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We present a comprehensive statistical framework to analyze
data from genome-wide association studies of polygenic traits,
producing interpretable findings while controlling the false dis-
covery rate. In contrast with standard approaches, our method
can leverage sophisticated multivariate algorithms but makes no
parametric assumptions about the unknown relation between
genotypes and phenotype. Instead, we recognize that genotypes
can be considered as a random sample from an appropriate
model, encapsulating our knowledge of genetic inheritance and
human populations. This allows the generation of imperfect
copies (knockoffs) of these variables that serve as ideal nega-
tive controls, correcting for linkage disequilibrium and accounting
for unknown population structure, which may be due to diverse
ancestries or familial relatedness. The validity and effectiveness
of our method are demonstrated by extensive simulations and by
applications to the UK Biobank data. These analyses confirm our
method is powerful relative to state-of-the-art alternatives, while
comparisons with other studies validate most of our discoveries.
Finally, fast software is made available for researchers to analyze
Biobank-scale datasets.

genome-wide association studies | false discovery rate | knockoffs |
population structure | hidden Markov models

Genome-wide association studies shaped the research into
the genetic basis of human traits for the past 15 y. While

family studies had previously been the cornerstone of genetics,
Risch and Merikangas (1) in 1996 described the power that large
population samples held for the study of polygenic phenotypes,
those influenced by many loci, each with relatively small effect.
Ten years of biotech development resulted in the capacity to
genotype hundreds of thousands of single-nucleotide polymor-
phisms (SNPs) in thousands of individuals, and in 2007 the first
large-scale association studies were published (2). As of 2021, the
National Human Genome Research Institute - European Bioin-
formatics Institute genome-wide association studies (GWAS)
catalog (3) contains over 4,800 publications and 240,000 asso-
ciations, implicating almost 150,000 SNPs for a diverse set of
traits. The predictions in ref. 1 have been confirmed: There are
thousands of associations with traits such as high cholesterol or
autism, whose inheritance appeared hard to explain, that are now
candidates for follow-up studies. Additional challenges have thus
emerged: How does one sort through all these genetic variants?
How does one identify those that are more likely to be causal?
How does one select variants that can be used to construct robust
prediction scores, maintaining validity across human popula-
tions? GWAS were designed based on statistical considerations
and a closer look at the inferential methods used today to ana-
lyze these data shows progress, many success stories, and some
open challenges.

Statistical Analysis of GWAS Data
The Requisites. An effective GWAS analysis should account for
the role played by all relevant genetic variants and adjust for mul-
tiplicity. These studies were intended to uncover the genetic basis

of polygenic traits; therefore, the analysis should use multivari-
ate models. Multivariate models have two additional benefits.
First, they can explain a higher fraction of phenotypic variance,
which benefits prediction (witness the rise of machine-learning
algorithms), and can facilitate the discovery of new loci. Second,
they bring us closer to the identification of variants with causal
effects (4, 5).

Indeed, the main purpose of a GWAS is not to construct a
black-box model that predicts phenotypic outcomes given geno-
type information, but to identify precisely which genetic variants
have an impact on the phenotype, uncovering the underlying bio-
logical pathway. A meaningful error measure should be based
on the number of falsely discovered genetic loci and, as we
are exploring the potential effects of hundreds of thousands of
variables, a multiplicity adjustment is needed to guarantee the
reproducibility of any findings. The false discovery rate (FDR) is
a particularly appropriate control target: As we expect to make
hundreds or thousands of true discoveries (corresponding to the
polygenic nature of the trait), we can certainly tolerate a few
false ones (6, 7).

The Challenges. While striving to achieve the above desider-
ata, the analysis of GWAS data encountered several obstacles.
A first challenge arises from the problem dimensions. The
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simplest polygenic model (8) describes a phenotype as the result
of additive genetic effects, suggesting linear regression of the
trait on the genotyped SNPs as an inferential method. How-
ever, given that the number of explanatory variables (hundreds
of thousands) is larger than the sample size (historically in the
thousands, nowadays routinely in the tens of thousands), classical
linear regression is not a viable approach. Penalized regression
and Bayesian models have been proposed as alternatives (9–11),
but they also have shortcomings. The Lasso (12) is geared toward
optimizing prediction and does not allow researchers to make
statements on error control for the selected variables. While the
recent literature on inference after selection (13) attempts to
remedy this limitation, the most practical solutions in the context
of GWAS are based on sample splitting (14, 15), with consequent
loss of power, and do not guarantee FDR control in finite sam-
ples. Bayesian procedures encounter substantial computational
complexity; the efficient sampling strategies that have been pro-
posed over the years (16, 17) often rely on approximations of
the posterior distribution that are too crude for precise variable
selection.

A second difficulty arises from the strong local dependence
between SNPs on the same chromosome, known as linkage dis-
equilibrium (LD) (18). The genotyped SNPs are chosen as to
“cover” the genome: Even though the true causal variants may
not be directly observed, data on sufficiently close SNPs can
act as proxy. Genotyping platforms thus rely on many closely
spaced SNPs whose alleles are strongly dependent. This design
poses some challenges for the statistical analysis. In multivari-
ate regression models, dependencies between variables make
it difficult to select any one of them, as others provide very
similar signals. Marginal tests for independence between the
trait and individual neighboring variants correspond to redun-
dant hypotheses; therefore, such discoveries are more difficult to
interpret, and straightforward applications of FDR-controlling
methods (19) become particularly problematic (20).

A third challenge is the lack of independence over samples, or
population structure, due to the presence of individuals sharing
some degree of relatedness and common ancestry or otherwise
belonging to identifiable subgroups. This induces long-range LD
across the entire genome (21), which also gives rise to mislead-
ing associations. The problem is accentuated if the sample size is
large, as in that case even relatively weak spurious associations
can become statistically significant.

Standard Pipeline. The standard statistical pipeline involves mul-
tiple steps, which evolved in response to the above challenges.
Typically, one identifies promising signals by testing for the asso-
ciation of the phenotype with one variant at a time, through
a simple linear model. To correct for population structure, the
SNP-by-SNP marginal regression models may include additional
covariates, such as the top principal components of the geno-
type matrix (21). Alternatively, random effects may be utilized
to account for relatedness and, partially, for the effect of other
genetic loci (22–25). The P values thus computed are thresholded
to approximately control the familywise error rate (FWER). To
eliminate the redundancy in the findings, variants associated
with the phenotype and highly correlated with one another are
“clumped” into distinct groups, utilizing procedures such as that
implemented in PLINK (26). The results of these univariate tests
are then taken as input by two different multivariate analyses:
fine mapping (27, 28) and polygenic risk scores (29). The former
aims to identify the causal variants among many similarly asso-
ciated SNPs in LD. The latter seeks to construct a predictor of
the trait for future samples based on a large number of genetic
variants across the genome.

This pipeline is a patchwork of different approaches, based on
strong assumptions (e.g., linear effects and Gaussian errors) and
inconsistent models; in fact, the linear models often applied for

locus discovery differ in various aspects from those employed for
fine mapping, including in the choice of which variables corre-
spond to fixed effects and which correspond to random ones. The
issue is that, even though some fine-mapping methods can be
very effective at teasing out distinct signals within one locus (28),
they cannot be applied genome-wide without prior screening
via marginal testing due to computational limitations. Unfortu-
nately, although it is convenient, such a two-step approach does
not guarantee the type-I errors are controlled in the final out-
put (30). Despite the lack of rigorous theoretical grounding, the
standard pipeline is well established, partly because it has led
to the discovery of a number of loci that appear to be repro-
ducibly associated with the traits of interest. Indeed, geneticists
have identified more statistically significant loci than it is cur-
rently practical to investigate in follow-up studies. However, the
limitations of the standard approach become more evident when
one tries to identify causal variants and leverage them to predict
disease risk. On the one hand, there have been few mechanistic
validations of loci identified by GWAS (31): The outputs of the
pipeline are hard to interpret directly and expensive to investi-
gate in follow-up studies. On the other hand, the performance
of polygenic risk scores is not robust across populations (32,
33), which highlights the difficulty of identifying causal variants
and raises questions of equity and fairness (34, 35). A statistical
method that pursues more directly the original GWAS requisites
may improve performance in both the above tasks.

