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Abstract

It is well known that clonal cells can make different fate decisions,
but it is unclear whether these decisions are determined during, or
before, a cell’s own lifetime. Here, we engineered an endogenous
fluorescent reporter for the pluripotency factor OCT4 to study the
timing of differentiation decisions in human embryonic stem cells.
By tracking single-cell OCT4 levels over multiple cell cycle genera-
tions, we found that the decision to differentiate is largely deter-
mined before the differentiation stimulus is presented and can be
predicted by a cell’s preexisting OCT4 signaling patterns. We
further quantified how maternal OCT4 levels were transmitted to,
and distributed between, daughter cells. As mother cells underwent
division, newly established OCT4 levels in daughter cells rapidly
became more predictive of final OCT4 expression status. These
results imply that the choice between developmental cell fates can
be largely predetermined at the time of cell birth through inheri-
tance of a pluripotency factor.
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Introduction

It is well established that clonal cells can make distinctly different

fate decisions (Suda et al, 1984a,b; Suel et al, 2006). An important

conceptual challenge, however, is to understand to what extent a cell

exerts independent control over its own fate (Symmons & Raj, 2016).

At one extreme, a cell’s fate may be entirely shaped through environ-

mental stimuli and its own intracellular signaling cues; at the other

extreme, a cell’s fate is already determined before it emerges from its

mother cell, rendering it impervious to external cues.

Multiple studies have linked different cell fate decisions to dif-

ferences in single-cell signaling patterns (Purvis et al, 2012; Albeck

et al, 2013; Lin et al, 2015; Lane et al, 2017). However, tracking

cells over multiple cell cycle generations suggests that such intracel-

lular signals can themselves be inherited from mother to daughter

cells (Sigal et al, 2006). For example, the response to death ligands

in human cells is similar among sister cells through inheritance of

apoptotic protein factors (Spencer et al, 2009). In addition, cell cycle

checkpoint decisions in daughter cells were shown to be influenced

by the signaling history of the mother cell (Arora et al, 2017; Barr

et al, 2017; Yang et al, 2017). By considering the histories of indi-

vidual cells, these studies have eroded the concept that cells can

make fully autonomous fate decisions and raise the question of

what mechanisms may regulate the inheritance of fate-determining

factors.

How fate choice is controlled by inherited factors is an impor-

tant question in stem cell biology. During human development,

proliferating stem cells give rise to complex and heterogeneous

tissues through a dynamic interplay of intracellular signaling

events, cell–cell communication, and morphogen gradients (Deglin-

certi et al, 2016; Etoc et al, 2016). In vitro imaging of attached

human embryos has yielded unprecedented insights into the

single-cell patterning of the human gastrula (Deglincerti et al,

2016). However, because these cells must be necessarily fixed in

preparation for imaging, it is not possible to follow any given cell

over the course of its cellular lifetime. It is therefore difficult to

pinpoint precisely when an individual cell makes the decision to

differentiate, how fate-determining factors are inherited from

mother to daughter cell, or why two closely related cells may

choose different fates. As an alternative approach, human embry-

onic stem cells (hESCs) represent a promising system for studying

embryonic cell fate decisions in real time (Thomson et al, 1998;

Bernardo et al, 2011; Nemashkalo et al, 2017). hESCs can be

maintained indefinitely in cell culture and are amenable to intro-

duction of fluorescent biosensors to report on intracellular signal-

ing activity (Nemashkalo et al, 2017). These features make it

possible for hESCs to be used to understand how fate choice is

determined among proliferating stem cells.
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In this study, we developed an endogenous fluorescent reporter

for the human pluripotency factor OCT4 to study its inheritance

over multiple cell cycle generations. We conducted time-lapse fluo-

rescence imaging of hESCs during differentiation to extraembryonic

mesoderm and followed the signaling behaviors of individual cells

until final fate decisions were determined. We found that the deci-

sion to differentiate is largely determined before the differentiation

stimulus is presented to cells and can be predicted by a cell’s preex-

isting OCT4 signaling patterns. Further, we found that OCT4 levels

were heritable from mother to daughter cell and that OCT4 levels

established in newly born daughter cells were strongly predictive of

long-term cellular states. These results suggest that the choice

between two developmental fates can be strongly predetermined

within a short time after cell birth.

