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Abstract

Game theory-inspired deep learning using a generative adversarial network provides an 

environment to competitively interact and accomplish a goal. In the context of medical imaging, 

most work has focused on achieving single tasks such as improving image resolution, segmenting 

images, and correcting motion artifacts. We developed a dual-objective adversarial learning 

framework that simultaneously 1) reconstructs higher quality brain magnetic resonance images 
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(MRIs) that 2) retain disease-specific imaging features critical for predicting progression from 

mild cognitive impairment (MCI) to Alzheimer’s disease (AD). We obtained 3-Tesla, T1-weighted 

brain MRIs of participants from the Alzheimer’s Disease Neuroimaging Initiative (ADNI, N=342) 

and the National Alzheimer’s Coordinating Center (NACC, N = 190) datasets. We simulated 

MRIs with missing data by removing 50% of sagittal slices from the original scans (i.e., diced 

scans). The generator was trained to reconstruct brain MRIs using the diced scans as input. We 

introduced a classifier into the GAN architecture to discriminate between stable (i.e., sMCI) 

and progressive MCI (i.e., pMCI) based on the generated images to facilitate encoding of disease-

related information during reconstruction. The framework was trained using ADNI data and 

externally validated on NACC data. In the NACC cohort, generated images had better image 

quality than the diced scans (Structural similarity (SSIM) index: 0.553 ± 0.116 versus 0.348 ± 

0.108). Furthermore, a classifier utilizing the generated images distinguished pMCI from sMCI 

more accurately than with the diced scans (F1-score: 0.634 ± 0.019 versus 0.573 ± 0.028). 

Competitive deep learning has potential to facilitate disease-oriented image reconstruction in those 

at risk of developing Alzheimer’s disease.

Keywords

Image reconstruction; generative adversarial network; magnetic resonance imaging; Alzheimer’s 
disease

I. INTRODUCTION

Detection of preclinical Alzheimer’s disease (AD) is advancing greatly through novel 

developments in structural (e.g., MRI) and functional (e.g., PET) neuroimaging [1]. The 

quality of the MRI scan, determined largely by the scanner itself, can play an important role 

in accurately representing regions affected by disease [2]. Since raw MRI scans are acquired 

in k-space, image reconstruction algorithms are needed to transform the acquired raw data 

into interpretable image representations. MRI reconstruction may involve several signal 

processing steps such as noise pre-whitening for phased array data acquisition, interpolation, 

filtering, and k-space to image space transformation [3]. Since all these steps are executed 

on the raw MRI data, the reconstruction process is not necessarily aimed towards accurate 

disease detection. Modifying the objective of reconstruction to ensure the generated images 

are of high quality with attention to accurate diagnosis of a disease can have profound 

practical implications.

We contend that a generative adversarial network (GAN) is ideally suited to accomplish 

such a task by leveraging the principles of the two-player zero-sum game from game 

theory. GANs utilize the minimax principle from game theory, where the generator and the 

discriminator compete with each other [4]. In the context of medical imaging, a classical 

GAN contains two players: 1) the generator, which takes images from one domain (e.g., 

low-quality brain MRIs) as input and attempts to create images similar to original training 

data (e.g., high-quality brain MRIs) and 2) the discriminator, which tries to distinguish the 

generator’s output from the original training data. The discriminator mainly serves to ensure 

that the generated MRIs adhere to a distribution of original brain MRIs.
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A. RELATED WORK

GAN-based approaches have been successful in MRI reconstruction. Yang et al. developed a 

conditional GAN-based model for fast compressed sensing MRI reconstruction [5], resulting 

in output images with preserved perceptual image details. In a related study, Quan et al. 

developed a GAN framework with deeper generator and discriminator networks and cyclic 

data consistency loss for improved interpolation in the given undersampled k-space data, 

followed by the use of a chained network to improve the quality of image reconstruction 

[6]. Additionally, Shaul et al. proposed a two-stage GAN framework for MRI reconstruction 

from undersampled k-space data, which estimated the missing k-space samples and fixed 

aliasing artifacts in the image space [7]. Chen and collaborators developed a multi-level 

densely connected super-resolution framework that incorporated GAN loss to enhance low 

resolution T1-weighted MRI volumes [8]. Others have developed GAN-based deep learning 

frameworks to enable reconstruction of high-quality MRI scans from low quality scans with 

fast acquisition time [9], [10], [11].

Most of these efforts focused on accurate reconstruction as the sole objective, where the 

frameworks were optimized for producing higher quality images and/or for time-efficiency. 

Further, there is limited literature on the use of MRI reconstruction techniques to clarify 

specific clinical concerns, for example distinguishing between progressive (pMCI) and 

stable mild cognitive impairment (sMCI) within the Alzheimer’s disease spectrum. Iglesias 

et al. recently published a public AI tool, SynthSR, that creates high quality isotropic 

T1-weighted brain MRIs using any clinical brain input scan [12]. Though they validated this 

tool with brains from persons with Alzheimer’s disease, the main objective of their tool was 

not for enhancing diagnostic ability, but rather for use in 3D morphometry software. While 

the study established a proof-of-principle that competitive deep learning can be leveraged 

to achieve multiple objectives, the cases that were utilized to achieve the goal (i.e., scans 

of multiple magnetic field strengths obtained on the same individuals taken at the same 

time) are not routinely available in most real-world clinical scenarios. Therefore, GAN 

approaches that can simultaneously address multiple objectives in a more practical setting 

can be tremendously helpful in the clinical setting, aiding physicians in prognostication of 

MCI earlier in the disease course without the use of invasive testing (i.e., lumbar puncture), 

since not all persons with MCI progress to AD [13].