A Different Framework. We present a statistical approach, Knock-
offGWAS, which accounts for the role of multiple variants,
adjusting for multiplicity and population structure. This is the
culmination of years of developments.

Our work begins with knockoffs, introduced by ref. 36 within
the context of low-dimensional linear models and extended by
ref. 37 to the high-dimensional “model-X” setting considered
here, which requires no parametric assumptions about the distri-
bution of the phenotype conditional on the genotypes. Knockoffs
are randomly generated negative control variables, designed to
be indistinguishable from the original null variables (those not
directly associated with the trait), even with regard to their
dependence with the causal ones. Such exchangeability allows
us to tease apart variants that truly “influence” the trait, as
those are the only ones whose association with the phenotype
is significantly stronger than that of their knockoffs. This idea is
implemented by the knockoff filter (36): the algorithm comput-
ing a knockoff-based significance threshold controlling the FDR.
This filter can be applied to any association statistics (if they treat
the original variables and the knockoffs fairly), which allows us to
exploit the power of modern machine-learning algorithms while
retaining valid inferences (37). The key ingredient for knockoffs
is an accurate model for the distribution of the original variables,
which fortunately is available for GWAS data.

This paper presents a series of technical advances, which
cumulatively offer a complete analysis pipeline accounting for
the most serious remaining source of confounding, population
structure, thus bringing us closer to proper causal inferences
(38). In particular, we improve on earlier works (30, 39) focused
on knockoffs for individuals from a homogeneous population,
by introducing methods to handle relatedness, diverse ances-
tries, and admixture, which finally allows us to analyze complex
datasets in their entirety.

Methodology
Notation, Problem Statement, and Assumptions. Consider a dataset
with genotype and phenotype information for n individuals,
where X (i) ∈{0, 1, 2}p counts the minor alleles of the i th sub-
ject at each of p markers, and Y (i) ∈Y is the phenotype (taking
either discrete or continuous values in Y). The n individuals are
divided into disjoint subsets (self-reported or inferred), {F}F∈F ,
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where F is a partition of {1, . . . ,n}. We refer to these sub-
sets as families, although the grouping is more flexible than in
classical family studies. Concretely, we define families by group-
ing together individuals with observed kinship coefficient above
5%; see Materials and Methods for further details and a
justification of this cutoff.

Our goal is to detect variants (or groups thereof) containing
distinct associations with Y ; that is, we ask whether the condi-
tional distribution of Y |X depends on a variant Xj or a fixed
group of variants XG = {Xj}j∈G . In practice, our analyses will
be repeated for different choices of these groups at different lev-
els of resolution; see The Knockoff Filter and Preprocessing of
the UK Biobank Data for more details. For simplicity, here we
focus on one genotype partition, which we assume to be fixed
and such that all SNPs in each group XG are physically con-
tiguous; see ref. 30 for a justification of this simplification. Let
then G= {G}G∈G be any partition of {1, . . . , p} into contiguous
groups. If XG denotes the genotypes for all SNPs in group G ,
and X−G denotes the genotypes for those outside it, we want to
test conditional null hypotheses (37) of the form

[1]

In words,HG is true if and only if knowing XG provides no infor-
mation about Y beyond what can be gathered from the rest of
the genome.∗ TestingHG in Eq. 1 accounts for population struc-
ture because the latter is determined by the genotypes and can
be reconstructed almost exactly by looking at X−G . (Since G
is a relatively small set, X−G collects almost all measured vari-
ants across the genome.) That is, by conditioning on X−G , we
are automatically conditioning on ethnicity, subpopulation infor-
mation, and so on. This is akin to using principal components to
capture population structure (21), but X−G contains even more
information: The top principal components can be essentially
reconstructed from X−G . Thus, testing Eq. 1 correctly addresses
the requisite that the analysis of GWAS data should promote
the discovery of interesting biological effects rather than just any
association. This argument is formalized with a causal inference
model in SI Appendix, section S1.a and Fig. S1.

Our approach draws strength from modeling the random-
ness we understand, not from making assumptions about the
unknown relation between the genetic variants and the trait. In
this sense, our method is Fisherian. For instance, we do not posit
a (generalized) linear model, although it would be convenient,
because we have a priori no way to tell whether it is realistic.
Instead, we assume only the phenotypes in different families are
conditionally independent of one another given the genotypes,
while those in the same family may also be affected by shared
environmental factors (SI Appendix, section S1.a). Our modeling
concentrates on the genotypes, whose inheritance mechanisms
are already well understood. Precisely, we jointly describe the
distribution of all genotypes within the same family with hidden
Markov models (HMMs) analogous to those used for phasing
and imputation (41), taking into account the observed pat-
terns of relatedness and the ancestry of each individual. These
HMMs, which we assume to be conditionally independent across
different families given the reconstructed ancestries of all indi-
viduals, are then leveraged to generate the negative controls, or
knockoffs, defined below.

Exchangeable Negative Controls. A random matrix X̃∈
{0, 1, 2}n×p is a knockoff of X, with respect to a partition G of
{1, . . . , p}, if it satisfies two properties. First, , which
says that X̃ provides no additional information about Y (this is

*If we were to posit a linear model, Y =
∑p

j=1 βjXj + ε, which we do not, then the null

hypothesis in Eq. 1 would be equivalent to saying that βj = 0 for all j∈G (37, 40).

always true because X̃ is generated looking at X but not at Y).
Second, the joint distribution of [X, X̃]∈{0, 1, 2}n×2p must be
invariant upon swapping XG with the corresponding knockoffs,
simultaneously for all individuals in any family F :[

X (F), X̃ (F)
]
swap(G)

d
=
[
X (F), X̃ (F)

]
, [2]

∀G ∈G,F ∈F . Above, swap(G) swaps all columns of X (F)

indexed by G with the corresponding columns of X̃ (F) (SI
Appendix, Fig. S2). This means that, upon seeing a list of
unordered pairs {X (F)

G , X̃
(F)
G }G∈G , we have no way to tell which

genetic variants are original and which are knockoffs. Of course,
looking at Y may allow us to tell some variables apart because,
conditional on Y , the symmetry between XG and X̃G is lost for
nonnulls, and this is the whole point of knockoff testing.

It is difficult to construct valid knockoffs because the
exchangeability property in Eq. 2 does not simply say the knock-
offs should have the same distribution as the genotypes. For
example, permuting the rows of X would lead to dummy vari-
ables X′ with the same distribution as X, but not in LD with
them and hence not satisfying Eq. 2; indeed, any swap of XG

with X ′G would be noticeable if we compare them to the real vari-
ants from neighboring groups. By contrast, our knockoffs X̃G will
be in LD with X̃−G and with X−G . In summary, to satisfy Eq.
2, knockoffs need to preserve short- as well as long-range LD,
both among themselves and with the original genotypes, con-
sistent with the ancestries and family structures reconstructed
from all remaining variants. This is highly nontrivial, especially
if the population structure is unknown a priori, and it requires
a different approach; see Modeling Genotypes and Constructing
Knockoffs for an overview of the key ideas developed here, while
the details are in Materials and Methods and SI Appendix, sections
S1.b and S1.c.

Knockoffs for a genotype partition G are specifically designed
to test HG in Eq. 1 as powerfully as possible (30). Smaller
groups of SNPs allow us to test more informative but fundamen-
tally more challenging hypotheses. As a result, higher-resolution
knockoffs must satisfy stronger exchangeability in Eq. 2 and
tend to be individually more similar to the real genotypes (SI
Appendix, Fig. S3), which reduces power. Larger groups relax the
constraint in Eq. 2, increasing power but making any discoveries
less informative.

