate the immune
molecular subtypes in the TCGA-PDAC cohort and four groups of melanoma patients (pre-treatment CTLA-4 inhibitor responders and non-responders, pre-
treatment PD-1 inhibitor responders and non-responders). Similarity between these two cohorts were illustrated as Bonferroni-corrected P-values. (C) SubMap
analysis was used to evaluate the immune molecular subtypes in the TCGA-PDAC cohort and four groups of melanoma patients (pre-treatment CTLA-4 inhibitor
responders and non-responders, pre-treatment PD-1 inhibitor responders and non-responders). Similarity between these two cohorts were illustrated as nominal
P-values. PD-1, programmed cell death-1; CTLA-4, cytotoxic T lymphocyte-associated antigen-4; B/P metagene, B cell/plasma cell metagene; M/D metagene,
monocyte/dendritic cell metagene; IFN-g, interferon-g; TBRS, transforming growth factor-b response signature; ECM, extracellular matrix.
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PD-L1 expression, facilitated recruitment of CD8+ T cells and
induced immunogenic cell death (34, 58). In addition, we also
observed significant enrichment of both adaptive and innate
immune cell subpopulations using ssGSEA and CIBERSORT.
Cytolytic T cells and NK cells, together with a T cell inflamed
signature, indicating the upregulation of cellular immunity, were
enriched in Immune Class. Similarly, B cells and plasma cells,
together with a B cell/plasma cell metagene, implying the
upregulation of humoral immunity, were also enriched.
Interestingly, the majority of TILs in PDAC were macrophages,
indicating the potential of targeting tumor-associated
macrophages. Immune Class had significantly more infiltration
of proinflammatoryM1macrophages, whereasNonimmuneClass
had more infiltration of anti-inflammatory M2 macrophages.
These findings indicate upregulation of innate immune response
in Immune Class.

In the current study, the enrichment of stromal signatures and
upregulation of the TGF-b and WNT/b-catenin pathways were
detected in ImmuneClass. ImmuneClass also had fewermutations
in the WNT/b-catenin pathway. It is well established that intrinsic
tumor activation of the TGF-b pathway plays a role in the
suppression of CD8+ T cell recruitment and function as well as
the proliferation and activation of CAFs (59, 60). The TGF-b
pathway might also lead to chemotherapy and immunotherapy
resistance. In addition, our findings demonstrated that patients
within Immune Class had a significantly lower frequency of
mutations in SMAD4. The loss of SMAD4 was previously
reported to regulate the cell cycle and promote tumor
proliferation and indicated poor survival in PDAC patients (61,
62). Crosstalk between the WNT/b-catenin pathway and TGF-b/
SMAD4 pathway in the tumor immune microenvironment was
thus implied. In conclusion, all these findings suggested that the
immunotherapy response in PDAC was modulated by a
combination of tumor-intrinsic mechanisms (e.g., TMB, CNAs,
immunomodulatory gene expression, and certain oncogenic
pathways) and tumor-extrinsic mechanisms (e.g., TILs).

In summary, our study revealed robust immune molecular
subtypes in PDAC that achieved better performance in capturing
immune components than previous classifications. Immune
molecular subtypes correlated with currently used immunotherapy
biomarkers, which confirmed the reliability of our classification. The
cumulative effect of tumor, immune, and stroma classifications on
prognosis prediction was confirmed. Nevertheless, our findings still
require further validation in large cohorts of early-stage and
metastatic PDAC patients. Additionally, further investigation
should be performed in PDAC patients receiving immune
Frontiers in Immunology | www.frontiersin.org 16
checkpoint blockade therapies, to demonstrate its potential value in
the immunotherapy response.
DATA AVAILABILITY STATEMENT

The datasets generated in this study can be found in The Cancer
Genome Atlas (pancreatic adenocarcinoma cohort), the Gene
Expression Omnibus (GEO) (https://www.ncbi.nlm.nih.gov/geo/)
under the accession numbers GSE85916, GSE71729, GSE57495,
GSE21501,andArrayExpress(www.ebi.ac.uk/arraryexpress)under
the accession number E-MTAB-17951 (Supplementary Table 1).
AUTHOR CONTRIBUTIONS