Results

We first established an experimental system for generating both

self-renewing and differentiating cells in response to the same devel-

opmental signal (Fig 1A). When treated with bone morphogenetic

protein 4 (BMP4) for 24 h, a subpopulation of hESCs showed

reduced expression of the core pluripotency factor OCT4 and accu-

mulation of the caudal type homeobox 2 (CDX2) transcription factor

(Fig 1B). Quantitative immunofluorescence (IF) revealed two

distinct populations of cells: a pluripotent population with low

CDX2 expression that retained the ability to differentiate into other

cell types (Appendix Fig S1); and a differentiating population of cells

with reduced OCT4 expression, increased CDX2 expression, and

enlarged morphology (Fig 1C). Although BMP4 treatment was origi-

nally reported to initiate differentiation toward the trophoblast

lineage (Xu et al, 2002), further study has revealed that, in the pres-

ence of fibroblast growth factor, it induces markers such as

BRACHYURY and ISL1 that are more closely associated with

extraembryonic mesoderm (Bernardo et al, 2011). We confirmed

the expression of mesodermal markers in BMP4-treated hESCs

through quantitative PCR (Appendix Fig S2). Thus, treatment of

hESCs with BMP4 triggered a binary cell fate decision within 24 h.

To understand how and when individual hESCs make this deci-

sion, we developed a fluorescent reporter system to monitor expres-

sion of the endogenous OCT4 protein, a canonical marker of the

pluripotent state (Nichols et al, 1998). We used CRISPR-mediated

genome editing to fuse a monomeric red fluorescent protein

(mCherry) to the endogenous OCT4 allele in WA09 (H9) hESCs and
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Figure 1. Single-cell dynamics of OCT4 in human embryonic stem cells.

A Individual hESCs have the potential to generate another stem cell through self-renewal or to differentiate into a more lineage-specific cell type.
B Before differentiation, hESCs show uniformly high expression of OCT4. Treatment with BMP4 produces a mixture of OCT4+/CDX2� self-renewing hESCs and OCT4�/

CDX2+ mesodermal cells.
C Quantification of OCT4 and CDX2 expression by immunofluorescence after 24 h of BMP4 treatment reveals two populations of hESCs. Cells were assigned to one of

two distinct populations based on a two-component mixed Gaussian distribution (see Appendix Fig S6).
D A fluorescent mCherry coding sequence was introduced into the endogenous OCT4 locus of H9 hESCs using CRISPR-mediated homologous recombination.
E Filmstrip of OCT4 dynamics in an undifferentiated hESC throughout its cell cycle duration. Yellow outlines indicate the region used to quantify mean nuclear

fluorescence intensity.
F Distribution of OCT4 levels in individual hESCs. A single OCT4 level was quantified for each cell by averaging the mean nuclear mCherry intensity over the lifetime of

the cell.
G Single-cell traces of OCT4 signaling. The length of each cell’s trace indicates its cell cycle duration.
H Distribution of cell cycle durations for 120 hESCs.
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isolated a clonal population of single-allele knock-in reporter cells

(Fig 1D and Materials and Methods). The OCT4-mCherry fusion

protein showed correct genomic targeting; accurate co-localization

with the endogenous OCT4 protein; similar degradation kinetics;

and the same chromatin binding pattern near the promoters of

OCT4 target genes (Appendix Fig S3). Moreover, cells bearing the

OCT4-mCherry reporter were competent to differentiate into multi-

ple differentiated cell types (Appendix Fig S4), and time-lapse imag-

ing did not alter their proliferation characteristics (Appendix Fig

S5). For each cell, we calculated a single OCT4 expression level by

averaging OCT4-mCherry intensity over its cell cycle duration

(Fig 1E and F). In addition, we examined the time-series profile of

OCT4 dynamics for individual cells and found that the majority of

hESCs (68%) displayed sporadic pulses of OCT4 expression that

lasted ~ 1.5 h, with some cells showing as many as seven pulses

(Fig 1G). Finally, we calculated individual cell cycle durations,

which ranged from 10 to 24 h with a mean duration of 14.6 h

(Fig 1H), consistent with the reported population doubling time of

~ 16 h (Ghule et al, 2011). Thus, our reporter system enabled the

reliable analysis of single-cell OCT4 dynamics in hESCs and

revealed considerable heterogeneity in untreated stem cells.