We demonstrate empirically that we can construct knockoffs
that are nearly indistinguishable, in the above sense, from the
real genotypes in the UK Biobank data. We explain in The
Knockoff Filter how this exchangeability theoretically guarantees
our method can control the FDR for any phenotype, regardless
of what its genetic architecture may be (37). Therefore, in prin-
ciple there is no need to carry out simulation studies based on
synthetic phenotypes to empirically validate the FDR control of
our method, although we will nonetheless utilize this approach
later to compare its power to that of some benchmarks. Fig. 1
visualizes different measures of exchangeability comparing our
knockoffs to real genotypes in terms of principal components,
familial relatedness, and LD. For simplicity, we focus on the par-
tition containing exactly one SNP per group, which must follow
the strictest constraints; analogous diagnostics for low-resolution
knockoffs are in SI Appendix, Fig. S4. Fig. 1A shows that a
principal component analysis (PCA) on 10,000 individuals with
extremely diverse ancestries (SI Appendix, Table S1) gives very
similar results when performed on either X or X̃; this is con-
sistent with the requirement that knockoffs preserve population
structure and cannot be recognized even by someone know-
ing the top principal components. By contrast, knockoffs con-
structed by earlier methods did not preserve population structure
(30, 37, 39) (SI Appendix, Fig. S5). Fig. 1B demonstrates the
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Fig. 1. Exchangeability of knockoffs and UK Biobank genotypes. (A) PCA
for 10,000 individuals, separately for genotypes and knockoffs. (B) Kinship
between 2,000 pairs of related individuals, computed separately on geno-
types and knockoffs. Kinship is measured by means of kinship coefficients
estimated by the KING software (42) so that a value of 0.5 indicates monozy-
gotic twins and 0 indicates no relatedness. (C) Pairwise correlations between
nearby variants on chromosome 22 (minor allele frequency ≥0.01) for the
individuals in A, with (Left) or without (Right) swapping genotypes (X) and
knockoffs (X̃).

estimated kinship of any two related individuals is the same
regardless of whether it is based on X or X̃; this was also not
guaranteed by earlier methods. Finally, Fig. 1C demonstrates
our knockoffs preserve short-range LD, similar to that in refs.
30 and 39. These plots reveal the pairwise correlations between
genotypes on nearby variants (within 100 kb of each other) are
unchanged when one or both variables are replaced by their
knockoffs. In SI Appendix, Figs. S6–S8 show our knockoffs pre-
serve longer-range LD. We emphasize these results are not easily
achieved; for example, it would not suffice to let X̃ be an inde-
pendent and identically distributed sample of X from the same
population because that would violate the exchangeability in Fig.
1C, Right, as well as other symmetries not visualized here for lack
of space. Of course, trivially valid knockoffs could be obtained
by making identical copies of the genotypes, X̃ =X , but that
cannot yield any discoveries (36), whereas the results in Appli-
cation to the UK Biobank Data will demonstrate our method
is powerful.

Modeling Genotypes and Constructing Knockoffs. We explain here
the main ideas of our knockoff construction, while the details
are in Materials and Methods. First, we assume all haplotypes
have been phased and we denote by H (i,a),H (i,b) ∈{0, 1}p

those inherited by individual i from each parent, so that X (i) =

H (i,a) +H (i,b). As in ref. 30, we model the haplotypes and lever-

age them to construct phased knockoffs, namely H̃ (i,a), H̃ (i,b),
which can then be simply combined to obtain valid knockoff
genotypes: X̃ (i) = H̃ (i,a) + H̃ (i,b).

The haplotype distribution is approximated by an HMM in
the style of SHAPEIT (43–45). This overcomes the main limita-
tion of the fastPHASE HMM (46), which was used to construct
knockoffs (30, 39) for homogeneous populations (30) but cannot
describe both LD and population structure (47). The SHAPEIT
HMM describes the haplotypes as a mosaic of K reference
motifs corresponding to the haplotypes of other individuals in
the dataset, where K is fixed (e.g., K =100). Different individ-
uals may have different sets of motifs, chosen based on their
similarity (Materials and Methods). The intuition is that the hap-
lotypes of someone from England should be well approximated
by a mosaic of haplotypes from other English samples. How-
ever, the two copies of the same chromosome for one individual
(phased haplotypes) are allowed to have different sets of motifs,
reflecting the idea that the parents may have different ances-
tries. Further, the reference motifs can vary across chromosomes
and even locally across wide windows within each chromosome,
enabling the description of possible admixtures (48) (Materi-
als and Methods). Conditional on the references, the identity
of the motif copied at each position is described by a Markov
chain with transition probabilities proportional to the genetic
distances between neighboring sites; different chromosomes are
treated as independent. Conditional on the Markov chain, the
motifs are copied imperfectly, as relatively rare mutations can
independently occur at any site. After inferring the unobserved
Markov chain in this HMM, we carefully perturb it to con-
struct knockoffs. Fig. 2A presents a schematic visualization of
this method.

The above model ignores familial relatedness because it
describes all haplotypes as conditionally independent given the
reference motifs, which cannot explain long identical-by-descent
(IBD) segments (49, 50). To handle this, we model jointly hap-
lotypes in the same family. First, we detect long IBD segments
in the data (51–54). If the pedigrees are known, the IBD search
can be focused within the given families; otherwise, there exists
software to approximately reconstruct families (55). The results
define a relatedness graph in which two haplotypes are con-
nected if they share an IBD segment; we refer to the connected
components of this graph as the IBD-sharing families. Second,
we define a larger HMM jointly describing all haplotypes in
each IBD-sharing family, conditional on the location of the seg-
ments. Marginally, each haplotype is modeled by the SHAPEIT
HMM; however, the Markov chains for related individuals are
forced to match along the IBD segments. This coupling will
be preserved in the knockoffs, which will contain exchange-
able IBD segments in the same locations, although they may
not always have the original alleles (Fig. 2B and SI Appendix,
Fig. S9).

The Knockoff Filter. Although knockoffs are constructed to be
statistically indistinguishable from the genotypes, it may be pos-
sible to tell them apart by looking also at the phenotype, since

but . Loosely speaking, this implies differ-
ences in the comparisons of Y with either XG or X̃G can provide
evidence against the null hypothesis . Such prop-
erty is leveraged by estimating importance measures, TG and
T̃G , for each group of SNPs and knockoffs, respectively. The
importance measures are combined into a test statistic for each
group G ∈G; i.e., WG =TG − T̃G . This is designed such that a
large value of WG > 0 is evidence against the null hypothesis,
while the sign of statistics for null groups is independent coin
flips (36). The knockoff filter computes an adaptive significance
threshold for these statistics, provably controlling the FDR if
the knockoffs are correctly exchangeable. See SI Appendix, Fig.
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Fig. 2. Visualization of the haplotype HMM and knockoff construction. (A) Each haplotype sequence, H(i), is described as a mosaic of motifs from a subset
of other haplotypes (in different colors). (B) Haplotypes and knockoffs of closely related individuals share IBD segments where their alleles match exactly
(shaded segments).

S10, for a full schematic. In addition to controlling the FDR, we
can assess the significance of individual findings, either through
a local estimate of the false discovery proportion (FDP) (30,
56), which requires a sufficiently large number of discoveries, or
through a q value (57), which is defined as the smallest nominal
FDR level at which that discovery could have been reported.

The FDR guarantee holds regardless of the unknown rela-
tion between X and Y and with any importance statistics. The
statistics can be computed by virtually any method and easily
incorporate prior knowledge (37). As in earlier works (30, 37,
39), we utilize a sparse generalized linear model (Lasso) (12),
although our inference never assumes its validity. This is prac-
tical with large data (58, 59), interpretable (4), and powerful
compared to linear mixed models (LMMs). Concretely, we fit
a sparse regression of Y on [X, X̃]∈Rn×2p , after standardiz-
ing the columns to have unit variance. The importance mea-
sures are TG =

∑
j∈G |β̂j (λCV)| and T̃G =

∑
j∈G |β̂j+p(λCV)|,

where β̂j (λCV) [resp. β̂j+p(λCV)] is the Lasso coefficient for Xj

(resp. X̃j ) at a value of the regularization parameter tuned by
cross-validation to achieve a low prediction error.