RL was involved in methodology, software, formal analysis,
visualization, data curation, and writing - original draft. YH
was involved in software and writing - review and editing. HZ
was involved in validation and data curation. JW was involved in
validation and methodology. XL was involved in data curation
and resources. HL was involved in validation and investigation.
HW was involved in funding acquisition, methodology, project
administration, and writing - review and editing. ZL was
involved in supervision, conceptualization, funding acquisition,
and project administration RL and HW have accessed verified
the underlying data. All authors contributed to the article and
approved the submitted version.
FUNDING

This work was supported by Intergovernmental International
Science, Technology and Innovation Cooperation Key Project
of the National Key R&D Programme (NKP) (Project
No.2017YFE0110300) to ZL, National Natural Science Foundation
of China (Project No.82072749) to ZL, and National Natural
Science Foundation of China (Project No.82072747) to HW.
SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online
at: https://www.frontiersin.org/articles/10.3389/fimmu.2021.
690056/full#supplementary-material
REFERENCES
1. Mizrahi JD, Surana R, Valle JW, Shroff RT. Pancreatic Cancer. Lancet (2020)

395:2008–20. doi: 10.1016/s0140-6736(20)30974-0
2. Zhang S, Sun K, Zheng R, Zeng H,Wang S, Chen R, et al. Cancer Incidence and

Mortality in China, 2015. J Natl Cancer Center (2020) 1:2–11. doi: 10.1016/
j.jncc.2020.12.001

3. Conroy T, Hammel P, Hebbar M, Ben Abdelghani M, Wei AC, Raoul JL, et al.
FOLFIRINOX or Gemcitabine as Adjuvant Therapy for Pancreatic Cancer.
N Engl J Med (2018) 379:2395–406. doi: 10.1056/NEJMoa1809775
4. Nevala-Plagemann C, Hidalgo M, Garrido-Laguna I. From State-of-the-Art
Treatments to Novel Therapies for Advanced-Stage Pancreatic Cancer. Nat
Rev Clin Oncol (2020) 17:108–23. doi: 10.1038/s41571-019-0281-6

5. Rizvi NA, Hellmann MD, Snyder A, Kvistborg P, Makarov V, Havel JJ, et al.
Cancer Immunology. Mutational Landscape Determines Sensitivity to PD-1
Blockade in non-Small Cell Lung Cancer. Science (2015) 348:124–8.
doi: 10.1126/science.aaa1348

6. Le DT, Uram JN, Wang H, Bartlett BR, Kemberling H, Eyring AD, et al. PD-1
Blockade in Tumors With Mismatch-Repair Deficiency. N Engl J Med (2015)
372:2509–20. doi: 10.1056/NEJMoa1500596
July 2021 | Volume 12 | Article 690056

https://www.ncbi.nlm.nih.gov/geo//
www.ebi.ac.uk/arraryexpress
https://www.frontiersin.org/articles/10.3389/fimmu.2021.690056/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fimmu.2021.690056/full#supplementary-material
https://doi.org/10.1016/s0140-6736(20)30974-0
https://doi.org/10.1016/j.jncc.2020.12.001
https://doi.org/10.1016/j.jncc.2020.12.001
https://doi.org/10.1056/NEJMoa1809775
https://doi.org/10.1038/s41571-019-0281-6
https://doi.org/10.1126/science.aaa1348
https://doi.org/10.1056/NEJMoa1500596
https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Li et al. Immune Molecular Subtypes of PDAC
7. Patel SP, Kurzrock R. PD-L1 Expression as a Predictive Biomarker in Cancer
Immunotherapy. Mol Cancer Ther (2015) 14:847–56. doi: 10.1158/1535-
7163.MCT-14-0983

8. Collisson EA, Sadanandam A, Olson P, Gibb WJ, Truitt M, Gu S, et al.
Subtypes of Pancreatic Ductal Adenocarcinoma and Their Differing
Responses to Therapy. Nat Med (2011) 17:500–3. doi: 10.1038/nm.2344

9. Bailey P, Chang DK, Nones K, Johns AL, Patch AM, Gingras MC, et al.
Genomic Analyses Identify Molecular Subtypes of Pancreatic Cancer. Nature
(2016) 531:47–52. doi: 10.1038/nature16965

