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ABSTRACT To more accurately trigger cardiac computed tomography angiography (CTA) than electro-
cardiography (ECG) alone, a sub-system is proposed as an intermediate step toward fusing ECG with
seismocardiography (SCG). Accurate prediction of quiescent phases is crucial to prospectively gating CTA,
which is susceptible to cardiac motion and, thus, can affect the diagnostic quality of images. The key
innovation of this sub-system is that it identifies the SCG waveform corresponding to heart sounds and
determines their phases within the cardiac cycles. Furthermore, this relationship is modeled as a linear
function with respect to heart rate. For this paper, B-mode echocardiography is used as the gold standard for
identifying the quiescent phases. We analyzed synchronous ECG, SCG, and echocardiography data acquired
from seven healthy subjects (mean age: 31; age range: 22–48; males: 4) and 11 cardiac patients (mean age: 56;
age range: 31–78; males: 6). On average, the proposed algorithm was able to successfully identify 79% of
the SCG waveforms in systole and 68% in diastole. The simulated results show that SCG-based prediction
produced less average phase error than that of ECG. It was found that the accuracy of ECG-based gating is
more susceptible to increases in heart rate variability, while SCG-based gating is susceptible to high cycle to
cycle variability in morphology. This pilot work of prediction using SCG waveforms enriches the framework
of a comprehensive system with multiple modalities that could potentially, in real time, improve the image
quality of CTA.

INDEX TERMS Cardiac gating, cardiac quiescence, computed tomography angiography (CTA), coronary
angiography, echocardiography, electrocardiography (ECG), seismocardiography (SCG).

I. INTRODUCTION
A. MOTIVATION AND BACKGROUND
According to the American Heart Association, cardiovas-
cular disease (CVD) is the leading cause of death in the
United States. More than 2150 Americans lose their lives
to CVD everyday, one every 40 seconds on average [1].
The gold standard for evaluating CVD is catheter coronary
angiography (CCA). This method requires X-ray visualiza-
tion of arterial blockages while dye is released into the
bloodstream through catheters placed in the coronary arteries.
Despite its clinical prevalence, CCA has inherent limitations.
It is an invasive technique with a non-negligible complication

rate [2] and is relatively expensive [1]. Also, while it
visualizes the coronary arterial lumen, it does not directly
provide information about vessel wall abnormalities [3].
As an emerging alternative, computed tomography angiog-
raphy (CTA), is increasingly being used for the evaluation of
coronary arteries, and can provide information for the vessel
wall [4]. CTA evaluation is less invasive, faster, and less
expensive [5], [6].Moreover, it does not suffer from catheter-
related complications such as bleeding, stroke, or heart
attack [2], [7]. However, CTA performance is limited by tem-
poral resolution and consequently can suffer from artifacts
caused by cardiac motion. Therefore, it is crucial to obtain
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cardiac imaging data during the periods of the cardiac cycle
when the heart motion is minimized. Those quasi-stationery
periods are referred to as quiescent periods or phases dur-
ing which the CT machine is triggered, or gated, for data
acquisition. The ultimate goal of this work is to improve the
diagnostic quality while also reducing the radiation dose of
CTA.

Many studies have been undertaken with the goal of
improving the accuracy of CTA gating to increase the
diagnostic yield of CTA [9]–[12]. Since the inception of
cardiac CTA, quiescent phase prediction has relied almost
exclusively on the real-time electrocardiography (ECG)
signal. CTA data acquisition is triggered by either a
prospective gating signal derived from that ECG signal, or
by retrospectively selecting CTA data from ECG-selected
phases [13], [14]. Specifically, a pre-defined linear piece-
wise function predicting the quiescent phase with respect
to heart rate is often employed [15]–[18]. This approach
neglects the intra- and inter-personal variation in cardiac
signals with respect to the cardiac motion and thus is
not always reliable. Also, the previously published papers
provide several different versions of these gating func-
tions, suggesting that ECG-based gating lacks standard-
ization leaving room for substantial improvement. Fur-
thermore, while providing important information as to
the electrical activity during the cardiac cycle, ECG gat-
ing fails to inherently capture the mechanical motion
of the heart. As an alternative, echocardiography, which
directly evaluates cardiac motion in real time, was pre-
viously demonstrated to provide more accurate gating
timing [19], [20] for CTA, and thus can be used as a base-
line for quiescence. However, echocardiography has some
disadvantages, including incompatibility with CTA in real-
time since current clinically available transducers can cause
streak artifacts in the CTA images [10].

Seismocardiography (SCG) is a noninvasive strategy to
record the low-frequency vibration caused by the heart
motion by placing an accelerometer on the chest wall [23].
The accelerometer uses a smaller footprint than the echocar-
diography transducer, thus significantly minimizing streak
artifacts [10], and is less expensive. Additionally, SCG is not
operator dependent during data acquisition. Crow et al. [24]
evaluated the relationship between SCG and echocardiogra-
phy and reported consistency between the timing of phases of
these two modalities, which indicates their similar accuracy
in measuring cardiac time intervals. The current advances
in SCG signal processing include but are not limited to the
identification of quiescent heart phases [9], [11], extraction
of respiratory and cardiac gating information [25], and delin-
eation of the SCG signal [26], [27].