To localize causal variants as precisely as possible, we apply
the knockoff filter at multiple resolutions; partitions with larger
groups yield more power, but at the cost of less informative find-
ings. The FDR is then controlled separately for each level of
resolution. Further, it is possible to coordinate the results at dif-
ferent resolutions to ensure they are consistent with one another
(30), provably retaining the same FDR guarantees. This requires
a variation of the multilayer knockoff filter first proposed in ref.
40, which we do not apply here in the interest of simplicity.
Note that naively aggregating the results obtained at different
resolutions may not control the false discovery rate (60), which
is why we report them separately. For example, reporting only
the highest-resolution finding in each locus would not be the-
oretically valid, although it sometimes performs quite well in
practice (30).

Imputed Variants. Imputed variants—those not directly mea-
sured but instead predicted with a model based on nearby
observed variants—are commonly included in fine-mapping
analyses (41). However, correctly utilizing imputed variants
requires care because they are not as informative as the mea-
sured ones. In particular, imputed variants are conditionally
independent of the trait given the observed genotypes, as they
are constructed based only on the latter. As such, it is impossible
to attribute distinct signals to imputed variants without stronger
assumptions; by definition, any association observed between

them and the trait could be equally well explained as a (possi-
bly nonlinear) association with the observed variants. Two forms
of modeling assumptions could be used to help attribute signals
to imputed variants. First, functional annotations could suggest
the imputed variant is more plausibly responsible for an observed
association. Second, one may posit a linear model and search
for variants that individually explain as much of the response as
possible. The latter is the most typical approach (28).

We do not include imputed variants in our analysis due to
the fundamental issue above: one could never conclude that an
unseen variant is causal based on the data alone. Our method
identifies relations supported by the available evidence with-
out the need of modeling assumptions, such as sparsity and
linearity, and does not make further claims. In particular, we
never single out an imputed variant as causal, but instead
we identify promising regions of the genome containing at
least one measured variant. This is an impartial reporting of
the evidence at hand, isolating statistical associations only to
the resolution achievable with the data. While it may some-
times be desirable to conduct fine mapping at the resolution
of imputed variants, we keep this task distinct from our anal-
ysis. Further, unmeasured variants would remain a possible
source of confounding (as illustrated in SI Appendix, Fig. S1)
regardless of whether imputed SNPs are included in the anal-
ysis, although such confounding can be expected to be small
when interpreting our findings at low resolution (e.g., hundreds
of kilobases).

Leveraging Covariates. The flexibility of our method allows one
to easily leverage additional information to compute even more
powerful statistics. In our application, we include relevant mea-
sured covariates Um (such as sex, age, and squared age, as
well the top five genetic principal components) in the above
regression model, replacing [X, X̃] with [X, X̃,Um ]. These covari-
ates explain some of the phenotypic variation that cannot be
captured by a sparse linear combination of genotypes, thus
reducing the noise in the model. The coefficients for Um are
not regularized, and they do not directly enter the calculated
statistics. The validity of the knockoff filter requires the knock-
offs to be exchangeable with the genotypes conditional on any
covariates utilized in the computation of the test statistics (Eq.
2). This is the case in our analysis, since sex and age can be
safely assumed to be independent of the genotypes (we do not
analyze the sex chromosomes), and the principal components
are related to the genotypes through the population structure,
for which our knockoffs already account. In general, one can
thus explicitly analyze any subset Um of the covariates U that
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are already implicitly taken into account by our conditional
hypotheses.

Application to the UK Biobank Data
Preprocessing of the UK Biobank Data. We test our method
through simulations with the phased haplotypes of 489,000 indi-
viduals (592,000 SNPs, chromosomes 1 to 22). After some pre-
processing (Materials and Methods), we partition each autosome
into contiguous groups at seven levels of resolution, ranging from
that of single SNPs to that of 425-kb-wide groups (SI Appendix,
Table S2). The partitions are obtained chromosome by chro-
mosome through complete-linkage hierarchical clustering, based
on the dissimilarity measures defined below, and cutting the
resulting dendrogram at different heights to obtain groups at
different levels of resolution, similar to that in ref. 30. This
procedure guarantees the partitions are nested: Each group is
contained in exactly one larger group at the resolution imme-
diately below. The dissimilarity between two SNPs is defined as
their genetic distance measured in centimorgans, as previously
estimated in a European population (61). This makes the groups
contiguous and homogeneous in terms of LD at each resolu-
tion, and it may result in heterogeneous numbers of SNPs and
physical widths because the recombination rate varies across the
genome.

The individuals have diverse ancestries, although most are
British (430,000), Irish (13,000), or other Europeans (16,000).
There are 136,818 samples with reported close relatives, divided
into 57,164 families (Materials and Methods). We apply RaPID
(55) to detect IBD segments longer than 3 cM, chromo-
some by chromosome, ignoring (for simplicity) those shared
by individuals who are not in the same family; this gives us
7,087,643 segments over the entire genome. Then, we gener-
ate knockoffs preserving both population structure and IBD
segments.

Analysis of Simulated Phenotypes. We simulate continuous phe-
notypes conditional on the real genotypes, from a homoscedastic
linear model with 4,000 causal variants paired in 2,000 (100-kb-
wide) loci placed uniformly across the genome, so that each locus
contains 2 causal variants. The total heritability is varied as a
control parameter. This gives us a controlled but realistic testing

environment. We take BOLT-LMM (25) as a benchmark, apply-
ing it on the same data with standard parameters. However, the
comparison requires some care since LMMs are designed to test
marginal associations, accounting for population structure (25)
but not LD (30), and controlling the FWER instead of the FDR.

It is standard to combine (or clump) marginally significant
LMM discoveries from nearby SNPs, e.g., using the standard
PLINK (26) algorithm as in ref. 25. Ideally, this should allow
each clump to be interpreted as indicating a distinct discovery;
however, the solution is imperfect because even relatively far-
apart SNPs may not be completely independent of each other
if they are on the same chromosome. This issue is particularly
important at the Biobank scale, as larger sample sizes make even
weak correlations statistically significant, complicating the inter-
pretation of marginal hypotheses. We address this difficulty by
further consolidating the clumps computed by PLINK if they are
within 100 kb of each other, as in ref. 30. In our simulations, this
strategy ensures the final discoveries are distinct because the true
causal loci are well spaced, but that may not always be the case
in practice. Therefore, it is unclear how to best clump marginal
associations in general.

Fig. 3 visualizes our discoveries within a locus containing two
causal variants, although the method operates genome-wide (SI
Appendix, Fig. S11). Fig. 3 also shows the nearby LMM findings,
clumped by PLINK but unconsolidated. Here, our method local-
izes the causal variants precisely, while the LMM findings span
a long region including many spurious associations. SI Appendix,
Fig. S12 describes how the results obtained with each method
change as the signal strength is varied.

Regarding the discrepancy in the target error rates, it is unfor-
tunately difficult to use LMMs to control the FDR. The issue
is this: LMMs test marginal hypotheses (and the test statistics
are not independent of each other), while we ultimately need
to report distinct (conditional) discoveries. This issue was dis-
cussed in ref. 30, and it is consistent with the general difficulty of
controlling the FDR after applying any sort of postprocessing to
the output of a testing procedure (60). We consider two possible
solutions to make the error rates more comparable, which are
informative within our simulations but would not work in prac-
tice. The naive approach is to apply the Benjamini–Hochberg
(BH) correction (19) to the marginal P values before clumping.