10. Martens S, Lefesvre P, Nicolle R, Biankin AV, Puleo F, Van Laethem JL, et al.
Different Shades of Pancreatic Ductal Adenocarcinoma, Different Paths
Towards Precision Therapeutic Applications. Ann Oncol (2019) 30:1428–36.
doi: 10.1093/annonc/mdz181

11. Birnbaum DJ, Finetti P, Birnbaum D, Mamessier E, Bertucci F. Validation and
Comparison of the Molecular Classifications of Pancreatic Carcinomas. Mol
Cancer (2017) 16:168. doi: 10.1186/s12943-017-0739-z

12. Hosein AN, Brekken RA, Maitra A. Pancreatic Cancer Stroma: An Update on
Therapeutic Targeting Strategies. Nat Rev Gastroenterol Hepatol (2020)
17:487–505. doi: 10.1038/s41575-020-0300-1

13. Ho WJ, Jaffee EM, Zheng L. The Tumour Microenvironment in Pancreatic
Cancer - Clinical Challenges and Opportunities. Nat Rev Clin Oncol (2020)
17:527–40. doi: 10.1038/s41571-020-0363-5

14. Brunet JP, Tamayo P, Golub TR, Mesirov JP. Metagenes and Molecular
Pattern Discovery Using Matrix Factorization. Proc Natl Acad Sci USA (2004)
101:4164–9. doi: 10.1073/pnas.0308531101

15. Moffitt RA, Marayati R, Flate EL, Volmar KE, Loeza SG, Hoadley KA, et al.
Virtual Microdissection Identifies Distinct Tumor- and Stroma-Specific
Subtypes of Pancreatic Ductal Adenocarcinoma. Nat Genet (2015) 47:1168–
78. doi: 10.1038/ng.3398

16. Gibney GT, Weiner LM, Atkins MB. Predictive Biomarkers for Checkpoint
Inhibitor-Based Immunotherapy. Lancet Oncol (2016) 17:e542–51.
doi: 10.1016/S1470-2045(16)30406-5

17. Blum A, Wang P, Zenklusen JC. SnapShot: TCGA-Analyzed Tumors. Cell
(2018) 173:530. doi: 10.1016/j.cell.2018.03.059

18. Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W, et al. Limma Powers
Differential Expression Analyses for RNA-Sequencing and Microarray
Studies. Nucleic Acids Res (2015) 43:e47. doi: 10.1093/nar/gkv007

19. Gaujoux R, Seoighe C. A Flexible R Package for Nonnegative Matrix
Factorization. BMC Bioinf (2010) 11:367. doi: 10.1186/1471-2105-11-367

20. Yoshihara K, Shahmoradgoli M, Martinez E, Vegesna R, Kim H, Torres-
Garcia W, et al. Inferring Tumour Purity and Stromal and Immune Cell
Admixture From Expression Data. Nat Commun (2013) 4:2612. doi: 10.1038/
ncomms3612

21. Yu G, Wang LG, Han Y, He QY. Clusterprofiler: An R Package for Comparing
Biological Themes Among Gene Clusters. OMICS (2012) 16:284–7.
doi: 10.1089/omi.2011.0118

22. Gene Ontology C. Gene Ontology Consortium: Going Forward. Nucleic Acids
Res (2015) 43:D1049–56. doi: 10.1093/nar/gku1179

23. Kanehisa M, Sato Y, Kawashima M, Furumichi M, Tanabe M. KEGG as a
Reference Resource for Gene and Protein Annotation. Nucleic Acids Res
(2016) 44:D457–62. doi: 10.1093/nar/gkv1070

24. Chen YP, Wang YQ, Lv JW, Li YQ, Chua MLK, Le QT, et al. Identification
and Validation of Novel Microenvironment-Based Immune Molecular
Subgroups of Head and Neck Squamous Cell Carcinoma: Implications for
Immunotherapy. Ann Oncol (2019) 30:68–75. doi: 10.1093/annonc/
mdy470

25. Hanzelmann S, Castelo R, Guinney J. GSVA: Gene Set Variation Analysis for
Microarray and RNA-Seq Data. BMC Bioinf (2013) 14:7. doi: 10.1186/1471-
2105-14-7

26. Hoshida Y. Nearest Template Prediction: A Single-Sample-Based Flexible
Class Prediction With Confidence Assessment. PloS One (2010) 5:e15543.
doi: 10.1371/journal.pone.0015543