Broadly, MCI is clinically diagnosed when individuals show deficits on cognitive testing 

while still being able to carry out their instrumental activities of daily living (IADLs; 

e.g., cooking, managing finances, etc.). Once individuals with MCI are unable to do any 

one IADL, they have clinically progressed to dementia (i.e., they had pMCI). Although 

medial temporal atrophy affecting the hippocampus is usually seen in MCI due to AD 

pathology and greater atrophy portends a worse prognosis, it is often difficult to determine 

hippocampal atrophy by visual inspection or with measures of cortical thickness early in the 

disease course (i.e., when individuals are still in the MCI stage), as the imaging changes 

can be very subtle [14], [15]. In related AD research, classifying between pMCI and sMCI 

(sMCI; i.e., individuals with MCI who do not progress to dementia) is generally considered 

to be challenging as the structural differences in the brain can be subtle [16], [17], [18]. This 
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challenge may be compounded when MRIs are of lower quality, whether due to artifacts 

such as motion or low magnetic field strength, for example.

In this work, we trained a dual-objective GAN to (1) construct higher quality brain MRIs 

with missing data, while simultaneously (2) retaining disease-specific features critical for 

classification of AD progression (pMCI versus sMCI). Given that classification of AD 

progression among persons with MCI is a clinically difficult task, this model serves 

as a proof-of-concept which may be applied to other diagnostic challenges. To achieve 

these objectives, we extend the classical GAN architecture by introducing a classifier that 

distinguishes the reconstructed brain MRIs from the generator as belonging to a subject 

with pMCI versus sMCI, thus encouraging the generator to create realistic brain images 

while retaining disease-related information. The classifier can also help to mitigate the 

feature hallucination problem, where generative networks can sometimes add or remove key 

elements from images [19]. We implemented this framework with MRIs in image-space. 

This allows generalizability to existing national and international working groups with 

access to large imaging studies which typically lack k-space data.

B. CONTRIBUTIONS

The main contributions of this paper are summarized below:

• We developed a dual-objective adversarial learning framework that is able to 

reconstruct higher quality brain MRIs that retain disease-related information in 

the setting of MCI due to AD pathology. We show that including a classifier 

in the GAN architecture increases the predictive value of the generated images, 

likely by encoding more disease-related information in the reconstructed scans.

• Our framework is able to address stability problems commonly encountered in 

training GANs by balancing the learning speeds of the generator, discriminator, 

and classifier with fine-tuned learning rates and having additional training 

iterations for the generator and classifier.

• We validate the predictive value of the generated scans in distinguishing 

pMCI from sMCI to address potential concerns of feature hallucination in the 

reconstructed images.

• We use T1-weighted 3T brain MRIs and corresponding clinical data from 

two independent datasets and demonstrated that our dual-objective GAN is 

generalizable.

II. MATERIALS AND METHODS

A. STUDY POPULATION

We obtained access to clinical and neuroimaging data from the Alzheimer’s Disease 

Neuroimaging Initiative (ADNI) and the National Alzheimer’s Coordinating Center (NACC) 

to perform this study.

ADNI is a multi-center project focused on curating clinical, imaging, genetic, and 

biochemical biomarkers for studying AD [21]. Our study utilized 3T T1-weighted MRIs 
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that were obtained at a visit where the respective participant received a diagnosis of MCI 

and had cerebrospinal fluid data available. Where multiple such events were present for a 

single person, MRIs were refined by selecting the scan collected at the most recent date, 

and by utilizing fully sampled scans where possible. Participants were assigned diagnosis 

labels of pMCI if they progressed to AD within (0–36] months (rounded down to the nearest 

month) and sMCI if they did not progress to AD within 36 months (Table 1).

NACC is a large database containing research data from Alzheimer’s Disease Research 

Centers across the United States. We utilized clinical and imaging data from a data freeze 

on December 12, 2020. For each subject, we first identified the visits at which they were 

diagnosed with amnestic or non-amnestic MCI. MRIs were chosen to minimize the time 

between a clinical diagnosis of MCI and the date of MRI acquisition. If the shortest time 

between an MCI clinical visit and MRI was longer than 6 months, the subject was excluded. 

Occasionally, participants had multiple MRIs that satisfied these criteria; in these cases, only 

one of these MRIs was utilized (Table 1).

B. IMAGE PROCESSING

We pre-processed MRIs using SPM12 (Statistical Parametric Mapping, https://

www.fil.ion.ucl.ac.uk/spm/software/spm12/) and MATLAB version 2020a. T1-weighted 

MRIs were bias-corrected, normalized into MNI space and skull-stripped. We adopted an 

approach to skull stripping similar to the one described by Mitchell et al. [22] in which 

SPM12-derived probabilistic maps of GM, WM, and CSF were summed and thresholded at 

0.2 to produce binary whole-brain masks. We performed quality checks of each individual 

binary mask to ensure skull stripping was performed correctly and 1 subject from the ADNI 

cohort was excluded due to poor pre-processing results. We opted to use the SPM12 pipeline 

for skull stripping as it has been shown to accurately estimate total intracranial volume 

when compared with expert manual estimation [23]. The binary masks were then applied 

to the normalized, bias-corrected MRIs. Additional details can be found in our previously 

published work [24]. Henceforth, these normalized, bias-corrected, and masked MRIs will 

be referred to as ‘original scans’. ‘Diced’ scans were created by randomly selecting half of 

the sagittal slices of the original scans and replacing their values with zeroes. These diced 

scans were used as input to the generator. A schematic of our image processing workflow is 

provided in Fig. 1, and an overview of the classifier is presented in Fig. 2.

