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Abstract: Heroin (3,6-diacetylmorphine) has various effects on the central nervous system 

with several neuropathological alterations including hypoxic-ischemic brain damage from 

respiratory depressing effects and neuroinflammatory response. Both of these mechanisms 

induce the release of cytokines, chemokines and other inflammatory mediators by the 

activation of many cell types such as leucocytes and endothelial and glial cells, especially 

microglia, the predominant immunocompetent cell type within the central nervous system. 

The aim of this study is to clarify the correlation between intravenous heroin 

administration in heroin related death and the neuroinflammatory response. We selected  

45 cases among autopsies executed for heroin-related death (358 total cases); 

immunohistochemical studies and Western blotting analyses were used to investigate the 

expression of brain markers such as tumor necrosis factor-α, oxygen-regulated  

protein 150, (interleukins) IL-1β, IL-6, IL-8, IL-10, IL-15, cyclooxygenase-2, heat shock 

protein 70, and CD68 (MAC387). Findings demonstrated that morphine induces 

inflammatory response and cytokine release. In particular, oxygen-regulated protein 150, 

cyclooxygenase-2, heat shock protein 70, IL-6 and IL-15 cytokines were over-expressed 

with different patterns of cellular expression. 
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1. Introduction 

The use of drugs for amusing intents is a remarkable issue that encompasses relevant health, 

judicial and forensic consequences. A broad spectrum of drugs is commonly consumed and cause 

severe morpho-functional impairment on all organ systems in the body. The majority of drug-related 

deaths are due to opiates, especially intravenously administered heroin (3,6-diacetylmorphine) that 

accounts for a substantial number of drug-related illnesses and injuries [1–3]. On the central nervous 

system, heroin has variously effects including hypoxic-ischemic brain damage from respiratory 

depressing effects [1,2,4,5] and neuroinflammatory response [6]. Both mechanisms induce the release 

of cytokines, chemokines [3,7–11] and other inflammatory mediators by the activation of many cell 

types such as leucocytes, endothelial and glial cells [12–14], especially microglia [7,15] which is the 

predominant immunocompetent cell type within the central nervous system [13–15]. A cascade of 

biomolecular events occurs in an intricate network after exposure to heroin [6,11–13] including the 

production of interleukins 1β, 6, 10 (IL-1β, IL-6, IL-10) [3,6–10,15,16], tumor necrosis factor-α  

(TNF-α) [3,7–10] along with the induction of cyclooxygenase-2 (COX-2) [7]. These molecules have a 

various set of functions [14–16]. A proinflammatory behavior is reported for TNF-α, IL-1β and COX-2, 

which are important mediators of acute inflammatory response [12–14,17], such as for the recruitment 

of neutrophil leukocytes [13]. Other molecules recognized with an immunosuppressant role [14,18] 

include IL-10, which inhibits cytokine production and receptor expression; additionally, it attenuates 

the activation of astrocytes [14,15,18]. In contrast to these findings, other researchers observed that 

heroin administration modulates the basic dynamics of the immune reaction, leading to an alteration in 

proinflammatory cytokine production with possible exposure to secondary disease [19]. Moreover 

molecular chaperones such as heat shock protein 70 (HSP-70) and oxygen-regulated protein 150 

(ORP-150) are important for keeping the biological activity of cells, tissues, and organs from various 

kinds of stimulation [20]. In particular ORP-150, belonging to the heat shock protein family, is 

induced under hypoxic conditions and like HSP-70, its increase depends on aging [11,20]. 