27. Reich M, Liefeld T, Gould J, Lerner J, Tamayo P, Mesirov JP. GenePattern 2.0.
Nat Genet (2006) 38:500–1. doi: 10.1038/ng0506-500

28. Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA,
et al. Gene Set Enrichment Analysis: A Knowledge-Based Approach for
Interpreting Genome-Wide Expression Profiles. Proc Natl Acad Sci USA
(2005) 102:15545–50. doi: 10.1073/pnas.0506580102
Frontiers in Immunology | www.frontiersin.org 17
29. Lawrence MS, Stojanov P, Polak P, Kryukov GV, Cibulskis K, Sivachenko A,
et al. Mutational Heterogeneity in Cancer and the Search for New Cancer-
Associated Genes. Nature (2013) 499:214–8. doi: 10.1038/nature12213

30. Mayakonda A, Lin DC, Assenov Y, Plass C, Koeffler HP. Maftools: Efficient
and Comprehensive Analysis of Somatic Variants in Cancer. Genome Res
(2018) 28:1747–56. doi: 10.1101/gr.239244.118

31. Cancer Genome Atlas Research Network, Electronic address aadhe and
Cancer Genome Atlas Research N. Integrated Genomic Characterization of
Pancreatic Ductal Adenocarcinoma. Cancer Cell (2017) 32:185–203.e13.
doi: 10.1016/j.ccell.2017.07.007

32. Newman AM, Liu CL, Green MR, Gentles AJ, Feng W, Xu Y, et al. Robust
Enumeration of Cell Subsets From Tissue Expression Profiles. Nat Methods
(2015) 12:453–7. doi: 10.1038/nmeth.3337

33. Thorsson V, Gibbs DL, Brown SD, Wolf D, Bortone DS, Ou Yang TH, et al.
The Immune Landscape of Cancer. Immunity (2019) 51:411–2. doi: 10.1016/
j.immuni.2019.08.004

34. Ayers M, Lunceford J, NebozhynM, Murphy E, Loboda A, Kaufman DR, et al.
IFN-Gamma-Related mRNA Profile Predicts Clinical Response to PD-1
Blockade. J Clin Invest (2017) 127:2930–40. doi: 10.1172/JCI91190

35. Rooney MS, Shukla SA, Wu CJ, Getz G, Hacohen N. Molecular and Genetic
Properties of Tumors Associated With Local Immune Cytolytic Activity. Cell
(2015) 160:48–61. doi: 10.1016/j.cell.2014.12.033

36. Balachandran VP, Luksza M, Zhao JN, Makarov V, Moral JA, Remark R, et al.
Identification of Unique Neoantigen Qualities in Long-Term Survivors of
Pancreatic Cancer. Nature (2017) 551:512–6. doi: 10.1038/nature24462

37. Roh W, Chen PL, Reuben A, Spencer CN, Prieto PA, Miller JP, et al.
Integrated Molecular Analysis of Tumor Biopsies on Sequential CTLA-4
and PD-1 Blockade Reveals Markers of Response and Resistance. Sci Transl
Med (2017) 9:eaah3560. doi: 10.1126/scitranslmed.aah3560

38. Balli D, Rech AJ, Stanger BZ, Vonderheide RH. Immune Cytolytic Activity
Stratifies Molecular Subsets of Human Pancreatic Cancer. Clin Cancer Res
(2017) 23:3129–38. doi: 10.1158/1078-0432.CCR-16-2128

39. Nissim L, Wu MR, Pery E, Binder-Nissim A, Suzuki HI, Stupp D, et al.
Synthetic RNA-Based Immunomodulatory Gene Circuits for Cancer
Immunotherapy. Cell (2017) 171:1138–50.e15. doi: 10.1016/j.cell.2017.09.049

40. Haider S, Tyekucheva S, Prandi D, Fox NS, Ahn J, Xu AW, et al. Systematic
Assessment of Tumor Purity and Its Clinical Implications. JCO Precis Oncol
(2020) 4:995–1005. doi: 10.1200/PO.20.00016

41. Rhee JK, Jung YC, Kim KR, Yoo J, Kim J, Lee YJ, et al. Impact of Tumor Purity on
Immune Gene Expression and Clustering Analyses Across Multiple Cancer Types.
Cancer Immunol Res (2018) 6:87–97. doi: 10.1158/2326-6066.CIR-17-0201