Tissue probability maps obtained from SPM12 corresponding to CSF were thresholded at 

0.2, and plotted as blue over the reconstructed images (Fig. 3). A background mask was 

obtained by identifying relevant brain parenchyma as the sum of white matter, gray matter, 

and CSF tissue probability maps, thresholding at 0.2, and setting the background as the 

voxels not part of the brain parenchyma. These voxels were set to black in Fig. 3.

C. COMPUTATIONAL FRAMEWORK

We constructed an adversarial network for three-dimensional MR image reconstruction 

while simultaneously attempting to classify persons as having sMCI or pMCI. In our 

framework, we distinguish between two types of GANs: the standard GAN (GAN-VAN) and 

a variant with a modified loss function (GAN-NOV). GAN-VAN follows the conventional 
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GAN architecture, while GAN-NOV incorporates novel loss functions, enhancing the 

model’s ability to generate more diverse and realistic 3D images. This framework (GAN-

NOV) consisted of one generator, one discriminator, and one classifier. The generator takes 

diced scans as input and attempts to generate a more continuous version of the image. At 

the same time, the generated image is compared with the original scan via the discriminator. 

Concomitantly, the generated image is used as input to the classifier to predict if the original 

scan is from someone with sMCI or pMCI. Thus, our framework is performing two tasks, 

image reconstruction and classification. We incorporated three separate loss functions during 

model training, each corresponding to one part of our framework: 1) discriminator loss, 2) 

classification loss, and 3) perception loss (Fig. 1). After the model was trained, we compared 

the generated images with the original scans using various image quality metrics. We also 

evaluated the predictive ability of the generated images by comparing the performance of a 

classifier trained on the generated images with a classifier trained on the original scans.

Let Z denote the set of input slices to be reconstructed, z as an instance of the set; g ∈ G
as the reconstructed image, and t ∈ T  as the original scan. To reconstruct a complete 3D 

volume given a few 2D slices, a model capable of generating missing slices based on spatial 

context is necessary. In an adversarial setting, the two networks are competing against each 

other and the objective can be formulated as

min
G

max
D

V D, G = Et log D t + Ez log 1 − D G z ,

(1)

where V  is the function value, D t  is the discriminator’s output given t as the input, and G z
is the generator’s output given z as input.

The objective of the discriminator is to distinguish between the generated and reference data. 

Since the output contains binary outcomes, binary cross entropy was used to measure the 

loss defined as

LD = − mean log D t + log 1 − D G z .

(2)

The objective of the generator is to create outputs that are indistinguishable from the real 

data. The loss for generator is defined as

LG = − log D G z .

(3)

To guide the generator to reconstruct an image that captured disease-related information, we 

included binary cross entropy loss from the classifier, defined as

LC = − mean log C tpMCI + log 1 − C tsMCI ,

(4)
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where sMCI signifies that the scan originates from a person with sMCI (stable Mild 

Cognitive Impairment), while pMCI indicates that the scan is from an individual with pMCI 

(progressive Mild Cognitive Impairment). This specific loss can penalize the network if the 

generated images are incorrectly classified based on AD (Alzheimer’s Disease) status. Such 

mechanism helps the generator in focus on disease-related information, thereby enhancing 

the model’s ability to distinguish between these critical clinical states. We also introduced 

a perception loss that estimated the distance between the reconstructed image and the target 

image to restrict the generator from deviating from the target image, defined as

LP = − abs G z − t .

(5)

This loss function evaluates the output image by calculating the absolute difference between 

the generated image G z  and the target image t. Specifically, LP quantifies the magnitude 

of deviation, without considering the direction of this difference. This loss measures how 

far off each pixel value of the generated image is from its corresponding value in the target 

image. By minimizing this loss, the generator learns to produce image that match the target 

better, and ensuring a higher degree of image quality in the output image.

The complete objective function for the generator is defined as

LGs = λG ⋅ LG + λC ⋅ LC + λP ⋅ LP,

(6)

where λG, λC, and λP are the weights assigned for the corresponding losses. In our 

experiments, we observed that assigning higher weights to a specific loss component 

can enhance the model’s performance in certain areas, such as significantly boosting 

classification accuracy. However, this improvement often comes with a trade-off, leading 

to a deterioration in performance in other aspects, such as image quality. Based on these 

findings, we propose that an equivalent weight assignment across different loss components 

yields the best overall results, striking an optimal balance between classification accuracy 

and image quality.

Overall, the generator was composed of 2 convolutional and 2 transposed convolutional 

layers, where each of them have a kernel of size [3,1,1] with a padding of [1,0,0]. The 

convolutional layers had a stride of [2,1,1] to perform in lieu of discrete pooling layers. 