The aim of this study is to clarify the correlation between intravenous heroin administration in  

heroin-related death and the neuroinflammatory response, and to investigate the expression of brain 

cellular markers such as TNF-α, ORP 150, IL-1β, IL-6, IL-8, IL-10, IL-15, COX-2, HSP-70, microglia 

marker (CD68/MAC387) and leukocyte marker (CD15), in an attempt to verify and define the role and 

expression of cytokines and mechanisms of cell death triggered in cases of heroin intoxication. On the 

basis of our experience at the Departments of Forensic Pathology of the Universities of Foggia and 

Perugia in the period 2006–2012, among autopsies performed for drug-related death (358 total cases), 

45 cases of heroin related death were selected, and we performed immunohistochemical studies and 

Western blot analysis to investigate the expression of the brain markers listed above. 
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2. Results 

Only some of the various antibodies tested revealed appreciable reactivity on brain tissue samples 

especially in brainstem, showing a significant difference in the group of heroin-related deaths and the 

control group as summarized in Table 1. 

Table 1. Semi-quantitative evaluation and statistical analysis of the immunohistochemical 

findings and gradation of the immunohistochemical reaction in the brain samples. 

Antibody 
Group 1  

heroin related-death
Group 2 
controls 

Statistical value  
group 1 vs. group 2 

IL-1β − − NS 
IL-15 ++++ − *** 
CD15 − − NS 

MAC387 (CD68) +++ − ** 
IL-8  − − NS 
IL-10 + − NS 
TNF-α  ++++ − *** 
IL-6 ++++ − *** 

COX-2 ++++ − *** 
HSP-70 +++ − ** 

ORP-150  +++ − ** 

NS: p > 0.05; **: p < 0.01; ***: p < 0.001. Intensity of immunopositivity was assessed semiquantitatively in 

the scale 0–4 as follows: −: no immunoreactivity (0%); +: mild immunopositivity in scattered cells (10%); 

++: immunopositivity in up to one third of cells (33%); +++: immunopositivity in up to one half of cells 

(50%) and ++++: strong immunopositivity in the majority or all cells (100%). 

2.1. Immmunohistochemistry Results 

The immunohistochemical findings and the gradation of the immunohistochemical reaction have 

been described with an ordinary scale and the median value has been reported. 

The reactions were graded as follows: 0. (−) not expressed; 1 (+) isolated and disseminated 

expression; 2 (++) expression in scattered foci; 3 (+++) expression in widespread foci;  

4 (++++) widespread expression. 

Among the various markers tested, only a few have shown important significances in discriminating 

between the group of heroin-related death and the group of controls. We therefore discarded some 

markers, such as IL-1β, CD15, IL-8 and IL-10 because they did not provide discriminating 

characteristics of significance. 

Using a morphometric quantitative microscopic observation, the immunohistochemical reaction 

against antibodies anti-TNF-α, IL-15, MAC387 (CD68), IL-6, COX-2, HSP-70, and ORP-150 showed 

a statistically significant difference in the group of heroin-related death compared to the control group. 

Regarding cytokines IL-15 and IL-6, a wide positive reaction in neurons associated to vascular and 

glial positivity was observed (Figures 1 and 2). 
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Figure 1. IL-15 showed a wide positive reaction in neurons, expressed by red dots in the 

cytoplasm [head-arrows in (A)]; associated to vascular (B); and oligodendrocyte positivity (C). 

CTR negative control case. 

 

Figure 2. Differential immunohistochemical reaction of IL-6 in group of heroin-related 

death and control group showed a strong and diffusely neuronal and oligodendrocyte (A,B) 

positivity (in C confocal laser microscopy with neuronal reaction in cyan color).  

CTR negative control case. 

 

TNF-α reaction was intense in heroin-related death cases, with neurons and vascular localization 

(Figure 3). 
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Figure 3. TNF-α was expressed in the heroin-related death group: note the intense 

neuronal and glial reactions (A–C), and the negative control group (CTR). 

 

Constant and strong positivity was found in brain macrophages (MAC 387) (Figure 4). 

Figure 4. The reaction with CD68 (MAC387) showed a constant and strong positivity in 

brain macrophages (A,B); Evident microglia fluorescence by use of the confocal 

microscope (C); Negative control case (CTR). 