42. Pan H, Lu L, Cui J, Yang Y, Wang Z, Fan X. Immunological Analyses Reveal
an Immune Subtype of Uveal Melanoma With a Poor Prognosis. Aging
(Albany N Y) (2020) 12:1446–64. doi: 10.18632/aging.102693

43. Puleo F, Nicolle R, Blum Y, Cros J, Marisa L, Demetter P, et al. Stratification of
Pancreatic Ductal Adenocarcinomas Based on Tumor and Microenvironment
Features. Gastroenterology (2018) 155:1999–2013.e3. doi: 10.1053/j.gastro.
2018.08.033

44. Carter SL, Cibulskis K, Helman E, McKenna A, Shen H, Zack T, et al. Absolute
Quantification of Somatic DNA Alterations in Human Cancer. Nat Biotechnol
(2012) 30:413–21. doi: 10.1038/nbt.2203

45. Nicolle R, Blum Y, Duconseil P, Vanbrugghe C, Brandone N, Poizat F, et al.
Establishment of a Pancreatic Adenocarcinoma Molecular Gradient (PAMG)
That Predicts the Clinical Outcome of Pancreatic Cancer. EBioMedicine
(2020) 57:102858. doi: 10.1016/j.ebiom.2020.102858

46. Dijk F, Veenstra VL, Soer EC, Dings MPG, Zhao L, Halfwerk JB, et al.
Unsupervised Class Discovery in Pancreatic Ductal Adenocarcinoma Reveals
Cell-Intrinsic Mesenchymal Features and High Concordance Between
Existing Classification Systems. Sci Rep (2020) 10:337. doi: 10.1038/s41598-
019-56826-9

47. Connor AA, Denroche RE, Jang GH, Timms L, Kalimuthu SN, Selander I,
et al. Association of Distinct Mutational Signatures With Correlates of
Increased Immune Activity in Pancreatic Ductal Adenocarcinoma. JAMA
Oncol (2017) 3:774–83. doi: 10.1001/jamaoncol.2016.3916

48. Golan T, O'Kane GM, Denroche RE, Raitses-Gurevich M, Grant RC, Holter S,
et al. Genomic Features and Classification of Homologous Recombination
Deficient Pancreatic Ductal Adenocarcinoma. Gastroenterology (2021)
160:2119–32.e9. doi: 10.1053/j.gastro.2021.01.220
July 2021 | Volume 12 | Article 690056

https://doi.org/10.1158/1535-7163.MCT-14-0983
https://doi.org/10.1158/1535-7163.MCT-14-0983
https://doi.org/10.1038/nm.2344
https://doi.org/10.1038/nature16965
https://doi.org/10.1093/annonc/mdz181
https://doi.org/10.1186/s12943-017-0739-z
https://doi.org/10.1038/s41575-020-0300-1
https://doi.org/10.1038/s41571-020-0363-5
https://doi.org/10.1073/pnas.0308531101
https://doi.org/10.1038/ng.3398
https://doi.org/10.1016/S1470-2045(16)30406-5
https://doi.org/10.1016/j.cell.2018.03.059
https://doi.org/10.1093/nar/gkv007
https://doi.org/10.1186/1471-2105-11-367
https://doi.org/10.1038/ncomms3612
https://doi.org/10.1038/ncomms3612
https://doi.org/10.1089/omi.2011.0118
https://doi.org/10.1093/nar/gku1179
https://doi.org/10.1093/nar/gkv1070
https://doi.org/10.1093/annonc/mdy470
https://doi.org/10.1093/annonc/mdy470
https://doi.org/10.1186/1471-2105-14-7
https://doi.org/10.1186/1471-2105-14-7
https://doi.org/10.1371/journal.pone.0015543
https://doi.org/10.1038/ng0506-500
https://doi.org/10.1073/pnas.0506580102
https://doi.org/10.1038/nature12213
https://doi.org/10.1101/gr.239244.118
https://doi.org/10.1016/j.ccell.2017.07.007
https://doi.org/10.1038/nmeth.3337
https://doi.org/10.1016/j.immuni.2019.08.004
https://doi.org/10.1016/j.immuni.2019.08.004
https://doi.org/10.1172/JCI91190
https://doi.org/10.1016/j.cell.2014.12.033
https://doi.org/10.1038/nature24462
https://doi.org/10.1126/scitranslmed.aah3560
https://doi.org/10.1158/1078-0432.CCR-16-2128
https://doi.org/10.1016/j.cell.2017.09.049
https://doi.org/10.1200/PO.20.00016
https://doi.org/10.1158/2326-6066.CIR-17-0201
https://doi.org/10.18632/aging.102693
https://doi.org/10.1053/j.gastro.2018.08.033
https://doi.org/10.1053/j.gastro.2018.08.033
https://doi.org/10.1038/nbt.2203
https://doi.org/10.1016/j.ebiom.2020.102858
https://doi.org/10.1038/s41598-019-56826-9
https://doi.org/10.1038/s41598-019-56826-9
https://doi.org/10.1001/jamaoncol.2016.3916
https://doi.org/10.1053/j.gastro.2021.01.220
https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Li et al. Immune Molecular Subtypes of PDAC
49. Espinet E, Gu Z, Imbusch CD, Giese NA, Büscher M, Safavi M, et al.
Aggressive PDACs Show Hypomethylation of Repetitive Elements and the
Execution of an Intrinsic IFN Program Linked to a Ductal Cell of Origin.
Cancer Discovery (2021) 11:638–59. doi: 10.1158/2159-8290.Cd-20-1202