Further comparison between SCG and echocardio-
graphy [24], [28]–[30] suggested that SCG can reliably cap-
ture cardiac motion and therefore potentially be a supplement
to ECG in CTA gating (Fig. 1). Multiple signal processing
techniques including frequency analysis, time series regres-
sion [31] and wavelet transform [32] have been applied to

FIGURE 1. Echocardiography: B-mode echocardiography frame from an
apical four chamber view of the heart, with contour shown around the
inter-ventricular septum (IVS); Echo Deviation: Motion signals calculated
from B-mode sequences by applying the phase-to-phase deviation
measure elaborated in [8]; ECG: Time-series de-noised ECG signal;
SCG: Time-series de-noised SCG signal.

ECG signals for cardiac research, but the exploration of
fusing SCG with ECG to optimize cardiac gating for CTA
has not been attempted thus far. We propose to fuse SCG
and ECG to optimize cardiac gating for CTA. As an inter-
mediate stage, we propose to detect the prominent signal
features of the SCG that are associated with two heart
sounds (S1 and S2), denoted as SS1 and SS2 [22], [33],
as illustrated in Fig. 2, with a proposed template matching
approach due to the similarity of their morphology across
heart beats. Based on the detected features, we find the
relationship between the timing of cardiac events and heart
rate using template matching and detection, and subsequently
propose a fused framework to predict quiescent phases based
on ECG and SCG. Average templates of SCG waveforms
associated with S1 and S2 are generated using a windowed
selection method over the training data. Then, by matching
the average templates with SCG waveform throughout all
cardiac cycles in the testing data, the waveforms of SS1 and
SS2 are identified by a template matching approach. The
ultimate goal of this work is to generate personalized and
cohort (group consisting of either healthy subjects or cardiac
patients) gating functions based on SCG along with ECG
to more accurately predict quiescent phases to trigger CTA
gating.

Traditionally, a waveform nomenclature-based approach to
identify cardiac events is not robust because the SCGmarkers
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FIGURE 2. Plot of de-noised ECG and SCG wave packets associated with
heart sounds S1 and S2, denoted as SS1 and SS2, respectively, from clean
SCG signal. Heart sounds are discrete bursts of auditory vibrations that
vary in intensity, frequency, quality and duration [21]. By placing an
accelerometer on the sternum, the first and second heart sounds can be
detected [22]. The first heart sound (S1) is caused by the closure of
atrio-ventricular valves; the second heart sound (S2) is from the closure
of semilunar valves [22]. S1 leads the onset of systolic period while S2
occurs after the systolic period and precedes the diastolic period.

such as aortic opening and mitral closure are not consistent if
solely following the template indices [25], [34]; and there is
no universal identification template that would work for sig-
nals from all patients. The automatic annotation approach for
SCG proposed in [35] shows accurate identification, but only
on healthy subjects. Therefore, template annotation can be
nontrivial and complicated. The proposed template detection
and identification algorithm for SCG is able to accurately rec-
ognize the occurrence of cardiac events, and the relationship
between the cardiac events are delineated with a linear fit.
Also, using echocardiography as the ground truth, a voting
mechanism is designed to select from two potential quies-
cent phases based on their stability. A patient-specific phase
delay function indicating the phase delay from the waveform
associated with heart sound to the following quiescent phase
is generated as a linear function with respect to heart rate.
The phase delay function, along with the detected heart sound
waveform and predicted heart rate, are combined together to
predict the quiescent phase.1

The goal of this work is to establish a framework for
development of a robust technique to predict in real-time,
for each heartbeat, whether ECG- or SCG-derived quies-
cence leads to more diagnostic coronary CTA. This study
is critical in providing the basis for development of the
hardware for real-time prediction of quiescence. Ultimately,
this will improve the diagnostic quality of coronary CTA.
This is particularly important for patients with a low pre-
test probability of disease since they can avoid invasive
CCA and its associated costs and risks. At the same
time, such a technique can also lead to reduced radiation

1To clarify the nomenclature used in the cardiac gating community, the
following definitions are used. Cardiac quiescence is a state of minimal
motion, defined relative to the overall motion over the cardiac cycle. A car-
diac quiescent period is an interval of time when the heart is considered
quiescent. A cardiac quiescent phase is a specific phase (percentage) of the
cycle, suitable for triggering CT acquisition.

dose with coronary CTA since retrospective gating can be
avoided.

B. PAPER ORGANIZATION
The rest of this paper is organized as follows. Section II
describes subjects and data acquisition, and elaborates
on the template identification and detection approach for
SS1 and SS2. The voting mechanism to identify quiescent
phase for echocardiography, and the method to predict qui-
escence on a beat-by-beat basis with SCG are also addressed
in Section II as well the the methodology for comparing the
performance of ECG and SCG is described for eventual use in
SCG and ECG fusion. The results and analysis are provided
in Section III. Lastly, a discussion is given in Section IV
including limitations and future work.