 

COX-2 reaction exhibited a strong positive reaction in the neuronal cell bodies while 

immunolabeling was prominent in the glial and neuronal cytoplasm (Figure 5). 
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Figure 5. COX-2 appeared positive in glial cells (A) and was strongly expressed in 

neurons (B,C) in heroin-related death cases (confocal laser microscopy with neuronal 

reaction in green color). COX-2 was weakly expressed by vascular endothelium in control  

cases (CTR). 

 

HSP-70 reaction was prominent in the neuronal cytoplasm of the cortical and brainstem  

samples (Figure 6). 

Figure 6. Differential immunohistochemical reaction of HSP-70: a great neuronal  

(A) involvement of HSP-70 expression was observed. The reaction was more intense in the 

cytoplasm of the neurons and included infrequent HSP-70 protein-positive inclusions in 

astrocytic fluorescence, well evidenced by use of the confocal microscope (B); and (C) The 

positive reaction was well appreciated also by using the bright field. Negative control  

case (CTR). 

 



Int. J. Mol. Sci. 2013, 14 19837 

 

 

ORP-150 expressed an intense reaction showing a granular pattern in the cytoplasm of the neurons 

in the cortex and brainstem. ORP-150 was acutely expressed in neurons, strongly suggesting that 

expression of ORP-150 may confer neuronal resistance to early ischemic injury (Figure 7). 

Figure 7. ORP-150 showing a constant microglial (A) and neuronal positivity (B);  

in scattered but widespread foci (cyan reaction by confocal laser microscopy in C); and 

being completely negative in the glial cells of the control group (CTR). 

 

2.2. Western Blotting Results 

Western blot analysis was performed in order to confirm the results of the immunohistochemical 

analysis. Protein extracts from samples of frozen brain of both groups of heroin-related death and 

controls were used. Both cytoplasmic and nuclear extracts were prepared from the same amount of 

brain samples (in particular brainstem samples) and subjected to immunoblot analysis with  

anti-TNF-α, IL-6, COX-2. There was a perfect correspondence between immunohistochemical and 

blotting results, which were measured quantitatively by densitometry, confirming the strong positivity 

for TNF-α, IL-6, COX-2. (Figures 8–10) 
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Figure 8. Western blot experiments with TNF-α antibodies using cytoplasmic and nuclear 

extracts from frozen brain of the different groups. On the left side representative blot for 

each group (upper) and TNF-α quantitative expression (lower and on the right). Marker’s 

lines on the right side of the blot lines. 

 

Figure 9. IL-6 representative blot and quantitative expression. On the right side 

representative blot (upper) and quantitative expression (lower). Marker’s lines on the right 

side of the blot lines. 
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Figure 9. Cont. 

Figure 10. Western blotting quantitatively measured by densitometry, confirming the 

reactions of intense positivity for COX-2. Densitometry using cytoplasmic and nuclear 

extracts from frozen brain for each group, confirming the weak positivity reactions for 

heroin-related group. The higher result is on line (heroin group) C. Marker’s lines on the 

right side of the blot lines. 

 

3. Discussion 

It is now well accepted that morphine induces neuroinflammatory response within the brain, but the 

exact etiology of the different neuropathological alterations associated with heroin abuse is still unclear 

and may also be related to additional substances used as adulterants [5,6]. 
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The results obtained with immunohistochemistry and Western blotting, carried out on brain 

samples, in an attempt to verify and objectify the role and expression of cytokines and the mechanisms 

of cell death triggered in cases of heroin intoxication, raised important points and seem to provide 

guidelines on the interpretation of major importance questions. The immunohistochemical picture 

obtained using the panel of the antibodies, has shown the existence of a precise expression of the 

different markers in heroin-related death, which is correlated to a different stimulation of the different 

cellular types and also to a different response by the same cells. In our study acute cases of  

heroin-related death were selected, with negative toxicological analysis for other drugs, and 

particularly significant was the immunohistochemical study of the brain and brainstem sections. The 

induction of cytokines, chaperone and interleukin expression levels were confirmed by Western blot 

analysis on the same brain samples. This technique allowed us to quantify the expression of the 

inflammatory response. 