50. Chen PL, Roh W, Reuben A, Cooper ZA, Spencer CN, Prieto PA, et al.
Analysis of Immune Signatures in Longitudinal Tumor Samples Yields Insight
Into Biomarkers of Response and Mechanisms of Resistance to Immune
Checkpoint Blockade. Cancer Discovery (2016) 6:827–37. doi: 10.1158/2159-
8290.CD-15-1545

51. Prat A, Navarro A, Pare L, Reguart N, Galvan P, Pascual T, et al. Immune-
Related Gene Expression Profiling After PD-1 Blockade in Non-Small Cell
Lung Carcinoma, Head and Neck Squamous Cell Carcinoma, and Melanoma.
Cancer Res (2017) 77:3540–50. doi: 10.1158/0008-5472.CAN-16-3556

52. Liu J, Liu Q, Zhang X, Cui M, Li T, Zhang Y, et al. Immune Subtyping for
Pancreatic Cancer With Implication in Clinical Outcomes and Improving
Immunotherapy. Cancer Cell Int (2021) 21:137. doi: 10.1186/s12935-021-
01824-z

53. Aran D, Sirota M, Butte AJ. Systematic Pan-Cancer Analysis of Tumour
Purity. Nat Commun (2015) 6:8971. doi: 10.1038/ncomms9971

54. Litchfield K, Reading JL, Puttick C, Thakkar K, Abbosh C, Bentham R, et al.
Meta-Analysis of Tumor- and T Cell-Intrinsic Mechanisms of Sensitization to
Checkpoint Inhibition. Cell (2021) 184:596–614.e14. doi: 10.1016/
j.cell.2021.01.002

55. McGranahan N, Furness AJ, Rosenthal R, Ramskov S, Lyngaa R, Saini SK,
et al. Clonal Neoantigens Elicit T Cell Immunoreactivity and Sensitivity to
Immune Checkpoint Blockade. Science (2016) 351:1463–9. doi: 10.1126/
science.aaf1490

56. Huang J, Chen P, Liu K, Liu J, Zhou B, Wu R, et al. CDK1/2/5 Inhibition
Overcomes IFNG-Mediated Adaptive Immune Resistance in Pancreatic
Cancer. Gut (2020) 70:890–9. doi: 10.1136/gutjnl-2019-320441
Frontiers in Immunology | www.frontiersin.org 18
57. Zhai L, Ladomersky E, Lenzen A, Nguyen B, Patel R, Lauing KL, et al. IDO1 in
Cancer: A Gemini of Immune Checkpoints. Cell Mol Immunol (2018) 15:447–
57. doi: 10.1038/cmi.2017.143

58. Blaauboer A, Sideras K, van Eijck CHJ, Hofland LJ. Type I Interferons in
Pancreatic Cancer and Development of New Therapeutic Approaches. Crit
Rev Oncol Hematol (2020) 159:103204. doi: 10.1016/j.critrevonc.2020.103204