With this system in place, we set out to capture the fate decisions

of hESCs in real time. First, we performed time-lapse fluorescence

imaging of H9 OCT4-mCherry hESCs for 42 h under basal conditions

to capture multiple complete cell cycles before differentiation

(Fig 2A). We then treated these cells with 100 ng/ml BMP4 to

induce differentiation while continuing to monitor their responses.

Within 12 h of treatment, each cell began to follow one of two

distinct fate paths: sustained accumulation of OCT4 or a precipitous

decrease in OCT4. After 24 h, cells were fixed and stained for

expression of CDX2 to determine their final differentiation status

(Fig 2B). We imposed a strict cutoff to classify each cell as either

self-renewing or differentiated based on its OCT4 and CDX2 expres-

sion levels. By fitting the data in Fig 2B to a two-component
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Figure 2. Differences in OCT4 dynamics before differentiation stimulus predict eventual fate decisions.

A Single-cell traces of hESCs before and after treatment with 100 ng/ml BMP4. Cells were imaged for 42 h prior to BMP4 treatment. Mean nuclear OCT4 levels were
quantified every 5 min, and individual cells were tracked from the cell division event that created the cell until its own division.

B 24 h after BMP4 treatment, cells were fixed, stained for expression of CDX2, and returned to the microscope for registration with the final time-lapse image. Mean
nuclear OCT4-mCherry and CDX2 were quantified for each cell, and the resulting distribution was fit to a two-component mixed Gaussian distribution representing
self-renewing (OCT4+/CDX2�) and differentiated (OCT4�/CDX2+) cells (Appendix Fig S6). hESCs that could be assigned to either distribution with > 99% confidence
(red and green dots, Pdiff < 0.01 or Pdiff > 0.99) were considered for pro-fate analysis. Cells that did not reach this threshold (gray dots) were not used to determine
pro-fate. Because cells in the final frame were assigned to only self-renewing or differentiated categories, pro-mixed cells (yellow traces in panel A do not persist to
the final frame).

C Distributions of OCT4 levels in pro-self-renewing, pro-mixed, and pro-differentiated cell populations.
D Distributions of OCT4 pulse frequencies in pro-pluripotent, pro-mixed, and pro-differentiated cell populations.
E Distributions of cell cycle durations in pro-pluripotent, pro-mixed, and pro-differentiated cell populations. To gain an unbiased look at preexisting determinants of

cell fate in panels (D, E), only cells who completed their entire cell cycle duration before BMP4 addition (t = 0) were included in the analysis.
F Decision surfaces for logistic regression classifier. Cells with self-renewing (red) or differentiated (green) pro-fates are plotted above the predicted class surfaces. (left)

Slice of decision surface for pulse frequency vs. OCT4 levels at a cell cycle duration of 14 h. (right) Slice of decision surface for cell cycle duration vs. OCT4 level at a
pulse frequency of 0.25 h�1.

Data information: (C–E) *P < 0.05, **P < 0.0005, two-sample Kolmogorov–Smirnov test; ns, not significant.
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Gaussian distribution (Appendix Fig S6), we selected only those

cells that belonged exclusively to either the self-renewing distribu-

tion (Pself < 0.01) or the differentiated distribution (Pdiff > 0.99),

where Pdiff represents the probability that a given cell has differenti-

ated.

We then traced both populations back through time—spanning

multiple cell division events—and labeled each earlier cell according

to its “pro-fate”—the fate to which it (or its progeny) would ulti-

mately give rise. The majority of cells in the tracked population

were either pro-self-renewing (71%, red traces in Fig 2A), giving

rise to only self-renewing cells, or pro-differentiated (24%, green

traces in Fig 2A), giving rise to only differentiated cells. Although

the majority of progenitor cells gave rise exclusively to a single fate,

approximately 5% of cells were “pro-mixed” and gave rise to both

self-renewing and differentiated fates (yellow traces in Fig 2A). This

observation suggests that fate decisions were strongly heritable and

was further supported by the observation that 89% of sister cells

chose the same fate. Thus, time-lapse imaging allowed us to group

hESCs by their eventual fate categories before they had received a

differentiation signal or had made a clear fate decision.

