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Background: The PTPN11 gene, located at 12q24. 13, encodes protein

tyrosine phosphatase 2C. Mutations in the PTPN11 gene can lead to various

phenotypes, including Noonan syndrome and LEOPARD syndrome. The

SEC24D gene is located at 4q26 and encodes a component of the COPII

complex, and is closely related to endoplasmic reticulum protein transport.

Mutations in SEC24D can lead to Cole-Carpenter syndrome-2. To date, dual

mutations in these two genes have not been reported in the literature.

Methods: We report a patient with short stature and osteogenesis imperfecta

as the primary clinical manifestation. Other clinical features were peculiar

facial features, deafness, and a history of recurrent fractures. Whole exome

sequencing was performed on this patient.

Results: After whole-exome sequencing, three mutations in two genes

were identified that induced protein alterations associated with the patient’s

phenotype. One was a de novo variant c.1403C>T (p.Thr468Met) on exon 12

of the PTPN11 gene, and the other was a compound heterozygous mutation

in the SEC24D gene, a novel variant c.2609_2610delGA (p.Arg870Thrfs∗10) on

exon 20 and a reported variant c.938G>A (p.Arg313His) on exon 8.

Conclusions: Concurrent mutations in PTPN11 and SEC24D induced a

phenotype that was significantly di�erent from individual mutations in either

PTPN11 or SEC24D gene. Personalized genetic analysis and interpretation

could help us understand the patient’s etiology and hence develop treatments

and improve the prognosis of these patients.
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Introduction

There are several reasons for short stature, some of which

are syndromes with the main manifestation being short stature,

including Turner syndrome, Noonan syndrome, and Silver-

Russell syndrome. The primary clinical manifestation of Cole-

Carpenter syndrome-2 is osteogenesis, which includes a group

of clinical manifestations such as reduced bone mass, increased

fragility, craniofacial abnormalities and growth retardation.

There are numerous reports on children with short stature and

osteogenesis imperfecta, however, patients with dual molecular

diagnoses have rarely been reported. Here we describe a Chinese

girl with mutations on both PTPN11 and SEC24D. Her unique

phenotype is analyzed in detail in this report.

Case presentation

The proband was an 8-year-old girl who was noticed

to be shorter than her classmates for more than 2 years

before her parents brought her to our clinic. The patient

weighed 3.8 kg at birth and was found to have sensorineural

deafness. A cochlear implant was used to restore her hearing.

Her communication skills were like any other child her age.

However, her pronunciation of certain words was affected. At

the age of 2, she suffered a fracture on her right femur twice in

1 year due to two accidental falls. Her leg recovered well after

external fixation, and her daily activities were not affected. Her

parents noticed her short stature when she was 6 (her height

was not recorded). However, they did not take it seriously until

2 years later when her growth seemed to be stunted compared

to her school classmates. The patient has a 6-month-old brother

who was healthy with no history of fractures. Her parents are of

average height with normal body proportions and facial features.

The patient’s height and weight were 116 cm (-2.4SD) and

23.5 Kg (-0.8SD). She had normal intelligence. A Cafe-au-lait

spot was observed on the skin of the left anterior chest wall,

with a few pigmented spots on her face. Her fontanelle has

already closed. Abnormal facial features were observed by her

physician, characterized by posterior occipital bone convexity,

hypertelorism, down slanting palpebral fissures, and a wide and

flat nose. Her neck and spine were noticeably short, with a wide,

and flat thorax, winged and posteriorly convex scapulae, and

bilateral cubitus valgus and genu valgum. She has an overall

normal gait. Heart, lung, and abdomen showed no significant

abnormalities in physical examinations. Both breast and pubic

hair were of Tanner I.

Skeletal imaging supported the findings of the physical

examinations. Broad skull, open sagittal suture, wormain bones,

flattened spinal vertebrae, thin ribs, and scoliosis were observed

(Cobb’s angle: 11◦). Her bone age was around 8 years and

10 months old. Abnormal morphology of the pelvis with

non-homogeneous bone density and increased angle of the

femoral neck stem was observed by pelvis X-ray images

(Figure 1). Cardiac ultrasound was not performed. Laboratory

examinations for liver and renal function, myocardial enzymes,

blood electrolytes, thyroid function, IGF-1, electrocardiogram,

bone age, abdominal ultrasound, and pituitary MRI were all

normal (Table 1).

Methods

Genotype analysis: Informed consent was obtained

from the child’s guardian. 3 mL of peripheral blood was

collected from the child and her parents. Genomic DNA was

extracted using the conventional phenol-chlorination method.

GenCap
R©

Whole Exon Gene Capture Probe V4.0 (Mackinaw

Gene Technology Co. Ltd., China) was used for library

construction. Whole-exome sequencing was performed on the

MGISEQ-T7 sequencer (UWI Technology Co., Ltd., Shenzhen,

Guangdong, China). Reads were mapped to the human genome

sequence GRCh37/hg19. Parental Sanger validation of putative

pathogenic mutations was performed subsequently.