59. Vennin C, Murphy KJ, Morton JP, Cox TR, Pajic M, Timpson P. Reshaping
the Tumor Stroma for Treatment of Pancreatic Cancer. Gastroenterology
(2018) 154:820–38. doi: 10.1053/j.gastro.2017.11.280

60. Hezel AF, Deshpande V, Zimmerman SM, Contino G, Alagesan B, O'Dell MR,
et al. TGF-Beta and Alphavbeta6 Integrin Act in a Common Pathway to
Suppress Pancreatic Cancer Progression. Cancer Res (2012) 72:4840–5.
doi: 10.1158/0008-5472.CAN-12-0634

61. Gurumurthy S, Bardeesy N. Uncapping NF-kappaB Activity in Pancreatic
Cancer. EMBO J (2011) 30:1–2. doi: 10.1038/emboj.2010.324

62. Tascilar M, Skinner HG, Rosty C, Sohn T, Wilentz RE, Offerhaus GJ, et al. The
SMAD4 Protein and Prognosis of Pancreatic Ductal Adenocarcinoma. Clin
Cancer Res (2001) 7:4115–21.

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Copyright © 2021 Li, He, Zhang, Wang, Liu, Liu, Wu and Liang. This is an open-
access article distributed under the terms of the Creative Commons Attribution
License (CC BY). The use, distribution or reproduction in other forums is permitted,
provided the original author(s) and the copyright owner(s) are credited and that the
original publication in this journal is cited, in accordance with accepted academic
practice. No use, distribution or reproduction is permitted which does not comply with
these terms.
July 2021 | Volume 12 | Article 690056

https://doi.org/10.1158/2159-8290.Cd-20-1202
https://doi.org/10.1158/2159-8290.CD-15-1545
https://doi.org/10.1158/2159-8290.CD-15-1545
https://doi.org/10.1158/0008-5472.CAN-16-3556
https://doi.org/10.1186/s12935-021-01824-z
https://doi.org/10.1186/s12935-021-01824-z
https://doi.org/10.1038/ncomms9971
https://doi.org/10.1016/j.cell.2021.01.002
https://doi.org/10.1016/j.cell.2021.01.002
https://doi.org/10.1126/science.aaf1490
https://doi.org/10.1126/science.aaf1490
https://doi.org/10.1136/gutjnl-2019-320441
https://doi.org/10.1038/cmi.2017.143
https://doi.org/10.1016/j.critrevonc.2020.103204
https://doi.org/10.1053/j.gastro.2017.11.280
https://doi.org/10.1158/0008-5472.CAN-12-0634
https://doi.org/10.1038/emboj.2010.324
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles

	Identification and Validation of Immune Molecular Subtypes in Pancreatic Ductal Adenocarcinoma: Implications for Prognosis and Immunotherapy
	Introduction
	Materials and Methods
	PDAC Datasets and Samples
	Virtual Dissection of Immune-Related Gene Expression Signals and Unsupervised Class Discovery
	Molecular Characteristics of the Immune Molecular Subtypes and the Generation of Immune Molecular Subtype Classifiers
	Correlations of the Immune Molecular Subtypes With Immunogenomic Features
	Combination of the Immune Molecular Subtypes and Other PDAC Molecular-Subtype Classifications
	Validation of the Immune Molecular Subtypes in Independent External Datasets
	Statistical Analysis

	Results
	Identification of the Immune Molecular Subtypes Through Virtual Microdissection
	Correlations Between the Immune Molecular Subtypes and Immunogenomic Characteristics
	Correlations of the Immune Molecular Subtypes With Clinicopathological Characteristics and Survival Analyses
	Combination of the Immune Molecular Subtypes With PDAC Tumor and Stroma Classifications for Prognostic Stratification
	Validation in Independent Datasets
	Exploration of Potential Immunotherapy Response

	Discussion
	Data Availability Statement
	Author Contributions
	Funding
	Supplementary Material
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages false
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 1
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU (T&F settings for black and white printer PDFs 20081208)
  >>
  /ExportLayers /ExportVisibleLayers
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName ([High Resolution])
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks true
      /IncludeHyperlinks true
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