We next asked whether there were preexisting differences

between pro-self-renewing, pro-mixed, and pro-differentiated cell

populations that might influence their fate decisions. Indeed, pro-

self-renewing cells showed significantly higher OCT4 expression

levels than either pro-differentiated or pro-mixed populations

(Fig 2C). This result echoes the observation that repression of Oct4

in mouse ESCs induces loss of pluripotency and differentiation to

trophectoderm (Niwa et al, 2000). Pro-self-renewing cells also

showed a modest increase in pulse frequency (number of OCT4

pulses per hour) over pro-mixed cells (Fig 2D). Pro-self-renewing

cells also had shorter cell cycle durations, on average, than both

pro-mixed and pro-differentiated populations (Fig 2E). The latter

finding is consistent with reports that hESC self-renewal is linked

with a shortened G1 cell cycle phase (Becker et al, 2006; Matson

et al, 2017).

We then asked whether these single-cell features—mean OCT4

levels, pulse frequency, and cell cycle duration—could predict cell

fate. We identified cells that completed a full cell cycle before BMP4

stimulation, extracted their single-cell quantities, and used these

predictors to train a model to correctly classify cells according to

pro-fate. We tested a variety of classifier models (Materials and

Methods and Appendix Fig S7) and found that all models were accu-

rate within a range of 72–86%, which represents the percentage of

correctly classified cells. Figure 2F shows the results of a logistic

regression model (82% accuracy) employing fivefold cross valida-

tion. In all classifier models tested, OCT4 level was the strongest

predictor of pro-fate (P = 3.1 × 10�6) followed by burst frequency

(P = 0.0081); cell cycle duration was not a significant predictor of

cell fate (P = 0.85; Appendix Table S1). Taken together, these

results show that undifferentiated hESCs display heterogeneous

OCT4 levels, pulse dynamics, and cell cycle durations. Of these

single-cell features, OCT4 level—which was evident more than

1 day and as many as two cell cycles before the differentiation cue

was given—was the strongest predictor of stem cell fate.

Because OCT4 level was the strongest predictor of cell fate

(Fig 2F), we next asked how heterogeneity in OCT4 levels arises

in a population of hESCs. To identify the source of cell-to-cell

heterogeneity, we monitored OCT4 expression continuously in

proliferating, undifferentiated hESCs for 72 h and generated lineage

trees of single-cell relationships (Fig 3A). Visual inspection of the

lineages revealed that OCT4 levels were most similar among closely

related cells (i.e., cells emerging from a common cell division

event), providing further support that OCT4 levels are heritable

from mother to daughter cell. To quantify this heritability pattern,

we calculated the differences in OCT4 levels between pairs of cells

as a function of their shared history. Sister cells showed the most

similarity in OCT4 levels, followed by “cousin” and “second cousin”

cells (Fig 3B). Both sister and cousin cells, but not second cousins,

were more similar than randomly paired cells, indicating that simi-

larity in OCT4 levels can persist for at least two cell cycle genera-

tions (Spencer et al, 2009). Suspecting that each cell division event

introduced variability in OCT4 levels, we detected a significant

correlation between the number of cell divisions and the difference

in OCT4 levels between all pairs of cells (Appendix Fig S8). Thus,

OCT4 levels are heritable from mother to daughter cell, but each

division event introduces incremental variability in OCT4 expres-

sion levels.

To understand how variability in OCT4 levels arises during cell

division, we examined individual division events at high temporal

resolution. As cells entered mitosis, OCT4 became visibly associated

with the condensed chromosomes (Fig 3C, left panel). This

compacted state persisted throughout anaphase until the two daugh-

ter chromatids could be visibly distinguished (Fig 3C, center panel).

We used this first time point—before cytokinesis was complete—to

quantify the levels of OCT4 in both newly born daughter cells

(Fig 3C, center panel). Comparison of OCT4-mCherry intensity

between daughter cells revealed that OCT4 was not equally allo-

cated during cell division. Instead, the ratio of OCT4 between

daughters showed a bell-shaped distribution with a central tendency

toward a ratio of 1 (r = 1:1; Fig 3D). Approximately 38% of divi-

sions produced daughter cells with r = 5:6 or a more extreme ratio;

12% of divisions resulted in r = 3:4 or a more extreme ratio; and

3% of division events resulted in r = 1:2 or a more extreme ratio.