Batch normalization was applied for each layer’s output to rescale the parameters. The 

activation for the last layer was tanh, while the other layers used ReLU as activation 

function. The tanh activation function is used as the final layer of the generator because it 

has several benefits that helps the network have better results and greater training speed: 

(1) The tanh function outputs values in the range [−1,1], which is compatible with our 

pre-normalized MRI scan data. (2) It increases training stability and minimizes the risk of 

unbounded outputs by mapping extreme values into this bounded range (3) Due to its nature, 

the tanh function maps both positive and negative inputs away from zero, thereby promoting 

faster, yet smoother, learning.
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The discriminator was composed of 4 convolutional layers, where the first three had a kernel 

of size [3,3,3] with a padding of [1,1,1] and a stride of 3, and the last layer had a kernel 

of size [5,6,5] without padding and a stride of 1. Similar to the generator, we did not apply 

pooling layers for the discriminator, and batch normalization was applied to each layer’s 

output. We used LeakyReLU as the activation function for all layers except the last one. The 

last layer used the sigmoid activation function.

The classifier was composed of 6 convolutional layers, each with a doubled number of filters 

from the previous layer, starting from 20. The first five layers had a kernel of size [3,3,3] 

with a padding of [1,1,1] and a stride of 2. The last layer had a kernel of size [4,5,4] without 

padding and a stride of 1. We did not use any pooling layers. Batch normalization with 

a dropout rate of 0.25 was applied for each layer’s output. Similar to the discriminator, 

LeakyReLU was used as the activation function for all layers except the last one. The last 

layer used the sigmoid activation function.

The activation functions used by the discriminator and classifier were LeakyReLU in the 

hidden layers and sigmoid in the final layer to optimize for performance and stability. 

Sigmoid was chosen in the last layer because (1) it maps the output to the range [0, 1], 

which is suitable for our prediction tasks and (2) our early optimization efforts indicated that 

it performs best for our tasks. We chose not to use sigmoid in the hidden layers since (1) it 

has a small gradient during backpropagation, which may cause the gradients to vanish when 

overlapped multiple times, (2) it is more expensive computationally, which would make 

the training slower, and (3) its output range can make the learning complex, as it prevents 

negative correlations between neurons. Finally, LeakyReLU was selected in hidden layers 

because it is more efficient than sigmoid and tanh, rendering faster training, and it allows for 

a small gradient for negative outputs, which helps prevent the vanishing gradient problem. 

These choices are supported by previous work that used similar settings [25], [26], [27] and 

empirical results from our early optimization experiments.

We tackled multiple technical challenges that often arise when training GAN frameworks. 

For example, during earlier epochs of training, it is possible for the discriminator to 

dominate, as it is straightforward to distinguish the generated image from the original 

(i.e., target) image. To mitigate this issue, we tuned the learning rate and paused the 

discriminator periodically to prevent it from learning faster than the generator. Additionally, 

as discussed earlier, to ensure that the generator learns the appropriate way to reconstruct 

images with reference to the original scans, we introduced perception and classification 

losses as additional weighted loss terms.

We chose to construct our framework with a GAN because we observed in preliminary 

experiments that GAN variants like the Wasserstein GAN (WGAN) implementation did 

not perform optimally within our framework, potentially due to its loss function not 

aligning well with the added complexity of a classifier and our specific data characteristics. 

Additionally, considering our limited dataset size, which consists of only a few hundred 

samples, more complex architectures like those required for BiGAN, BEGAN, etc., could 

have lead to significant overfitting. Furthermore, the computational resources required 
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for 3D reconstruction with complex GAN variants would have risen significantly for our 

architecture.

Our network’s structure and parameters are informed by insights from previous research, 

further refined through optimization in the current study for enhanced performance. We 

conducted hyperparameter tuning using a Bayesian approach, utilizing Gaussian Process 

(GP) within the WandB framework [28]. This method systematically evaluated the interplay 

between various parameters and their impact on model performance. The underlying 

formula for hyperparameter optimization allowed us to fine-tune our model with greater 

precision and efficiency:

aEI x; xn, Ln , θ
= Σ x, x; xn, Ln , θ

* γ x Φ γ x + N γ x ; 0, 1

(7)

where

γ(x) = Lbest − μ x; xn, Ln , θ
Σ x, x; xn, Ln , θ

(8)

and

Σ x, x′; xn, Ln , θ

= K x, x′ − K(X, x)⊤K(X, X)−1K X, x′ .

(9)

Note xn, Ln 1
N are the pairs of observations, and Φ is the cumulative distribution function of 

the standard Gaussian distribution (N(0, 1)), γ(x) is Z-score, K(X, x) is the N-dim vector 

of cross-co-variances between x and set X (which contains all xs) . K(X, X) is the Gram 

matrix for set X (K is a kernel function), m:χ R is the mean function, θ is the kernel 

parameters, and Matern 5/2 kernel was used (Table 2). We applied standard black-box 

optimization algorithms to optimize the function as described by Snoek et al. [29].

D. STATISTICS

We used Fisher exact test to statistically compare categorical data and Mann-Whitney U 

tests to compare continuous variables. To compare proportions of persons with different 

numbers of APOE4 alleles between the ADNI and NACC cohorts, counts were pooled 

between bins. For example, to compare proportions of persons with 1 APOE4 allele between 

the two cohorts, the number of persons with 0 or 2 APOE4 alleles were combined.
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Algorithm 1

GAN Model for 3D MR Image Reconstruction and Classification

1: Initialize Generator G, Discriminator D, and Classifier C’s parameters with Kaiming uniform initialization 
method.