Results

Whole-exome sequencing identified pathogenic variants

in both PTPN11 and SEC24D genes. A de novo missense

variant c.1403C>T (p.Thr468Met) was identified in exon

12 of the PTPN11 gene (NM_002834) (Figure 2A), which

caused a non-synonymous substitution in the cystine-based

protein tyrosine phosphatase domain (Figure 2B). Based on

the gnomAD database, this variant has a frequency of

0.000003981 in normal individuals. Protein function prediction

software REVEL predicted this variant to be deleterious. Sanger

verification showed that neither of the proband’s unaffected

parents carried this variant. Based on the American College

of Medical Genetics and Genomics (ACMG), this variant

was classified as a pathogenic mutation. This mutation allele

has already been reported in the literature as a hotspot

mutation. Clinical phenotypes associated with this variant were

LEOPARD syndrome and Noonan syndrome with multiple

lentigines (4, 6, 7).

Biallelic variants in the SEC24D gene were also identified.

One was paternal c.2609_2610delGA (NM_014822) in exon

20 on the helical domain, resulting in a frameshift mutation

p. Arg870Thrfs∗10 (Figure 2A). It was absent in the normal

population databases and was classified as pathogenic based

on ACMG guidelines. To our knowledge, this variant had not

been reported previously. The second was maternal c.938G>A

(p.Arg313His) in exon 8 (NM_014822), with a mutation

frequency of 0.000641 in normal humans (Figure 2A). It was

predicted to be potentially harmful by the protein function

prediction software REVEL and was classified as a likely

pathogenic variant by ACMG. Compound heterozygotes have
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FIGURE 1

X-ray images of the patient. (A) Broad skull with open suture and wormain bones (indicates with the arrow). (B) Malformation of the pelvis

(indicates with the arrow), low bone density, wide and flat acetabulum (indicates with the arrow), and increased angle of the femoral neck stem.

(C) Flattened spinal vertebrae (indicates with arrow), thin ribs, and scoliosis. (D) Pronounced anterior lumbar convexity.

been reported in the literature, among which there was a patient

with a premature stop codon and the same missense variant of

the SEC24D gene (Figure 2B) (1, 2).

Discussion

Among patients with positive molecular diagnoses on whole

exome sequencing, 4.9% had two or more genes involved (8). In

our study, a heterozygous mutation in PTPN11 and compound

heterozygous mutations in the SEC24D gene were identified in

the proband.

The PTPN11 gene, located on 12q24.13, encodes the SHP-2

protein and is widely distributed in heart and skeletal muscle.

SHP-2 mediates cell proliferation and serves as a key signaling

molecule in the RAS-MAPK kinase pathway (9, 10). Phenotypes

of the same PTPN11 gene may differ between mutated

loci, thus, distinctive mutation locus needs to be considered

for clinical diagnosis (11). Germline PTPN11 mutation-

related phenotypes include Noonan syndrome, LEOPARD

syndrome, and metachondromatosis. Noonan syndrome and

LEOPARD syndrome have some overlapping phenotypic

features, such as peculiar facial features, sensorineural hearing

loss, scoliosis, short stature, and cardiomyopathy. However,

multiple lentigines are unique clinical characteristics of

LEOPARD syndrome.

Located on 4q26, the SEC24D gene encodes a component of

the COPII complex, which is involved in protein transportation

in the endoplasmic reticulum. Mutations in the SEC24D

gene result in a reduced outward procollagen transport from

the endoplasmic reticulum and dilatation of the endoplasmic

reticulum canal, which leads to Cole-Carpenter syndrome-2

(12). Cole-Carpenter syndrome-2 is an autosomal recessive

syndrome characterized by abnormal skeletal development due

to low bone mass and osteogenesis imperfecta, which include

open fontanelle, hydrocephalus, abnormal facial development

(e.g., forehead bulge, midface hypoplasia, micrognathia, and ear

malformation), and recurrent fractures (1).

Only a few cases of dual mutations have been reported

related to the two genes we mentioned above. Martina Caiazza

et al. reported a patient with hypertrophic cardiomyopathy who

carried a dual mutation in the PTPN11 and MYBP3 genes (13).

To our knowledge, co-mutations of the SEC24D gene with other

genes have not been reported. The combined effect of themutant

two alleles may explain the difference between the phenotype of

this patient and that of a typical patient with a single mutant

allele (Table 1).

Short stature is often a parents’ focus. However, mixed

genetic pathogeny of short stature makes our patient distinctive

and relatively poor prognosis. Our patient was of short stature,

with a height of 116 cm, and was lower than the third percentile

for height for Chinese children of the same age and gender.

Patients with Noonan syndrome or LEOPARD syndrome due

to mutations in the PTPN11 gene can develop a short stature

(5, 14). For Cole-Carpenter syndrome-2 patients, osteogenesis

imperfecta may also result in slower growth and abnormal body

proportions (1, 2, 12).

Physical and radiography examinations of the child showed

a short neck, scoliosis, valgus scapula, cubitus valgus and

genu valgum, and thorax malformation, all of which were

consistent with patients with PTPN11 mutations (15–17).