Multiple observations suggested that cell-to-cell differences in

OCT4 measured shortly after cell division were significant. First, the

measured differences in OCT4 intensities between sisters were

significantly greater than differences in DNA content (Fig 3E). In

addition, the ratio of OCT4 established within 15 min of division

was significantly correlated with the final OCT4 ratio between

sisters (Appendix Fig S9). Further, because the half-life of OCT4 was

calculated to be 7.34 h (Appendix Fig S3), it is unlikely that dif-

ferences in OCT4 in newly born cells were due to stochastic changes

in protein production or OCT4 would be > 99% maternal 5 min

after division and > 95% maternal after 30 min (see Materials and

Methods). Moreover, OCT4 ratios were not correlated with nuclear

area or radial position within the colony (Appendix Fig S10).

Together, these results show that significant variability in OCT4

protein levels are established within 1 h of cell division.

Thus, variability in OCT4 expression levels arises during cell

division through transmission of OCT4 from mother to daughter

cells (Fig 3A and B, and Appendix Fig S8) as well as asymmetric

distribution of OCT4 to daughter cells (Fig 3C–E). These results

suggest that inheritance of OCT4 may play a role in predicting stem

cell fate. To gain a better picture of this process, we divided each

cell’s history into three time periods: “maternal”, “inherited”, or

“autonomous” (Fig 4A). Maternal OCT4 encompasses the OCT4
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expression dynamics in the mother cell up to the moment of cell

division. Inherited OCT4 levels are those established within 1 h

after cell division. This time period reflects both the amount of

OCT4 transmitted to both daughters as well as any asymmetric

distribution between daughters. Lastly, we defined autonomous

OCT4 as changes in OCT4 expression that occurred during the

remainder of the daughter cell’s own lifetime.

We reasoned that if significant variability in OCT4 is introduced

during division, we would expect to see “mixing” of OCT4 expres-

sion levels just before cell division (Sigal et al, 2006). Figure 4B

shows how 30 randomly chosen cells—color-ranked according to

final OCT4 expression—experience mixing as a function of the

cells’ histories. As predicted, significantly more mixing occurred

during the maternal period, just before cell division, whereas

relatively little mixing occurred after cell division. To quantify this

phenomenon more fully, we aligned mother–daughter cell pairs to

the time of division and, at each aligned time point, calculated the

coefficient of determination (R2) between the current OCT4 level

and the “final” OCT4 level (8 h after division; Fig 4C, Dataset EV1

and accompanying code). The time point of 8 h was chosen as

both a long-term indication of a cell’s OCT4 status and a lower

bound on the distribution of observed cell cycle lifetimes (Fig 2E).

This analysis provides a continuous quantification of how much

the variance in final OCT4 levels can be explained as a function of

the cellular history. We found that differences in total OCT4

expression among mother cells explained ~ 15% of variance in

final OCT4 levels. This percentage was relatively steady through-

out the maternal history up to the time of cell division. During the
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Figure 3. Transmission and distribution of maternal OCT4 to daughter cells during cell division.

A Lineage of OCT4 expression dynamics. Mean nuclear OCT4 levels were quantified in individual hESCs continuously for 72 h under undifferentiated conditions. Vertical
bars represent individual cells that completed an entire cell cycle lifetime. Thin horizontal bars denote cell division events. Color scale indicates low (black),
intermediate (red), and high (white) OCT4 expression levels.

B Differences in OCT4 levels between sister cells, cousin cells, second cousin cells, and randomly paired cells. *P < 0.05, ***P < 0.0005, two-sample Kolmogorov–
Smirnov test; ns, not significant.

C Filmstrip showing distribution of OCT4 to daughter cells during cell division.
D Distribution of OCT4 ratios between sister cells before and after BMP4 treatment. Ratios for both sister cells (r and 1/r) are plotted to emphasize central tendency

toward r = 1:1. Differently colored curves represent the distribution of ratios at different time points after division. For time points after 5 min, the ratio was
determined by first calculating a mean OCT4 level for each sister cell among all previous time points and then calculating the resulting ratio between sisters.

E Proliferating H9-OCT4-mCherry hESCs were imaged for 24 h, fixed, and stained for DNA content with DAPI. The probability density of DAPI ratio (blue) and OCT4-
mCherry ratio (red) between sister cells that divided ≤ 1 h prior to fixation was calculated for 151 cell pairs using a normal kernel function. A two-sample
Kolmogorov–Smirnov test was used to determine significance.
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first hour after cell division, however, the R2 between current and

final OCT4 expression increased sharply to ~ 0.6, suggesting that

newly established OCT4 levels in daughter cells had a strong effect

on final OCT4 levels. During the remainder of the daughter cell

lifetime—the autonomous period—the coefficient of determination

rose gradually to identity (R2 = 1) since we defined the last time

point in the daughter cell’s lifetime to be the final OCT4 expres-

sion level.