2: for each training iteration do

3:  Sample a batch of 3D MR images z from Z
4:  Generate reconstructed images g = G(z)
5:  Compute Discriminator Loss: LD = − mean log(D(t)) + log(1 − D(G(z)))
6:  Update Discriminator weights using gradient descent on LD

7:  Compute Generator Loss:

 LG = − log(D(G(z)))
 LC = − mean log C tpMCI + log 1 − C tsMCI

 LP = − abs(G(z) − t)
 LGs = λG ⋅ LG + λC ⋅ LC + λP ⋅ LP

8:  Update Generator weights using gradient descent on LGs

9:  (Optionally) Update Classifier weights

10: end for

11: Evaluate the model:

12:  A. Compare generated images with original scans

13:  B. Evaluate classification performance on generated vs. original scans

E. DATA AND CODE AVAILABILITY

Both ADNI and NACC datasets are publicly available and can be obtained directly from 

the respective sources. Python scripts and manuals are made available on GitHub (https://

github.com/vkola-lab/access2024)

F. COMPLEXITY ANALYSIS

1) TIME COMPLEXITY—In general, for convolutional operations, the time complexity 

is given by: O K3FW HD , where K is the kernel size, F  is the number of filters, and W , 

H, D are the dimensions of the inputs. In our case, for the discriminator and classifier, the 

approximate time complexity can be represented as O 33 × 20 × 121 × 145 × 121). For the 

generator, the time complexity is approximately: O 33 × 3 × 121 × 145 × 121 .

2) SPACE COMPLEXITY—In our model, the space complexity of the network is mostly 

determined by the number of parameters in the convolutional layers, which in general is 

O K3FC , where C is the number of input channels. For the discriminator and classifier, the 

approximate space complexity can be represented as O 33 × 20 × 1 . For the generator, the 

space complexity is approximately: O 33 × 3 × 1 .
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3) NUMBER OF PARAMETERS—The total number of parameters in our generative 

adversarial framework is the sum of the parameters for the generator, discriminator, and 

classifier, which is 1,864,189.

4) FLOPS (FLOATING POINT OPERATIONS)—Our framework’s FLOPs are 

determined by the number of floating-point operations required during a forward pass. The 

FLOPs for the generator is 1,673,021,020, for the discriminator is 2,661,531, and for the 

classifier is 1,696,252,460.

III. EXPERIMENTS

The ADNI dataset was randomly split 80% for training, 10% for validation, and 10% for 

internal testing. The optimal model was saved based on performance on the validation 

partition. The entire NACC dataset was used for external testing. We trained the framework 

(GAN-NOV) for 20 epochs with the Adam optimizer. The classifier was trained for 60 

epochs with the stochastic gradient descent optimizer. Learning rates ranged from 0.001 to 

0.005 for different components of the learning framework. We constructed the GAN-VAN 

framework to evaluate the added benefit of the classification loss (see Fig. 1). Thus, this 

generator only incorporates the GAN loss and perception loss without the classification 

loss. GAN-VAN was trained identically as GAN-NOV and used for comparison against 

GAN-NOV.

To assess if our reconstruction frameworks generated images that retained disease-relevant 

information, we trained and tested four separate CNN classifiers to discriminate between 

pMCI and sMCI utilizing unique sets of MRIs as inputs: original scans only, diced scans 

only, generated images from GAN-VAN only, and generated images from GAN-NOV only. 

The classifiers were initialized identically to the one in GAN-NOV and trained for 60 epochs 

with the stochastic gradient descent optimizer. The classifiers were trained, validated, and 

tested 5 times, each time with a different seed for the random splits of the ADNI cohort. We 

assessed the classification performance on the ADNI test partitions and on NACC.

A. COMPUTING INFRASTRUCTURE

Model training and evaluation was performed on a GPU workstation with an NVIDIA 

2080Ti graphics card containing 11 GB memory. We used PyTorch (v1.13.0) to implement 

the model. The training speed was about 10–15 min for each epoch, or about 0.12–0.19 

iterations/s, and training took 3.5–4 hours to reach convergence. The inference speed was 

1.17s per MRI scan with a batch size of 1.

B. PERFORMANCE METRICS

The image quality metrics contrast-to-noise ratio (CNR), signal-to-noise ratio (SNR), and 

structural similarity index measure (SSIM) [30] were used to compare the differences in 

quality between original scans and generated images. Two no-reference algorithms were also 

used for comparisons: Blind/Referenceless Image Spatial Quality Evaluator (BRISQUE) 

[31] and Perception-based Image Quality Evaluator (PIQE) [32]. Image quality metrics were 

calculated for each image in the ADNI test partition and the entire NACC cohort. We report 
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the means and standard deviations of each metric for scans of the corresponding datasets in 

Table 3.

Assessment of the classifiers was done by first generating receiver operating characteristic 

(ROC) and precision-recall (PR) curves based on model predictions on both the ADNI test 

partition and the NACC cohort. Then, for each ROC and PR curve, we computed the area 

under the curve (AUC) statistic. We computed the mean AUCs and standard deviations for 

each model across the 5 folds. We report mean values, along with the respective standard 

deviations, of model accuracy, precision, F1-score and Matthews correlation coefficient 

(MCC) in Table 4.

IV. RESULTS

The primary objective of our study was to evaluate the efficacy of our multi-objective 

adversarial deep learning framework in MRI reconstruction and classification. We 

aimed to determine if our approach could produce high-quality images while retaining 

disease-relevant information when given low-quality images from patients with MCI. 