A

B

Fig. 3. KnockoffGWAS and BOLT-LMM discoveries for a simulated trait based on the genotypes of 489,000 UK Biobank individuals with population structure.
(A) The shaded rectangles represent our discoveries at different resolutions. The FDR level is 10%. Darker rectangles have lower estimated local FDP. The
lighter rectangles are false discoveries because they do not contain causal variants (whose positions are marked by asterisks on top). (B) BOLT-LMM P values
from the same data and PLINK clumps (segments below) at the genome-wide significance level (5× 10−8), utilizing different colors for different clumps.
The colors match those of the corresponding P values.
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We shall see this inflates the type-I errors. The second approach
involves an imaginary oracle that knows the identities of the
causal variants and exploits them to automatically adjust the
significance level for the LMM P values, such that the pro-
portion of false discoveries (after clumping) equals the target
FDR exactly. Obviously, this oracle does not exist for real
phenotypes.

Fig. 4 compares the performances of KnockoffGWAS and
BOLT-LMM. The latter targets the FWER (5× 10−8 genome-
wide significance level) or the FDR with either of the two afore-
mentioned strategies. Performance is assessed in terms of power,
false discoveries, and resolution. Fig. 4A focuses on KnockoffG-
WAS at low resolution (genome partition with median group size
equal to 208 kb) and BOLT-LMM with strong clumping (con-
solidating clumps within 100 kb of each other). Here, power is
measured as the proportion of the 2,000 causal loci encompassed
by at least one discovery, while the FDP is defined as the fraction
of findings that do not contain causal variants. The resolution is
measured as the median width of the reported genetic segments.
The results show our method is almost as powerful as the imag-
inary LMM oracle, but is slightly more conservative and reports
narrower (more informative) discoveries. By contrast, BOLT-
LMM makes fewer discoveries when targeting the FWER and
reports too many false positives when heuristically targeting the
FDR.

Fig. 4B summarizes the KnockoffGWAS discoveries at dif-
ferent resolutions, reporting only the resolution with the most
findings, for simplicity. Since the reported resolution may be
different for different heritability values, we measure power in
terms of the total number of true discoveries rather than as a
fraction. Here, the goal is to detect as many distinct associations
as possible, ideally also distinguishing between multiple causal
variants in the same locus, so the LMM findings are clumped

A

B

Fig. 4. Performance on real genotypes and synthetic phenotypes from a
model with 4,000 causal variants. The results obtained with either Knockof-
fGWAS (nominal FDR 0.1) or BOLT-LMM (5× 10−8, heuristic FDR, and oracle
FDP calibration) are shown as a function of the total heritability. (A) Low-
resolution KnockoffGWAS discoveries and strongly clumped LMM findings.
(B) Multiresolution KnockoffGWAS discoveries (reported only at the reso-
lution with the most findings for each value of heritability) and weakly
clumped BOLT-LMM findings. Other details are as in Fig. 3.

but unconsolidated. KnockoffGWAS always controls the propor-
tion of false discoveries below the target FDR, and it is either
comparable to or more powerful than the oracle. Furthermore,
we localize causal variants more precisely as the heritability
increases, while the LMM clumps become wider and increasingly
polluted by spurious associations, as visualized in SI Appendix,
Fig. S12. Additional simulations on subsets of the UK Biobank
samples (SI Appendix, section S2.a) demonstrate our method is
robust and powerful even when the individuals have extremely
diverse ancestries (SI Appendix, Table S1 and Figs. S13 and S14)
or very strong familial relatedness (SI Appendix, Table S3 and
Fig. S15), in which cases the FDR would have been much larger
than desired had we not taken the population structure into
account.

Analysis of UK Biobank Phenotypes. We study four continuous
traits (height, body mass index, platelet count, systolic blood
pressure) and four diseases (cardiovascular disease, respiratory
disease, hyperthyroidism, diabetes), as defined in SI Appendix,
Table S4. To increase power, we include a few covariates, as
explained in The Knockoff Filter. Table 1 reports the num-
bers of low-resolution (208 kb) discoveries (target FDR 10%)
and compares them to those obtained by BOLT-LMM, which
are clumped with PLINK (5× 10−8 significance threshold) but
unconsolidated, consistent with ref. 25. The agreement between
these discoveries is summarized as in ref. 30: Two findings are
said to overlap if they indicate nondisjoint genomic regions.
As explained in Analysis of Simulated Phenotypes, these two
methods test different hypotheses and target different error
rates, so we do not expect them to yield the same numbers of
findings. Nonetheless, the comparison is informative because
the findings of the LMM are commonly attributed the same
meaning as ours: pointing to genomic regions likely to contain
distinct causal variants. However, to achieve this interpreta-
tion, the LMM results first need to be clumped. It is impor-
tant to note that, because LMMs test marginal hypotheses,
applying standard FDR controlling procedures to their P val-
ues would not result in valid FDR control for the clumped
discoveries, as demonstrated in Fig. 4 and discussed earlier
in ref. 30.

BOLT-LMM is applied on 459,000 European samples (25)
for all phenotypes except diabetes and respiratory disease, for
which it is applied on 350,000 unrelated British samples (30) for
the sake of consistency in phenotype definitions. These results
suggest KnockoffGWAS is more powerful: It discovers almost
all findings reported by the LMM and many other ones. The
findings at other resolutions are summarized in SI Appendix,
Table S5. Note that the model assumed by BOLT-LMM assumes
continuous-valued phenotypes, and other LMM-based meth-
ods have been specifically developed for case–control studies
(62); however, BOLT-LMM is still a standard benchmark here
because the ratio of cases and controls is not very small (25)
(SI Appendix, Table S4). SI Appendix, Fig. S16 visualizes our
discoveries for cardiovascular disease in the form of Manhattan
plots, using q values (57) to measure the individual significance of
each finding. The full list of our discoveries is available online at
https://msesia.github.io/knockoffgwas/, along with an interactive
visualization tool.

SI Appendix, Table S6 confirms our findings are consistent with
those of ref. 30, although our method is more powerful because
it leverages a larger sample; see SI Appendix, Table S7 for more
details. The only exception is at the single-SNP resolution, which
may be partially explained by these discoveries being fewer and
thus more susceptible to the random variability of knockoffs.
Table 2 summarizes the increase in discoveries at each resolu-
tion directly resulting from the inclusion of samples with close
relatives or non-British ancestry. The inclusion of related indi-
viduals yields many more discoveries, while it is unsurprising that
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Table 1. KnockoffGWAS discoveries (208-kb resolution, 10%
FDR), using all 487,000 UK Biobank samples, and corresponding
BOLT-LMM findings (5 × 10−8)

Knockoff GWAS discoveries BOLT-LMM discoveries

Phenotype Total Overlap with LMM Total Overlap with KZ

bmi 2,395 898 (37.5%) 697 689 (98.9%)
cvd 940 274 (29.1%) 257 249 (96.9%)
diabetes 113 52 (46.0%) 62 55 (88.7%)
height 3,339 2,228 (66.7%) 2,464 2,430 (98.6%)
hypothyroidism 295 129 (43.7%) 143 142 (99.3%)
platelet 1,743 1,057 (60.6%) 1,204 1,183 (98.3%)
respiratory 262 82 (31.3%) 94 92 (97.9%)
sbp 1,183 561 (47.4%) 568 530 (93.3%)

For example, we report 940 distinct discoveries for cardiovascular disease,
274 of which contain significant LMM associations. The LMM reports 257
discoveries for this phenotype, 96.9% of which overlap with at least one of
our discoveries

diverse ancestries bring smaller gains since there are relatively
few non-British samples.

Validation of Discoveries. We begin to validate our findings by
comparing them to the GWAS Catalog (3), the Japan Biobank
Project (63), and the FinnGen resource (64) (standard 5×
10−8 threshold for the P values reported by the latter two). SI
Appendix, Table S8 indicates most high-resolution discoveries
correspond to SNPs with a known association to the phenotype.
This is especially true for findings also detected by BOLT-
LMM, although many of our additional ones are confirmed (SI
Appendix, Table S9). For example, we report 1,089 discover-
ies for cardiovascular disease at the 425-kb resolution, only 255
of which are detected by BOLT-LMM; however, 85.6% of our
additional 834 discoveries are confirmed in at least one of the
aforementioned resources. Further, SI Appendix, Table S10 sug-
gests most relevant associations in the Catalog (above 70%)
are confirmed by our findings, which is again indicative of high
power. The relative power (proportion of known associations
that we discover) seems above 90% for quantitative traits, but
below 50% for all diseases except hypothyroidism, probably due
to the relatively small number of cases in the UK Biobank dataset
compared to more targeted case–control studies.