To estimate the variance explained by asymmetric division to

daughter cells, we repeated the continuous R2 analysis on two sets

of the mother–daughter traces used in the previous analysis. The

first set contained mother–daughter traces for all pairs of sister cells.

In this set, the same mother trace was paired with exactly two

daughter cell traces. The second set contained one randomly chosen

mother–daughter trace from each sister pair in the first set and thus

contained exactly half the number of traces as the first set. We then

repeated the analysis for 100 randomly sampled subsets of these

two sets of traces to estimate the change in variance explained by

adding measurements of OCT4 for sister cells (Fig 4D and E). As

expected, we found that including both sister pairs (blue line) weak-

ened the coefficient of determination before cell division, since the

same mother cell trace was paired with two different daughter cell

traces. After cell division, however, this trend reversed; including

both daughter cell traces improved R2 by ~ 5% with a sustained

influence of ~ 3%. Although not a major source of variation, this

value is nonetheless consistent with the small percentage of sister

cells giving rise to different pro-fates (Fig 2A). Taken together, these

results indicate that ~ 15% of the final OCT4 variance is accounted

for by maternal OCT4 levels. During the inherited period, most of

the OCT4 that is predictive of cell fate is conferred through transmis-

sion of OCT4 to both daughters (~ 40% of variance explained). This

is consistent with the observation that sister cells choose similar

fates. A smaller portion (~ 5%) of explanatory power during the

inherited period is introduced through asymmetric division. Thus,

the combination of maternal and inherited OCT4 expression

patterns—which transpire before daughter cells are 1 h old—explain

most (~ 60%) of the differences in cells’ long-term OCT4 expression

levels.

Discussion

In this study, we developed an endogenous fluorescent reporter for

the canonical pluripotency factor OCT4. This reagent allowed non-

invasive monitoring of the pluripotent state of human embryonic
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Figure 4. OCT4 levels established during cell division predict long-term
OCT4 levels.

A Single-cell histories of OCT4 dynamics were classified into three time
periods. Maternal OCT4 encompasses the levels throughout the lifetime of
the mother cell. Inherited OCT4 represents the levels established within 1 h
of division. Autonomous OCT4 refers to the OCT4 dynamics during the
remaining lifetime of the daughter cell.

B OCT4 mixing as a function of cell history. Thirty randomly chosen cells
were colored according to their OCT4 expression level at 8 h after division.

C Variance in final OCT4 expression explained over time during maternal,
inherited, and autonomous periods of cell history. At each time point, the
coefficient of determination (R2) between total OCT4 expression levels and
final OCT4 expression at 8 h was calculated.

D Estimate of variance explained by asymmetric distribution of OCT4 to
daughter cells. The same R2 over time as in panel (C), except that mother–
daughter traces were randomly sampled from a set of mother–daughter
traces that contained sister-cell pairs (blue line) or only one randomly
selected sister cell from each pair (red line).

E Difference in variance explained between red and blue traces in panel (D).
The black line represents the actual difference; the red line shows a
smoothing (moving average = 1.25 h) of the black trace to highlight the
overall trend.
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stem cells and the ability to capture differentiation decisions in real

time. By tracking the OCT4 dynamics for individual cells over multi-

ple cell cycle generations, we found that a single cell’s decision to

differentiate to embryonic mesoderm is largely determined before

the differentiation stimulus is presented to cells. Before BMP4 treat-

ment, a cell’s preexisting OCT4 levels, pulsing frequency, and cell

cycle duration accurately (but not perfectly) predicted the eventual

fate decisions of its offspring cells. These results harmonize with

studies of mouse ESCs in which cell-to-cell differences in OCT4

expression (Niwa et al, 2000; Zeineddine et al, 2006; Radzisheus-

kaya et al, 2013; Goolam et al, 2016) and degradation kinetics

(Plachta et al, 2011; Filipczyk et al, 2015) are associated with dif-

ferent developmental fate decisions.