In particular, chaperonin HSP-70 has provided very interesting results. It has been demonstrated 

that brain ischemia depletes ATP and changes intracellular homeostasis, thus disabling ATP-dependent 

protein quality control systems including molecular chaperones, folding enzymes, and protein 

degradation components during and after ischemia [11–23]. In our study HSP-70, which is not 

expressed in control cases, has shown a great neuronal and glial involvement and intravascular 

positivity of HSP-70 expression in the heroin-related death group. The reaction was more intense in 

the cytoplasm of the neurons and included infrequent HSP-70 protein positive inclusions in glial cells. 

The reaction with ORP-150 was in agreement with those reported in the literature [24], showing  

a constant neuronal and glial positivity, in scattered but widespread foci, in most cases belonging to  

the heroin related death group and being completely negative in the glial cells of the control group. 

ORP-150 was acutely expressed in neurons, suggesting that strong expression of ORP-150 may confer 

neuronal resistance to early ischemic injury [24]. Therefore, this antigen-antibody reaction can provide 

useful indications about the time of onset of the hypoxic-ischemic damage. 

COX-2, the protein responsible for prostaglandin synthesis, expressed by vascular endothelium in 

control cases, appeared more positive not only at the vascular level but also in glial cells and was 

strongly expressed in neurons in heroin related death cases. 

In summary, our results demonstrate that molecular chaperones HSP-70 are strongly expressed in 

neurons and that ORP-150 expression is correlated with cell survival, indicating that induction of this 

stress protein may confer neuronal resistance to acute ischemic injury [24]. COX-2 is a very useful 

marker to detect acute neuronal damage during the early stage of focal ischemic encephalopathy [25]. 

The reaction with CD68 (MAC387) has shown a constant and strong positivity in microglia, so as 

to better identify the cells where the positive reaction is a consequence of a hypoxic-ischemic insult. 

Regarding cytokines (IL-15, IL-6, TNF-α), we observed a wide positive reaction in neurons 

associated with vascular and glial positivity. The reaction to IL-1β, IL-8 and IL-10 was weak and 

without significant difference to control cases. 

A wide spectrum of neuropathologic changes is present in the brain of heroin abusers. The main 

findings are due to infections, either due to bacterial spread from bacterial endocarditis, mycoses, or 

from HIV-1 infection [1–6]. Other complications include hypoxic-ischemic changes with cerebral 

oedema, ischemic neuronal damage and neuronal loss, which are expected to occur under conditions  

of prolonged heroin-induced respiratory depression, stroke caused by thrombembolism, vasculitis, 
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septic emboli, hypotension, and positional vascular compression [24–26]. Nitric oxide (NO) and its 

metabolites are described to be involved in cell physiological and pathological events related to heroin 

intoxication, mainly resulting from increased activity of inducible nitric oxide synthase (iNOS) in 

polydrugs abusers [27]. Recently, findings from the literature showed that neuronal nitric oxide 

synthase (nNOS) activity might also be involved, resulting in high brain NO levels [28]. 

One of the causes of death in heroin addiction is respiratory failure, often accompanied by 

pulmonary complications, especially oedema. The death is generally due to severe acute poisoning, 

with regard to the degree of opioid tolerance possessed by the subjects at the time of the lethal dose. 

As Büttner stated [5], at autopsy, up to 90% of all cases of heroin-related death show brain oedema 

with prominent tonsillar herniation and uncal grooving. However, rapid death after heroin intake  

has no morphological evidence of cell injury. A survival period of more than 5 h could lead to 

hypoxic-ischaemic encephalopathy with loss of neurons in the hippocampal formation, the  

Purkinje cell layer and/or the olivary nucleus, as well as vascular congestion. It is extremely  

difficult to distinguish whether the neuronal alterations may be related to hypoxic episodes during  

a state of intoxication induced by heroin or if they are caused by the direct toxic effects of the  

toxic substance [2,21,22]. 