Our study populations did not differ in terms of sex or APOE scores in either the 

pMCI or sMCI groups (APOE: sMCI, all p = 1; pMCI, p = 0.23 (0 APOE4 alleles), 

p = 0.58 (1 APOE4 allele), and p = 1 (2 APOE4 alleles) (Bonferroni-corrected); sex: 

sMCI, p = 0.46; pMCI, p = 0.21). For sMCI, persons in the NACC cohort were older 

(U = 12852, p = 0.0053), had lower MMSE scores (U = 5862, p = 4.4e − 05, with 20 missing 

samples from NACC), and fewer years of education (U = 9112.5, p = 0.03). For pMCI, 

education did not differ significantly between the two cohorts (U = 4858, p = 0.13), though 

persons in the NACC cohort were older (U = 6699, p = 0.007) and had lower MMSE scores 

(U = 2356, p = 0.0054, 40 missing samples from NACC). There was a larger proportion 

of persons with at least 1 APOE4 allele in the pMCI groups in both NACC and ADNI 

(p = 0.034 (NACC) and p < 0.0001 (ADNI)). Details of these performance are provided in 

Fig. 4, Table 3 and 4, as discussed in following sections.

A. QUALITATIVE ASSESSMENT

To visually assess the quality of reconstructed images, we compared them with the 

original scans. This qualitative assessment provides an intuitive understanding of the 

reconstruction quality, which is relevant relevant for clinical applications. In Fig. 3, we show 

reconstructed missing sagittal brain slices of six sample MRIs using each reconstruction 

method and compare them with the corresponding original scan slice. We see that GAN-

NOV captures the sulci and ventricles better than GAN-VAN. Additionally, cortical thinning 

and boundaries between the cortex and white matter appear more clearly on the images 

generated using the GAN-NOV framework. Different patterns of gray matter morphometry, 

particularly within the temporal and parietal lobes, can be seen in persons with MCI or 

AD, and it is therefore important to preserve these details for MCI and AD assessment 

[33]. Moreover, the GAN-VAN approach produces images that appear to have higher signal 

intensity and saturation of extreme values, whereas the images generated via the GAN-NOV 

framework have a more dynamic range of voxels.
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B. QUANTITATIVE ASSESSMENT

Various image quality metrics, which included some no-reference algorithms, were used to 

objectively compare the quality of the images produced by the GAN-based reconstruction 

methods with the original and diced scans. Overall, the GAN-based reconstruction 

techniques were able to generate images with improved quality (Table 3). As expected, 

the diced scans demonstrated the worst image quality across all metrics tested. Moreover, 

the images generated via the GAN-NOV framework outperformed those generated via 

GAN-VAN as evaluated using SSIM, BRISQUE, and PIQE. However, generated images 

from the GAN-VAN framework had improved CNR and SNR than those generated from 

the GAN-NOV framework. Interestingly, both GAN-VAN and GAN-NOV generated images 

with better BRISQUE scores than the original images (e.g., GAN-NOV, 42.505 versus 

Original, 44.292 on NACC).

To assess whether our framework was able to reconstruct the MR images while retaining 

disease-relevant information, we constructed CNN classifiers utilizing either the original 

scans, diced scans, or reconstructed images from GAN-VAN and GAN-NOV as input to 

discriminate between sMCI and pMCI cases. We trained the CNNs on 5 randomly selected 

folds of the ADNI dataset and performed internal testing on the corresponding ADNI test 

partitions and external validation on the NACC cohort. Performance of each classifier using 

various metrics is summarized in Table 4. ROC and PR curves for each classifier are 

presented in Fig. 4. As expected, the CNN classifier utilizing the original scans performed 

the best on both the ADNI test partition and NACC. Generated images from the GAN-NOV 

framework seemed to afford better discriminative ability than the diced scans (e.g., GAN-

NOV, 64% accuracy versus Diced, 59.7% accuracy on NACC). While images generated by 

GAN-VAN generally demonstrated the highest CNR and SNR on both ADNI and NACC 

(Table 3), the classifier utilizing these images tended to perform similarly to, or in some 

metrics worse than, the classifier utilizing the diced scans on both datasets.

Images generated by GAN-NOV performed better than those from GAN-VAN across all 

reported metrics on the external testing dataset (i.e., NACC). A similar trend can be seen 

in Fig. 4, with the classifier using GAN-VAN-generated images performing similarly to 

the one using diced scans (AUC 0.677, GAN-VAN versus 0.674, Diced on NACC) and 

the classifier using images from GAN-NOV performing better with an AUC of 0.698. 

Overall, these results suggest that a generative adversarial framework utilizing an additional 

classification loss is able to reconstruct images of better quality while maintaining disease-

relevant information and also appears to be generalizable to more heterogeneous datasets.

1) CLASSIFIER PERFORMANCE—Discriminating between pMCI and sMCI is a 

well-known clinical challenge, as the pathological and imaging differences between these 

two conditions are more subtle than those between AD and normal cognition [16]. Further, 

predicting which individuals with MCI will progress to Alzheimer’s disease becomes more 

difficult the longer the lead time to clinical progression, especially when trying to predict 

3 or more years prior to progression [34]. In light of these challenges, others have been 

able to predict which persons with MCI progress to AD with varying accuracy, between 

0.5–0.8, using the widely available ADNI dataset [35], [36], [37], [38], [39]. Lian et al. 
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were able to achieve one of the highest accuracies of 81% when classifying between pMCI 

and sMCI on the ADNI dataset [39], similar to our baseline classifier performance using 

the original scans. We achieved classification accuracy comparable to published studies of 

64% with the generated images from GAN-NOV when tested on a completely independent 

dataset (i.e., NACC). This highlights some of our framework’s biggest strengths; we show 

GAN-NOV generates images that retain AD-relevant information essential for classification 

(i.e., diagnosis), and also that GAN-NOV is generalizable to unseen, heterogeneous datasets.