One implication of this study is that stem cells possess some

form of molecular “memory” that persists over multiple cell cycle

generations to influence fate decisions. Interestingly, however, the

half-life of OCT4 was found to be ~ 7 h, which is roughly half of an

average cell cycle duration. In agreement with this measurement,

autocorrelation analysis of single-cell OCT4 traces showed a mixing

time (Sigal et al, 2006) of ~ 40% of a cell cycle duration

(Appendix Fig S11). Thus, the turnover rate of OCT4 protein is

faster than the duration of the predictive cell fate memory. This

suggests that OCT4 cooperates with other molecular factors to main-

tain cell identity over the course of multiple cell cycle generations.

Indeed, OCT4 is known to influence chromatin conformation (Dixon

et al, 2015), epigenetic modifications (Singer et al, 2014; Bintu et al,

2016), and additional pluripotency factors (Goolam et al, 2016)

through positive feedback mechanism (Boyer et al, 2005). Through

these mutually reinforcing interactions, it is possible that continual

turnover of OCT4 on a short timescale could provide persistent

memory over longer time scales (Cheng et al, 2008). Since it is well

established that even modest differences in OCT4 expression can

affect the differentiation potential of stem cells (Nichols et al, 1998;

Niwa et al, 2000; Zeineddine et al, 2006; Radzisheuskaya et al,

2013), OCT4 is probably both a cause and a consequence of the

pluripotent state and, under the experimental conditions studied

here, is a significant contributor to the molecular memory system

that guides the fate of human stem cells.

Our work also suggests that molecular inheritance of OCT4 is

established shortly after cell division. The major portion of OCT4

inheritance (~ 40% of variance explained) is conferred to both

daughter cells, whereas a smaller portion (~ 3–5%) is due to dif-

ferences between sister cells (Fig 4C–E). This finding is consistent

with the observation that sister cells typically choose the same fate

(Fig 2A). Both of these mechanisms are consistent with a model of

mitotic bookmarking in which pluripotency factors such as OCT4

bind tightly to chromatin during mitosis to retain pluripotency gene

expression program in daughter cells (Egli et al, 2008; Liu et al,

2017). It is possible that strong retention of OCT4 through mitosis

essentially seals the fate of daughter cells. If true, this would imply

that a cell’s autonomous decision-making ability may be precluded

by inherited factors that bind tightly to chromatin. Our work

provides a novel way to analyze the allocation and influence of

bookmarking factors over time throughout the process of cell

division.

Finally, this study offers a new perspective for the field of

developmental systems biology. Our results imply that, under the

experimental conditions studied, the fate of an individual stem

cell is almost entirely determined by the time that cell is born

through inheritance of a pluripotency factor. This idea challenges

the view that every cell is a “clean slate” whose fate can be

altered by external stimuli. On the contrary, our work shows that

the levels of maternal OCT4, even up to two or three generations

prior to a differentiation cue, have the ability to prime a stem cell

for a particular response to external stimuli. Future work will be

necessary to determine the mechanisms that generate and regulate

OCT4 variability across a cell population; whether the predictive

nature of OCT4 is related to its role in mitotic bookmarking; and

whether these mechanisms can be exploited for therapeutic uses

of human stem cells.

Materials and Methods

Culture and treatment of hESCs

WA09 (H9) hES cell line was purchased from WiCell (Wisconsin)

and maintained in mTeSR1 (05850, StemCell Technologies) on

growth factor reduced Matrigel (354230, BD). Cells were passaged

every 3 days using 0.5% EDTA in PBS.

Guide RNA and CRISPR/Cas9 cutting vector

The gRNA sequence GTGAAATGAGGGCTTGCGA, targeting the

start codon of human POU5F1 (OCT4), was cloned into pX330

(AddGene) using the standard cloning protocol described by Ran

et al (2013). The cutting efficiency of the Cas9/OCT4-gRNA was

validated with Guide-it Mutation Detection Kit (Takara Bio).

Donor cassette construction

The 50 homology arm of OCT4 was amplified out of H9 genomic

DNA with the following primers (Fwd: 50-AAGGTTGGGAAACT
GAGGCC-30, Rev: 50-GGGAAGGAAGGCGCCCCAAG-3) yielding a

1,114 bp homology arm that was then cloned into the pGEMTEZ

plasmid (Promega) followed by the coding sequence for the

mCherry fluorescent protein (minus its stop codon) followed by a

short linker sequence (TCC GGA TCC) and the start ATG codon for

OCT4. The OCT4 gene constituted the 30 homology arm and was

amplified out of H9 genomic DNA with the following primers (Fwd:

50-ATGGCGGGACACCTGGCTTC-30, Rev: 50-AGCTTTCTACAAGG
GGTGCC-30) yielding a 1,082 bp homology arm.