The 5× 10−8 threshold for the Japan Biobank Project and the
FinnGen resource is too conservative if the goal is to confirm
selected discoveries. Therefore, we next carry out an enrichment
analysis. The idea is to compare the distribution of the exter-

nal statistics within our selected loci to those from the rest of
the genome; see SI Appendix, section S2.c. This approach esti-
mates the number of replicated discoveries but cannot tell exactly
which ones are confirmed; therefore, we will consider alterna-
tive validations later. (A more precise analysis is possible, but
has low power; see SI Appendix, section S2.c). SI Appendix, Table
S11 shows many additional discoveries can thus be validated,
especially at high resolution. See SI Appendix, Table S12 for
more details about enrichment. Table 3 summarizes the confir-
matory results. Respiratory disease is excluded here because the
FinnGen resource divides it among several fields, so it is unclear
how to best obtain a single P value. Regardless, the GWAS Cat-
alog and the FinnGen resource already directly validate 90% of
those findings.

We continue by cross-referencing with the literature the
discoveries missed by BOLT-LMM and unconfirmed by the
above studies, focusing for simplicity on the 20-kb resolution.
SI Appendix, Table S13 shows most of these discoveries point
to SNPs with known associations to phenotypes closely related
to the one of interest; see SI Appendix, Table S14 for details.
Finally, SI Appendix, Table S15 shows that many lead SNPs
(those with the largest importance measure in each group) within
our unconfirmed discoveries have known consequences in the
protein-coding sequence.

Fig. 5 shows a discovery for cardiovascular disease, which
seems unlikely to be false based on the estimated local FDP.
The highest-resolution finding here spans four genes, but we
could not find previously reported associations with cardiovas-
cular disease within this locus. However, one gene (SH3TC2) is
associated with blood pressure (65) and another (ABLIM3) with
body mass index (66). SI Appendix, Fig. S17 visualizes the same
discovery within a wider portion of the chromosome.

Discussion
We developed a method for constructing knockoffs that pre-
serve population structure and familial relatedness, as well as
LD, thereby obtaining a fully operational conditional testing
strategy for the analysis of GWAS data. In particular, we can
now analyze Biobank-scale datasets both efficiently, leverag-
ing the available prior knowledge and the power of virtually
any machine-learning tools, and agnostically, without paramet-
ric assumptions about the phenotype. While we cannot identify
causal variants exactly due to possible unaccounted confounders
such as missing variants, we push farther in that direction
compared to the traditional pipeline.

The inclusion of related and ethnically diverse individuals is
crucial for several reasons (67). First, large studies are sampling

Table 2. Cumulative numbers of discoveries for all UK Biobank phenotypes at different resolutions, utilizing different subsets of
the samples.

Including related samples Including non-British samples

Everyone British Related Unrelated

Resolution Total Change (%) Total Change (%) Total Change (%) Total Change (%)

Single SNP 138–167 21.0 155–125 −19.4 125–167 33.6 155–138 −11.0
3 kb 921–992 7.7 655–971 48.2 971–992 2.2 655–921 40.6
20 kb 2,814–3,527 25.3 2,808–3,355 19.5 3,355–3,527 5.1 2,808–2,814 0.2
41 kb 4,419–5,867 32.8 4,353–5,354 23.0 5,354–5,867 9.6 4,353–4,419 1.5
81 kb 6,784–8,031 18.4 6,676–7,781 16.6 7,781–8,031 3.2 6,676–6,784 1.6
208 kb 8,776–10,270 17.0 8,635–10,049 16.4 10,049–10,270 2.2 8,635–8,776 1.6
425 kb 9,401–10,730 14.1 9,028–10,297 14.1 10,297–10,730 4.2 9,028–9,401 4.1
Sample size 408k–487k 19.4 356k–430k 20.8 430k–487k 13.0 356k–408k 14.6

For example, including related individuals increases by 16.4% the number of discoveries obtained from the British samples at the 208-kb resolution (from
8,635 to 10,049). As another example, adding non-British individuals (including related ones) increases by 2.2% the number of discoveries obtained from
the British samples (including related ones) at the 208-kb resolution (from 10,049 to 10,270).
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Table 3. Numbers of low-resolution (208-kb) discoveries obtained with our method and confirmed by other studies or by an
enrichment analysis carried out on external summary statistics.

Total discoveries Discoveries not found by BOLT-LMM

No. Confirmed No. Confirmed

Phenotype Other (%) Other or enrichment (%) Other (%) Other or enrichment (%)

bmi 2,395 1,076 (44.9) 1,620 (67.6) 1,497 335 (22.4) 806 (53.8)
cvd 940 738 (78.5) 764 (81.3) 666 472 (70.9) 493 (74.0)
diabetes 113 97 (85.8) 106 (93.8) 61 46 (75.4) 54 (88.5)
height 3,339 1,886 (56.5) 2,493 (74.7) 1,111 164 (14.8) 556 (50.0)
hypothyroidism 295 156 (52.9) 226 (76.6) 166 43 (25.9) 101 (60.8)
platelet 1,743 453 (26.0) 1,017 (58.3) 686 29 (4.2) 256 (37.3)
respiratory 262 241 (92.0) NA 180 159 (88.3) NA
sbp 1,183 643 (54.4) 885 (74.8) 622 154 (24.8) 358 (57.6)

For example, 81.3% of our 940 discoveries for cardiovascular disease are confirmed either by the results of other studies or by the enrichment analysis.
The results are stratified based on whether our findings can be detected by BOLT-LMM using the UK Biobank data (excluding non-European individuals).
bmi, body mass index; cvd, cardiovascular disease; sbp, systolic blood pressure.

entire populations densely (64, 68), which yields many close
relatives. It would be wasteful to discard this information and
potentially dangerous not to account for relatedness. Second,
the historical lack of diversity in GWAS (which mostly involve
European ancestries) is a well-recognized problem (69, 70) that
biases our scientific knowledge and disadvantages the health of
underrepresented populations. While this issue goes beyond the
difficulty of analyzing diverse GWAS data, our work at least
helps remove a technical barrier.

GWAS data from different populations are typically ana-
lyzed separately, and only later may the results be combined
through meta-analyses (71, 72), partly out of concern for pop-
ulation structure. However, our method makes such sample
splitting unnecessary. By allowing a simultaneous analysis, we
can increase power because different LD patterns uncover causal
variants more effectively (48). Our discoveries may also be use-
ful to better explain phenotypic variation in minority populations
(73, 74). Since the UK Biobank mostly comprises British individ-
uals, the increase in power resulting from the analysis of other
samples can only be relatively small. Nonetheless, we observe
some gains when we include non-British individuals. Simulations
demonstrate our inferences are valid even when the population
is very heterogeneous, suggesting our approach might be partic-
ularly suitable for the analysis of more diverse data, such as those
collected by the Million Veteran Program (75), for example.