However, the concurrent SEC24D gene mutation also played

a major role in the skeletal development of this patient,

Frontiers in Pediatrics 03 frontiersin.org

https://doi.org/10.3389/fped.2022.973920
https://www.frontiersin.org/journals/pediatrics
https://www.frontiersin.org


Miao et al. 10.3389/fped.2022.973920

TABLE 1 Clinical features of patients with similar molecular diagnosis to our patient.

Takeyari

et al. (1)

Zhang

et al. (2)

Lin et al.

(3)

Santoro

et al. (4)

Carcavilla

et al. (5)

This report

Age at diagnosis 15 7 8 50 14 8

Variants in SEC24D p.Arg313His,

p.Arg484*

p.Arg313His,

p.Pro292Leu

- - - p.Arg313His,

p. Arg870Thrfs*10

Variants in PTPN11 - - p.Thr468Met p.Thr468Met p.Thr468Met p.Thr468Met

Craniofacial dysmorphism + - - + + +

Open anterior fontanelle + + - - - -

Wormian bones + - - - - +

Dentinogenesis imperfecta - + - - - -

Hearing loss + - - + - +

Short neck - - - - - +

Short stature + - + + - +

Scoliosis + - - + - +

Chest deformity + - - + + +

Bone fragility + + - - - +

Cubitus valgus/Genu valgum - - - - - +

Long bone deformity + + - - - +

Lentigines - - + + - -

Heart defect - - + + + unknown

Mental retardation - - + - + -

+, positive; -, negative.

FIGURE 2

Family of the a�ected child and illustrations denoting the mutant sites. (A) The PTPN11 and SEC24D mutation and the results of the patient’s

whole-exon sequence. (B) Illustrations denoting the mutant sites. Previously found varients in patients with Cole-Carpenter syndrome-2 are

depicted in black. The variants found in our patient is underlined and p. Arg870Thrfs*10 in red is the novel variant.

such as wormain bones, pelvis malformation and possible

low bone mass. Patients with Cole-Carpenter syndrome-2

are typically characterized by low bone mass, craniofacial

abnormalities, various skeletal deformities, and a tendency

for repeated fractures (1, 2, 12). The dual gene mutation

in this patient could have aggravated the manifestations

of bone malformations and low bone mass in the spine,

thorax, and pelvis. Repeated fractures also confirm that the

SEC24D mutation had a significant impact on osteogenesis and

bone deformity.
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The patient showed abnormal facial features. Orbital

hypertelorism, down slanting palpebral fissures, broad and

flat nose, and kyphotic occipital bones are similar to the

facial features observed in Noonan syndrome and LEOPARD

syndrome patients. The wide and deformed skull and wormian

bones may be caused by bone abnormalities associated with the

SEC24D gene mutation. However, SEC24Dmutant patients may

have a more severe phenotype as previously reported, such as a

bulged forehead and large, open fontanelle (1, 2).

The number of lentigines in our patient was much lower

compared to a typical patient with LEOPARD syndrome.

However the site of single nucleotide variation was identified

and almost all of the other clinical diagnosis was concordant

with LEOPARD syndrome (3, 4), we identified our patient

based on gene diagnosis as well. The reason for the absence

of lentigines in our patient may be that the disease had

not progressed to the certain stage, or the SEC24D gene

mutation had affected the typical manifestations of the other

gene mutation.

Currently, there are no effective etiological based therapies

for the LEOPARD syndrome and Cole-Carpenter syndrome-

2. Symptomatic treatments should be administered to reverse

the impact on their growth and pubertal development. Our

patient was found to have hearing loss at an early age, thus,

a cochlear implant helped improve her hearing. As a result,

her communication was essentially unaffected. Short stature

and scoliosis are the biggest concerns for parents of these

children. However, some of the patients with PTPN11 gene

mutations were repored to have a relatively poor response to

rhGH treatment (18–20).What is perplexing is that patients may

develop new scoliosis or accelerate their scoliosis progression

after rhGH treatment (21–23). For patients with mild scoliosis

(Cobb’s Angle <45◦), early orthopedic correction has been

shown to be beneficial for lower respiratory complications

(24). However, due to the probable low bone mass of this

patient, spinal fusion could be much more difficult after

surgical treatment and may affect her quality of life. A

judicious assessment should be performed before resorting to

orthopedic surgery.

Even though there were no clinical manifestations of

cardiovascular involvement in our patient, the possible risk of

cardiovascular abnormalities may be high. Severe obstructive

cardiomyopathy is a common cause of sudden death in patients

with PTPN11 mutation (25, 26), thus comprehensive cardiac

examinations should be performed for early diagnosis.

Conclusion

The combined effects of the dual gene mutations observed

in our patient led to a phenotype that was not consistent with

patients having individual gene mutations. This suggests the

importance of comprehensive screening for relevant genomic

variations in patients with growth retardation, scoliosis, and

facial malformations. For some patients, the reasons for these

heterogeneities in the clinical phenotypes may not only be

due to the mutation loci but may be due to multiple gene

mutations. Hence, proper diagnosis requires a more in-depth,

individualized interpretation of the genetic landscape. This

will help us understand the driving factors for the clinical

manifestations, and hence guide us to formulate appropriate

treatment plans.
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