4. Experimental Section 

The toxicological data and the autopsy records of the 358 autopsies of drug related-death performed 

at the Departments of Forensic Pathology of the University of Foggia and of the University of Perugia 

(Perugia, Italy) over the period 2006–2012 were evaluated, and 45 cases of heroin-related death were 

selected (42 men, 3 women). Post-mortem delay interval 20.5 ± 13 h. We selected only the cases with 

toxicological data positive only for heroin and negative for other drugs (ethanol included), and 

postmortem examination confirmed diagnosis of heroin-related death. The median blood morphine 

concentration of cases [as determined by gas chromatography-mass spectrometry (5977A Series 

Agilent, Palo Alto, CA, USA)] was 5.8 ± 0.72 mg/L (range 0.30–10.45 mg/L). All cases were HIV-1 

negative. The control group was composed of 45 cases selected among traumatic deaths, without brain 

lesions and with negative toxicological analysis for drugs. Standard sample blocks were taken from the 

cerebral cortex, white and grey matters, basal ganglia, thalami and the brainstem. In detail, all lobes of 

the brain, central nuclei (caudate, putamen, pallidum and thalamus), cerebellum, pons and medulla 

oblongata were included. In each case, the tissue samples were fixed in 10% formalin for 48 h and then 

processed and embedded in paraffin. For each case, total sections of about 4 µm thickness were cut 

and stained with haematoxylin and eosin (H&E). In addition, immunohistochemical investigation of all 

samples was performed utilizing a panel of antibodies IL-6 (Santa Cruz, CA, USA), IL-8,  (Abcam, 

Cambridge, UK), IL-10 (Peprotech, London, UK), TNF-α (Santa Cruz, CA, USA), CD15 (DAKO, 

Copenhagen, Denmark), IL-1β (Santa Cruz, CA, USA), IL-15 (R & D Systems, Minneapolis, MN, 

USA), HSP-70 (NovaCastra, Milton Keynes, UK), ORP-150 (IBL, Fujioka Goiania, Japan), COX-2 

(Santa Cruz, CA, USA), CD68/MAC387 (Serotec, Oxford, UK). We used 4 µm thick paraffin sections 

mounted on slides covered with 3, amminopropyl-triethoxysilane (Fluka, Buchs, Switzerland).  

Pre-treatment was necessary to facilitate antigen retrieval and to increase membrane permeability to 

antibodies anti-CD 15, IL-1β, L-15, HSP 70, IL-8 boiling in 0.25 M EDTA buffer, to antibodies  
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anti-TNF-α and ORP-150 boiling in 0.1 M citric acid buffer, to antibody anti-IL-6, IL-10, COX-2, 

CD68/MAC387 for 15 min in Proteolytic Enzyme (Dako, Copenhagen, Denmark), at 20 °C. 

The primary antibody was applied in a 1:50 ratio CD-15, in a 1:4000 ratio IL-1β and IL-10, in a 

1:2000 ratio IL-6, in a 1:600 ratio TNF-α, in a 1:100 ratio IL-15, COX-2 and HSP-70, in a 1:500 ratio 

IL-8, in a 1:200 ratio ORP-150 and CD68/MAC387 and incubated for 120 min at 20 °C. The detection 

system utilized was the LSAB + Kit (Dako, Copenhagen, Denmark), a refined avidin–biotin technique 

in which a biotinylated secondary antibody reacts with several peroxidase conjugated streptavidin 

molecules. The positive reaction was visualized by 3,3-diaminobenzidine (DAB) peroxidation, 

according to standard methods. The sections were counterstained with Mayer’s haematoxylin, dehydrated, 

coverslipped and observed in a Leica DM4000B optical microscope (Leica, Cambridge, UK). The 

samples were also examined under a confocal microscope, and a three-dimensional reconstruction was 

performed (True Confocal Scanner; Leica TCS SPE, Milan, Italy,). A preliminary semi-quantitative 

evaluation of the immunohistochemical findings was made by two different investigators without prior 

knowledge. The reactions were graded as follows: 0 (−) not expressed; 1 (+) isolated and disseminated 

expression; 2 (++) expression in scattered foci; 3 (+++) expression in widespread foci;  

4 (++++) widespread expression. All measurements were done using the same magnification of  

image (10×) and by the same two examiners. A third blind microscopic evaluator was involved to 

weigh the histological evidences. 