Finally, including individuals with diverse ancestries opens
additional research opportunities. For example, it would be
interesting to understand which discoveries are consistently
found in different populations (76), as this may help further weed
out false positives, explain observed variations in certain pheno-
types, and possibly shed more light on the underlying biological
pathways. Further avenues for future research may focus on the
analysis of whole-genome sequencing data including rare vari-
ants. The analysis of rare variants involves additional challenges,
both computational (our method scales linearly in the number
of variables, but even that cost may still be high) and statistical
(signals on rare variants are more difficult to detect because they
result in smaller effective sample sizes). Further, it may be more
difficult to accurately model the distribution of rare variants and
construct valid knockoffs. However, the SHAPEIT HMM with
individual-specific reference haplotypes is known to be relatively
accurate even for rare variants (45, 77)

Materials and Methods
Software Availability. Our methods are implemented in an open-source
software package available from https://msesia.github.io/knockoffgwas/.
This includes a standalone program written in C++, which takes as input
phased haplotypes in BGEN format (78) and outputs genotype knock-

offs at the desired resolution in the PLINK (26) BED format. The package
also includes R scripts to partition the genome into contiguous groups
of SNPs at different resolutions, compute Lasso-based test statistics, apply
the knockoff filter, and visualize the discoveries interactively. Furthermore,
the repository contains Bash scripts to connect the different modules of
this pipeline and carry out a complete GWAS analysis from beginning
to end, an example of which can be conveniently run on a small toy
dataset provided with the package. Our software is specifically designed
for the analysis of large datasets, as it is multithreaded and memory effi-
cient. Furthermore, knockoffs for different chromosomes can be generated
in parallel. For reference, it took us ∼4 d using 10 cores and 80 GB of
memory to generate knockoffs on chromosome 1 for the UK Biobank
data (∼1 million haplotype sequences, 600,000 SNPs, and 600,000 IBD
segments).

The SHAPEIT HMM. We say a sequence of phased haplotypes H =

(H1, . . . , Hp)∈{0, 1}p is distributed as an HMM with K hidden states if there
exists a vector of latent random variables Z = (Z1, . . . , Zp)∈{1, . . . , K}p such
that

A

B

C

Fig. 5. Results of the analysis of UK Biobank data on cardiovascular
disease, within a small portion of chromosome 5. (A) Marginal P val-
ues computed by BOLT-LMM on the subset of samples with European
ancestry (25), for genotyped and imputed variants within this locus.
All P values here are larger than 5× 10−8. (B) Findings reported by
KnockoffGWAS. The shaded rectangles indicate the genetic segments
discovered at different resolutions; the darker ones are more statisti-
cally significant, i.e., with a lower estimated local FDP (white labels).
(C) Location of genes in the locus spanned by our highest-resolution
discovery.
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{
Z∼MC (Q), (latent Markov chain),

Hj | Z
ind.∼ fj(Hj | Zj), (emission distribution).

[3]

Above, MC (Q) is a Markov chain with initial probabilities Q1 and transition
matrices (Q2, . . . , Qp).

Taking inspiration from SHAPEIT (43–45), we assume the ith haplotype
sequence can be approximated as an imperfect mosaic of K other haplo-
types in the dataset, indexed by {σi1, . . . ,σiK}⊆{1, . . . , 2n} \ {i}. (Note
the slight overload of notation: i denotes hereafter a phased haplotype
sequence, two of which are available for each individual). We will discuss
later how the references are determined; for now, we take them as fixed
and describe the other aspects of the model. Mathematically, the mosaic is
described by an HMM in the form of Eq. 3, where the ith Markov chain has

Q(i)
1 (k) =α

(i)
k ,

Q(i)
j (k′ | k) =


(

1− e−ρdj
)
α(i)

k′ + e−ρdj , if k′ = k,(
1− e−ρdj

)
α(i)

k′ , if k′ 6= k.

[4]

Above, dj indicates the genetic distance between loci j and j− 1, which is
assumed to be fixed and known [in practice, we will use distances previously
estimated in a European population (61), although our method could easily
accommodate different distances for different populations]. The parame-
ter ρ> 0 controls the rate of recombination and can be estimated with an
expectation-maximization (EM) technique (SI Appendix). However, we have
observed it works well with our data to simply set ρ= 1; this is consistent
with the approach of SHAPEIT (43–45), which also uses fixed parameters.
The positive α weights are normalized so that their sum equals one and
they can be interpreted as characterizing the ancestry of the ith individual.
In this paper, we simply set all αs to be equal to 1/K, although these param-
eters could also be estimated by EM (SI Appendix). Conditional on Z, each
element of H follows an independent Bernoulli distribution:

f (i)
j (H(i)

j | k) =

1−λj , if H(i)
j = H

(σik )
j ,

λj , if H(i)
j 6= H

(σik )
j .

[5]

Above, λj is a site-specific mutation rate, which makes the mosaic imperfect.
Earlier works that first proposed this model suggested analytic formulas for
determining ρ and λ= (λ1, . . . ,λp) in terms of physical distances between
SNPs and other population genetics quantities (79). However, we choose
to estimate λ by EM (SI Appendix) since our dataset is large. We noticed
it works well to also explicitly prevent λ from taking extreme values (e.g.,
10−6≤λj ≤ 10−3).

To save computations and mitigate the risk of overfitting, K should not
be too large; here, we take K = 100. Larger values improve the goodness
of fit relatively little, while reducing power by increasing the similarity
between variables and knockoffs. Having thus fixed K, the identities of
the reference haplotypes for each i, {σi1, . . . ,σiK}, are chosen in a data-
adaptive fashion as those whose ancestry is most likely to be similar to that
of H(i). Concretely, we can apply Algorithm 1 using the Hamming distance
to define haplotype similarities, chromosome by chromosome. Instead of
computing pairwise distances between all haplotypes, which would be com-
putationally unfeasible, we first divide them into clusters of size N, with
K�N� 2n (i.e., N≈ 5,000), through recursive 2-means clustering, and then
we compute only distances within clusters, following in the footsteps of
SHAPEIT v3 (45).

In practice, it is preferable to apply a more sophisticated variation of
Algorithm 1, which utilizes a different set of local references in differ-
ent parts of the chromosome. We will describe this extension later, after
discussing the knockoff generation algorithm.

Algorithm 1. Choosing the HMM reference haplotypes.

Input: haplotypes H∈{0, 1}2n×p, parameter K;
Input: hyperparameters N1, N2, s.t. K�N1 <N2�n.
Input: a distance measure ξ between haplotypes.
Divide {1, . . . , 2n} into M sets Cc s.t. N1≤ |Cc| ≤N2.
for c = 1, . . . , M do

Compute a distance matrix D∈R|Cc|×|Cc| using ξ.
for i in Cc do

Define set R(i) of K nearest neighbors of Hi in Cc.
−−

Output: a set R(i) of K references for each haplotype H(i).

Algorithm 2. Knockoffs preserving population structure.

Input: haplotypes H∈{0, 1}2n×p, genetic map ρ∈Rp−1,
partition G of {1, . . . , p}; parameter K.

for i = 1, . . . , 2n do
Assign references R(i)= {σi1, . . . ,σiK} (Algorithm 1).
Initialize α(i)

k ←
1
K , for each k∈{1, . . . , K}.

Estimate λ= (λ1, . . . ,λp) by EM (SI Appendix).
Initialize ρ← 1.
for i = 1, . . . , 2n do

Define the HMM {R(i), ρ,λ}.
Sample Z(i) = (Z(i)

1 , . . . , Z(i)
p ) from P[Z(i) |H(i)].

Sample a knockoff copy Z̃(i) of Z(i) with respect to G.
Sample H̃(i) from P[H(i) | Z(i) = Z̃(i)].

Output: knockoff haplotypes H̃∈{0, 1}2n×p.

Generating Knockoffs Preserving Population Structure. Above, we have
described each H(i) as an HMM conditional on the references, {σi1, . . . ,σiK}.
Therefore, it suffices to apply the general algorithm from ref. 30 on each
customized HMM to generate knockoffs, conditioning on the individual sets
of haplotype motifs. Algorithm 2 outlines the solution; concretely, Z(i) is sam-
pled from P[Z(i) |H(i)] with step I of algorithm 2 in ref. 30, Z̃(i) is obtained
from step II of the same algorithm, and H̃(i) from step III.

Knockoffs with Local Reference Motifs Based on Hold-Out Distances. Related-
ness is not necessarily homogeneous across the genome. This is particularly
evident in the case of admixture, which may cause an individual to share
haplotypes with a certain population only in part of a chromosome.
Therefore, we extend Algorithms 1 and 2 to accommodate different local
references within the same chromosome.