V. DISCUSSION

In this work, we developed and validated a multi-objective adversarial deep learning 

framework for MRI reconstruction and classification of persons with sMCI and pMCI 

using images with missing information. We extended the classical GAN architecture 

by incorporating a classifier to reconstruct higher quality MR images with attention to 

disease-related information such that the reconstructed images can be used for prognostic 

purposes. We systematically trained and tested our MRI reconstruction framework using two 

independent datasets (ADNI & NACC), and presented the performance of our framework 

using well-known image quality and classification metrics.

One of the biggest challenges in identifying patients with MCI who are at high risk of 

progressing to AD lies in the heterogeneity of MCI presentation. For example, in the ADNI 

dataset, prior studies have found a significant proportion of subjects with MCI to have 

normal cognitive test results and no significant cortical atrophy, even though many of these 

subjects progressed to AD [13], [15]. Even though cortical atrophy can be subtle in a 

sizable proportion of pMCI patients, our competitive deep learning framework generated 

images with greater disease-related information than the input Diced scans, leading to 

improved performance in identifying persons with pMCI. That our model is able to achieve 

such a challenging image-based objective suggests that it may serve as a framework for 

development of future models targeted toward subtle but clinically important imaging tasks.

Previous work has focused on MRI reconstruction using downsampled brain scans of 

healthy individuals [40], [41], [42] or of patients with other neurological illnesses 

like multiple sclerosis [7]. Although Eo et al. proposed a deep-learning reconstruction 

framework in the AD population using scans from ADNI, they did not assess if the 

reconstructed images maintained AD-related information or validate their framework on an 

independent patient cohort [43]. Further, most of the published frameworks have addressed 

reconstruction and super-resolution in the raw MRI k-space, which limits their applicability 

to large, established imaging databases, such as those available for Alzheimer’s disease. 

A final strength of our work compared to similar projects is that we mitigated the feature 

hallucination problem [19] inherent to generative networks to ensure accurate encoding 

of disease-related information. This is a necessary prerequisite to eventual use of such a 

framework in the clinical setting.

Our proposed framework utilizing the GAN loss, perception loss, and classification loss 

generated images that boosted classification accuracy from 59.7% (utilizing diced scans) 

to 64%. It appears that inclusion of perception loss without classification loss, like in 
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GAN-VAN, did not yield a generalizable framework, as the classifier utilizing GAN-VAN-

generated images performed worse in most metrics than the one using Diced scans (Table 

4). Images generated by GAN-NOV may encode more disease-related information due to 

inclusion of the classification loss, thus allowing the generator network to potentially learn 

latent imaging features that are weakly associated with disease across MRI scans in different 

datasets (i.e., ADNI and NACC). These latent features may be predictive of progression 

from MCI to AD, but may not directly contribute to image quality. Since GAN-VAN 

does not incorporate classification loss, it likely cannot learn these latent features when 

generating images and instead focuses more on features relating to image quality.

GAN-VAN generated images with the highest SNR and CNR, likely due to the greater 

average pixel intensities causing oversaturation and clipping, leading to simultaneously 

higher mean pixel values and decreased variance. Since SNR and CNR are directly 

proportional to mean pixel values and inversely proportional to the variance, these measures 

are likely artificially inflated. In contrast, GAN-NOV generated images that demonstrated 

better SSIM, suggesting these images have less structural distortion when compared with the 

original scans than those from GAN-VAN. It is important to note image quality assessment 

should be done using a variety of metrics, not just SNR and CNR, especially since these 

latter two measures are known to be inferior metrics when comparing distorted images 

against corresponding references, like we do in this paper [30], [44]. For such image quality 

analysis, SSIM appears to be superior [30].

A. LIMITATIONS

Our study has a few limitations. We restricted the network depth in various settings due 

to hardware limits (GPU memory), including the number of filters (both generator and 

discriminator), batch size, and number of convolutional layers. We hypothesize that a larger 

network architecture may significantly enhance the performance of the model. However, the 

high-quality scans for sMCI and pMCI brains are insufficient for training a high-quality 

generator, which generally requires thousands of samples. Though the generator is able to 

obtain reasonable predictions on the NACC dataset, its broader applicability needs further 

verification on other datasets. It remains a challenge to maintain the balance between the 

different components of competitive networks even with our modified training method. For 

example, while the discriminator could maintain stability during the early phases of training, 

it may prove to be ineffective in the late phase. In other words, as the generator improves, 

it tends to be difficult for the discriminator to identify the differences and similarities 

between the generated image and the reference image, especially when the generated image 

belongs to the reference distribution. To alleviate this issue, potential resolutions include (1) 

introducing additional/alternative loss to adjust the difference during training, (2) providing 

additional input as extra information (i.e., spatial information) to the discriminator in later 

phase, (3) or using additional discriminators to create an ensemble for higher performance in 

later training epochs.