Introduction of exogenous DNA into H9 cells

H9 cells were cultured on 10-cm dishes and, when 80% confluent,

were dissociated using 0.5 mM EDTA. 10 × 106 cells were resus-

pended in 800 ll ice-cold PBS containing 25 lg of the OCT4-

mCherry donor vector and 25 lg of the guideRNA/Cas9 vector.

Cells were electroporated in 100 ll tips (Neon, ThermoFisher Scien-

tific) using program 19 of the optimization protocol (1,050 V,

30 ms, two pulses) and resuspended in mTeSR1 (STEMCELL Tech-

nologies) supplemented with Rock inhibitor (S1049, Selleck Chemi-

cals) at a final concentration of 10 lM. When colonies that

expressed mCherry reached approximately 20 mm in size, they

were marked and picked into Matrigel coated 24-well plates.
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Endogenous OCT4 levels

Endogenous OCT4 levels in H9 wild-type cells and H9 OCT4-

mCherry clone 8-2 were determined by antibody staining using a

mouse anti-OCT4 antibody (MABD76, EMD Millipore). Immuno-

staining was performed using standard protocols. Briefly, cells were

fixed for 15 min in 4% paraformaldehyde and permeabilized and

blocked for 30 min in 5% goat serum with 0.3% Triton X-100 in

TBS. Incubation with primary antibody was performed overnight,

and the incubation with the secondary antibody (Molecular Probes)

was done at room temperature for 45 min. Nuclei were visualized

using NucBlue Fixed Cell Stain ready Probes reagent (R37606,

Molecular Probes).

Live-cell imaging

Asynchronous H9 OCT4-mCherry cells were plated on 12-well glass

bottom plates (Cellvis) in phenol-red free or clear DMEM/F-12

(Gibco) supplemented with mTeSR1 supplement (05850, STEMCELL

Technologies) approximately 24 h before being imaged. Cells were

imaged using a Nikon Ti Eclipse microscope operated by NIS

Elements software V4.30.02 with an Andor ZYLA 4.2 sCMOS camera

and a custom stage enclosure (Okolabs) to ensure constant tempera-

ture, humidity, and CO2 levels. Fresh media with or without BMP4

were added every 24 h. Images were flat-field-corrected using NIS

Elements.

Image analysis

A custom ImageJ plugin (available upon request) was used to

perform automated segmentation and manually tracking of hESCs.

Fluorescence intensity was quantified using an adapted threshold

followed by watershed segmentation of the OCT4-mCherry channel.

The program tracked the cell ID, parent ID, frame number, and

mean intensity and exported this information to MATLAB for

analysis.

Quantitative analysis

All computational methods including lineage analysis and logistic

regression are included as Dataset EV1, which includes processed

image data and documented MATLAB code used to generate each of

the figures.

OCT4 pulses

OCT4 pulses were identified by finding peaks within single-cell

traces of OCT4 expression in individual cells. The code used to iden-

tify peaks is found in the getcellpeaks.m in Dataset EV1. Briefly,

peaks were required to have a minimum width of 15 min (three

frames) and a minimum prominence (i.e., how much the peak

stands out due to its intrinsic height and its location relative to other

peaks) of 200 a.f.u., which is approximately equal to 1 standard

deviation in OCT4 expression levels across individual cells. The

relationship between OCT4 pulses and stem cell pro-fate, as

reported in the paper, was not sensitive to small variations in these

parameter choices.

OCT4 half-life calculations

We used cyclohexamide treatment to estimate the half-life of OCT4-

mCherry to be 7.34 h (Appendix Fig S3). If 50% of OCT4-mCherry

is degraded in 7.34 h, then the percentage of OCT4 left after only

5 min is

NðtÞ ¼ N0
1

2

� � t
t1=2

NðtÞ ¼ 100
1

2

� �0:0833
7:34

NðtÞ ¼ 99:22

Logistic regression

Logistic regression was performed using the fitglm function in

MATLAB using a binomial model and logit link function. The code

used to train the model is found in the trainClassifier.m function in

Dataset EV1.

Expanded View for this article is available online.
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