4.1. Western Blot Analysis 

Western blot analysis was performed. Approximately 100 mg of brainstem frozen tissue was 

dissected and immediately transferred to RIPA buffer with protease inhibitor cocktail and 

homogenized on ice utilizing homogenizer Silent Crusher. The homogenate was centrifuged  

(12000 rpm for 10 min at 4 °C). The supernatant was collected, estimated by Qubit Fluorometer 

(Invitrogen, Carlsbad, CA, USA), and boiled for 5 min, at 95 °C. Brain total protein extracts 

(approximately 40 µg/lane) were run on 4%–15% SDS PAGE at 80 V for about 2.5 h. For Western blot, 

proteins from SDS gels were electrophoretically transferred to nitrocellulose membranes in mini trans 

blot apparatus (1 h at 250 mA). Non-specific binding was blocked by incubating membranes in 

Western blocker solution for 1 h at room temperature. The membranes were incubated with primary 

antibodies, selected among the antibody with a good statistical difference between heroin related death 

and controls: anti-TNF-α, IL-6, COX-2 diluted in Western blocker solution, in 1:400 ratio overnight at 

4 °C. Blots were washed with (phosphate buffered saline) PBS/Tween-20 and then incubated for 1 h at 

room temperature with (horseradish peroxidase) HRP-conjugated secondary antibodies diluted in 

Western blocker solution, in 1:2000 ratio. Membranes were washed with PBS/Tween-20, and the 

immune reaction was developed in IMMUNOSTAR Kit Western C (Bio-Rad laboratories, Hercules, 

CA, USA) and then visualized by Chemiluminescent detection methods. The light was then detected by 

photographic film. The image was analyzed by Uvitec (Cambridge, UK), which detects the 

chemiluminescent blots of proteins staining. 
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4.2. Statistical Analysis 

Values are presented as means SD (standard deviation). The unpaired two-way Student’s t-test was 

used to compare the results obtained for heroin-related death group with the control group. p < 0.05 

was accepted as indicative of significant difference among groups.  

5. Conclusions 

In conclusion, our findings demonstrated that morphine induces the inflammatory response and 

cytokine release. Deficient or excess expression of these key mediators may predispose the abusers to 

aberrant defence mechanisms [3]. The international scientific panorama is actually rich with studies 

aimed to identify markers which can provide more and more accurate information about the time of 

onset of hypoxic-ischemic brain damage and inflammatory response in heroin-related death. However, 

data reported by the literature appear fragmentary and contradictory, often concerning experimental 

studies performed only on animals [29,30]. The histological study of the brain with traditional 

histochemical techniques can provide relevant data since it is well known that depending on 

mechanism, severity, and timing of the insult, the distribution and the histological pattern of lesions in 

the brain changes dramatically. By means of immunohistochemical techniques applied in studies both 

on animals and humans, it has been possible to identify in the brain tissue some markers of 

inflammatory response with reliable and reproducible results. Furthermore, Western blotting matched 

perfectly with the results of immunohistochemistry. 

The complex interaction mechanisms between hypoxia and/or inherent toxicity in heroin-related 

cases, may thus be better clarified on the basis of the reaction of the inflammatory response and 

cytokine cross-talk. Some immunohistochemical markers have been shown to be more reliable than 

others in the evaluation of inflammatory brain pattern. In particular, HSP-70, ORP-150, COX-2 

reaction, and TNF-α, IL-15 and IL-6 cytokines, have provided very interesting results. Future studies 

should be conducted to investigate the mechanisms of action by which cytokines, chaperones and 

inflammatory responses are activated by heroin abuse. 
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