First, we divide each chromosome into relatively wide (e.g., 10 Mb)
genetic windows; then, we choose the references separately within each,
based on their similarities outside the window of interest. Similarities
are computed looking only at the two neighboring windows, to make
the references as locally adaptive as possible. This approach is inspired
by SHAPEIT v3 (45), although the latter does not hold out the SNPs
in the current window to determine local similarity. Our approach is
better suited for knockoff generation because it reduces overfitting—
knockoffs too similar to the original variables—and consequently increases
power. Having assigned the local references, we apply Algorithm 2 win-
dow by window. To avoid discontinuities at the boundaries, we consider
overlapping windows (expanded by 10 Mb on each side). More pre-
cisely, we condition on all SNPs within 10 Mb when sampling the latent
Markov chain but then we generate knockoffs only within the window of
interest.

A Generalized HMM with IBD Segments. We jointly model all haplotypes
within an IBD-sharing family (defined in Modeling Genotypes and Con-
structing Knockoffs) F = {1, . . . , m}, namely H(F) = (H((1)), . . . , H(m)), as an
HMM with a Km-dimensional Markov chain. We write the latter as
Z(F) = (Z(1), . . . , Z(m)), where Z(i) ∈{1, . . . , K}p. Conditional on Z(i), each ele-
ment of H(i) is independent and follows the same emission distribution
as in Eqs. 3– 5:

P
[
H(i)

j = 1 | Z(i)
j = k

]
= f (i)

j (1 | k) =

1−λ, if H
(σik )
j = 1,

λ, if H
(σik )
j = 0.

[6]

This would reduce to m HMMs as in Eqs. 3–5 if the Z(i) s were independent
of each other. However, we couple the Z(i) s along the (a priori) fixed IBD
segments to account for relatedness.

Define ∂(i, j)⊂{1, . . . , m} as the set of haplotype indexes that share an
IBD segment with H(i) at position j, and ηi,j = 1/(1 + |∂(i, j)|)∈ (0, 1]. Then,
we model Z(F) as follows: For 1< j≤ p,

P
[
Z(F)

j = z(F)
j | Z

(F)
j−1 = z(F)

j−1

]
=

m∏
i=1

(
Q(i)

j (z(i)
j | z

(i)
j−1)
)
ηi,j

∏
i′∈∂(i,j)

1[z(i)
j = z(i′ )

j ],
[7]
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Algorithm 3. Knockoffs preserving population structure
and relatedness.

Input: H∈{0, 1}2n×p, d∈Rp−1, G, and K as in Algorithm 2,
list of IBD segments I.

Define the set U ⊆{1, . . . , n} of haplotype indexes that do not
share any IBD segments in I.

Divide the remaining haplotypes into L distinct families
Ff ⊆{1, . . . , n}, for f ∈{1, . . . , L}.

for f ∈ 1, . . . , L do
Assign references R(f)= {σf1, . . . ,σfK} (SI Appendix).
Initialize α(f)

k ←
1
K , for each k∈{1, . . . , K}.

Estimate λ= (λ1, . . . ,λp) by EM (SI Appendix).
Initialize ρ← 1.
for f ∈ 1, . . . , L do

Define the HMM {R(f), ρ,λ}.
Sample (Z(i))i∈Ff

from P[(Z(i))i∈Ff
| (H(i))i∈Ff

].
Generate knockoffs (Z̃(i))i∈Ff

of (Z(i))i∈Ff
given G.

Sample H̃(i) from P[H(i) | Z(i) = Z̃(i)], for all i∈ Ff .
for i∈Udo

Generate knockoffs H̃(i) given G as in Algorithm 2.
Output: knockoff haplotypes H̃∈{0, 1}2n×p.

where the transition matrices Q(i)
j are defined as in Eq. 4, while

P
[
Z(F)

1 = (k(1), . . . , k(m))
]

=

m∏
i=1

(
α

(i)
k(i)

)
ηi,j

∏
i′∈∂(i,j)

1[k(i)
= k(i′)

].
[8]

The first term on the right-hand side of Eq. 7 describes the transitions
in the Markov chain, while the second term constrains the haplotypes to
match along the IBD segments. The purpose of the ηi,j exponent is to make
the marginal distribution of each sequence as consistent as possible with
the model for unrelated haplotypes. (If ηi,j = 1, Markov chain transitions
may occur with significantly different frequency inside and outside IBD seg-
ments.) In the trivial cases of size-one families, ∂((1, j)) = ∅ and η1,j = 1, for
all j∈{1, . . . , p}, so Eqs. 7 and 8 reduce to the model in Eq. 4. In gen-
eral, the latent states for different haplotypes in the same family will be
identical along all IBD segments. See SI Appendix, Fig. S18A for a graphical
representation of this model.

Generating Knockoffs Preserving IBD Segments. The knockoff generation
algorithm from ref. 30 would have computational complexity O(npKm) for
the above model, which is unfeasible for large n unless m = 1. (Our model
is an HMM with a Km-dimensional latent Markov chain, where each vector-
valued variable corresponds to the alleles at a specific site for all individuals
in the family.) Fortunately, the joint distribution of (Z(F), H(F)) can be equiv-
alently seen as a more general Markov random field (80) with 2×m× p
variables, each taking values in {1, . . . , K} or {0, 1}, respectively. See SI
Appendix, Fig. S18B for a graphical representation, where each node cor-
responds to one of the two haplotypes of an individual at a particular
marker. The random field perspective opens the door to more efficient

inference and posterior sampling based on message-passing algorithms (81).
Leaving the technical details to SI Appendix, we outline the procedure in
Algorithm 3.

In a nutshell, we follow the spirit of Algorithm 2, with the important dif-
ference that the HMM with a K-dimensional latent Markov chain of length p
is replaced by a Markov random field with 2×m× p variables; this requires
some innovation.

• The K haplotype references in the model for each H(i) are shared by the
entire family; see SI Appendix, Algorithm S1.

• Z(F) |H(F) is sampled with SI Appendix, Algorithm S2, which replaces the
forward–backward algorithm in refs. 30 and 39 with generalized belief
propagation (81). This generally involves some degree of approximation,
but it is exact for many family structures.

• Z̃(F) is generated with SI Appendix, Algorithm S3, which is a variation
of that from ref. 30, circumventing the computational difficulties of the
higher-dimensional model by breaking the couplings between different
haplotypes through conditioning (82) upon the extremities of the IBD
segments (SI Appendix, Fig. S18).

To clarify, conditioning on the extremities of the IBD segments means
we make H̃ identical to H for a few sites in each family, which reduces
power only slightly (we consider relatively long IBD segments, so there are
few extremities), but greatly simplifies the computations (see SI Appendix
for a full explanation). It is worth remarking that, for trivial size-one
families, this is exactly equivalent to Algorithm 2. Finally, note that the
extension to local references with holdout distances discussed earlier also
applies seamlessly here. Our software implements this extension, but we
do not explicitly write down the algorithms with local references for
lack of space.

Quality Control and Data Preprocessing. We begin with 487,297 genotyped
and phased subjects in the UK Biobank (application 27837). Among these,
147,669 have reported at least one close relative. We define families by
clustering individuals with kinship greater than or equal to 0.05; then we
discard 322 individuals (those with the most missing phenotypes) to ensure
that no families have size larger than 10. The choice of a 0.05 kinship cutoff
is motivated by the observation that values would result in larger fami-
lies, significantly increasing the computational cost of generating knockoffs
without providing any clear benefits in terms of type-I error control, given
that our choice already accounts for the close relatedness of most concern.
This leaves 136,818 related individuals divided into 57,164 families. The
median family size is 2, and the mean is 2.4. The total number of individ-
uals passing quality control (including those without relatives) is 486,975.
We analyze only biallelic SNPs with minor allele frequency above 0.1%
and in Hardy–Weinberg equilibrium (10−6), among the subset of 350,119
unrelated British individuals analyzed in ref. 30. The final SNPs count is
591,513.

Data Availability Previously published data were used for this work. (See
main text for the various genetic data repositories that we access.)
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