B. FUTURE DIRECTIONS

Sufficient spatial resolution is essential for identifying potentially minute structural brain 

changes that can occur in the early stages of MCI and AD. However, MRIs require 
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long acquisition times, which can lead to patient discomfort and motion artifacts. Thus, 

it is essential to achieve an ideal balance between image quality and scan time. Parallel 

sequences can speed acquisition time, but compared to fully sampled sequences, have lower 

signal-to-noise-ratios [45]. Our framework could potentially be used in 2D MRI to acquire 

fewer images while maintaining adequate resolution of the generated slices in the setting 

of a specific diagnostic query. Alternatively, it could be targeted to address issues such 

as zipper artifacts, which appear linearly in image space [46]. It could also be extended 

to perform slice imputation recursively, which could enable sparser sampling or improved 

resolution [47]. Lastly, since we designed our framework to work with brain MRIs curated 

from existing imaging databases, our method could be easily extended to other imaging data 

banks for conditions other than AD such as vascular dementia, epilepsy, or multiple sclerosis 

in future research to probe other clinically relevant, subtle MRI findings.

VI. CONCLUSION

In conclusion, we propose an adversarial learning framework that takes T1-weighted MRI 

scans with missing slices as input and generates images with improved quality while 

maintaining disease-related information, assessed by discriminating between progressive 

MCI from stable MCI using the generated images. We trained our framework on cases 

from ADNI and tested it on an independent, heterogeneous dataset, NACC. Additionally, 

our ablation study comparing Group Normalization and Batch Normalization within 

this framework provided valuable insights into optimizing image quality and classifier 

performance, further enhancing the utility and robustness of our GAN-based approach. We 

note that this framework is able to meet dual objectives even when its learning ability is 

largely limited due to hardware and sample size. We found that the classification loss is 

crucial to guide the generator in producing images that retain disease-related information 

and to improve generalizability of the framework. Further validation of our framework, 

preferably using gold-standard evidence such as post-mortem neuropathology, is needed 

to confirm the utility of GAN-based frameworks for image reconstruction and cognitive 

assessment.
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FIGURE 1. 
Image processing workflow and adversarial learning framework. (A) Raw T1 brain 

MRIs were pre-processed using SPM12 with bias-correction, normalization, and skull 

stripping. Binary whole-brain masks were applied to the normalized MRIs yielding the 

“original” images. Diced scans were created by randomly selecting half of the sagittal 

slices from the original scans and replacing them with zeroes. (B) Diced scans serve as 

input to the generator. The generator incorporates losses from the discriminator (LossG), 

classifier (LossC), and a new ‘perception loss’ (LossP) derived from the comparison of the 

generated images with the corresponding reference images (i.e., Original scans). While the 

discriminator attempts to differentiate between the generated images and the original scans, 

the classifier uses the generated images to classify persons who have sMCI from those 

with pMCI. (C) The internal compositions of the generator, discriminator, and classifier are 

shown. Detailed descriptions can be found in the text (See Section II-C).
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FIGURE 2. 
Schematics of the classifier. An exemplar MRI before (‘Original’) and after (‘Diced’) 

random removal of sagittal slices. Also shown are examples of brain MRIs following 

two different GAN-based methods of imputing the missing slices, GAN-VAN and GAN-

NOV. On the right is a visual representation of the three-dimensional classifier network 

used to differentiate between stable and progressive MCI cases. The classifier network 

representation was generated using PlotNeuralNet v1.0.0 [20].
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FIGURE 3. 
Sample reconstructed brain slices. Sample sagittal slices from six T1-weighted MRIs, 

labeled “Original” (bottom), and reconstructions, with signal intensities rescaled between 

the range [0, 1]. Reconstructed images are from either a generator utilizing perception loss, 

GAN loss, and classification loss together (GAN-NOV), or a generator utilizing perception 

loss and GAN loss only (GAN-VAN). Blue indicates CSF, while backgrounds were set to 

black.
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FIGURE 4. 
Performance of the CNN classifiers, Batch Normalization. Sensitivity-specificity (Ai and 

Aii) and precision-recall (Bi and Bii) curves comparing the four CNN classifiers on the 

ADNI test partition and NACC cohorts are shown. The classifier denoted as “Orig” was 

trained using original scans, “G-VAN” using generated images from GAN-VAN, “G-NOV” 

using generated images from GAN-NOV, and “Diced” using diced scans.
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TABLE 1.

Study population.

(a) ADNIa cohort

pMCIb sMCIb

N (% Male) 116 (57.8) 226 (57.1)

Age, years 73.0 ± 7.2 (116) 71.2 ± 7.3 (226)

MMSEb (N) 27.1 ± 1.8 (116) 28.2 ± 1.6 (226)

Years of educ. (N) 15.9 ±2.7 (116) 16.4 ± 2.6 (226)

APOE4 (#0/1/2 - N) 38/58/20 138/75/13

(b) NACCacohort

N (% Male) 95 (48.4) 95 (62.1)

Age, years 75.9 ± 9.4 73.5 ± 10.2

MMSEb (N) 25.9 ± 2.5 (55) 27.3 ± 2.0 (75)

Years of educ. (N) 15.4 ± 2.9 (95) 15.7 ± 2.4 (95)

APOE4 (#0/1/2 - N) 38/33/12 58/31/4

Demographics summary of the participants from the ADNI and NACC datasets. Age, MMSE, and years of education are reported as means with 
the respective standard deviations.

a
ADNI = Alzheimer’s Disease Neuroimaging Initiative, NACC = National Alzheimer’s Coordinating Center

b
pMCI = progressive mild cognitive impairment, sMCI = stable mild cognitive impairment, MMSE = Mini Mental State Exam
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TABLE 2.

Variable definitions.

Variable Description

xn, Ln 1
N observation pairs

Φ CDF of normal distribution

γ x Z-score

K X, x N-dim vector of cross-covariances of x and X

K X, X Gram matrix for set X

m:χ R mean function

θ parameters of the kernel
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