II. METHODS AND PROCEDURES
A schematic system diagram is shown in Fig. 3 where each
block is described in the following subsections. Subject and
data acquisition is described below. B-mode echocardiog-
raphy is used as the gold standard for identifying the qui-
escent phases. To find quiescence as a function of heart
rate, a voting mechanism for echocardiography as described
in Section II-Bmodels the optimal quiescence-heart rate rela-
tionship in the form of a linear fit PECHO(r) = aECHO ·
r + bECHO, where PECHO(r) is the quiescent phase defined
in echocardiography at heart rate r , aECHO is the slope and
bECHO is the intercept. The technical methods to detect heart
sound-associated waveforms and to determine their timings
are elaborated in Section II-C. The timings are recognized
in terms of phases in the cardiac cycles and a linear fit,
PSCG(r) = aSCG ·r+bSCG, is used to describe the relationship
of the cardiac events in SCG, where PSCG(r) is the phase of
the waveform defined in SCG at heart rate r , aSCG is the
slope and bSCG is the intercept. Linear fit is used due to its
simplicity in modeling, and it was demonstrated in this work
that linear function is a suitable choice. Therefore, the phase
delay from the heart sound-associated waveform to its cor-
responding quiescent phase is a linear function with respect
to heart rate. Section II-D provides a detailed explanation of
the phase delay function PDelay(r) = PECHO(r) − PSCG(r).
Heart rate prediction is described in Section II-F. With the
linear association of delay in the occurrence of cardiac events
(PDelay(r)), given a predicted heart rate (r̂) and a timing of
heart sound of a cardiac cycle in SCG (PSCG), the correspond-
ing quiescent phase of the current cardiac cycle (PSCG(r̂))
can be predicted. This predicted timing allows for compar-
isons with the timing calculated from ECG gating function.
Section II-G gives a detailed description of the training and
testing methods. Performance metrics for comparisons are
specified in Section II-H.

A. SUBJECTS AND DATA ACQUISITION
Data acquisition was approved by the Emory University
Institutional Review Board with written consent obtained
from each participant. Seven healthy subjects (mean age: 31;
age range: 22-48; males: 4) and eleven patients with
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FIGURE 3. Schematic system diagram outlining SCG and ECG-based prediction. The upper part of the diagram uses training data to generate the phase
delay function (Section II-D) supported by the heart sound-associated waveform detection of SCG (Section II-C) and voting mechanism of
echocardiography (Section II-B). The lower part uses testing data to recognize the phase of current heart sound-associated waveform and predict the
current heart rate (Section II-F). Eventually, the quiescent phase is predicted with the joint information of the training and testing data (Section II-G).

valvular or structural heart disease (mean age: 56;
age range: 31-78; males: 6) participated in data acquisition.2

Data used in this study was acquired using a custom SCG
device and a commercial ultrasound machine simultaneously.
The ultrasound machine used was a SonixTOUCH Research
Scanner (Analogic, Peabody, MA, USA). Details of the
ECG-SCG and ECG-echocardiography acquisition device
systems are described in [10]. During data acquisition, the
subjects were resting in supine position for a least five
minutes. A one dimensional accelerometer, the SCG device,
recording in the dorso-ventral direction was placed against
the sternum, perpendicular to the skin surface, and accelera-
tion was recorded at a rate of 1.2 kHz. B-mode echocardio-
graphy data obtained via the apical four-chamber view was
recorded at a rate of 50 Hz. Simultaneously, the ECG data
on the ultrasound machine was acquired at a rate of 200 Hz.
The ECG signals from the two devices were used to align
the SCG and echocardiography signals, and also to segment
cardiac cycles.

B. B-MODE ECHOCARDIOGRAPHY BASELINE
B-mode echocardiography is used as the gold standard for
identifying the quiescent phases. Motion signals are rep-
resentations of approximated magnitude of the velocity of
coronary vessels, which has been shown in the past to be
approximated by the motion of the interventricular sep-

2Originally, data was acquired from eleven healthy subjects and eleven
patients with valvular or structural heart disease. But the data acquired from
four of the healthy subjects were either noisy or incomplete for this study
because the data acquisition system was not sophisticated enough at the
initial stage of data gathering, so only seven of the subsequently obtained
healthy subjects’ data were analyzed in this study.

tum [36]. Cardiac motion magnitude is calculated from
B-mode sequences by applying the phase-to-phase deviation
measure elaborated in [8]. R-R intervals of the synchronized
ECG are used to segment the one dimensional motion-based
signals and are used to define cardiac phases (%). Systolic and
diastolic quiescent phases are characterized as phases with
the least velocity in the systolic (with center before 60%) and
diastolic (with center after 60%) periods of a cardiac cycle,
respectively.Wick et al. [9] demonstrated a linear relationship
between the delay from SCG-to-echocardiography-detected
phases with respect to heart rate.

A linear relationship was each observed between the qui-
escent phases of the SCG and echocardiography with respect
to heart rate. To condense the cardiac signal information into
slope and intercept and compare to those results from the
piece-wise constant function of ECG, this work is conducted
with the assumption that there exists a linear relationship
between quiescent phase and heart rate. However, the tradi-
tional approach to identify the lowest point within a certain
search range is not robust enough to identify the same feature.
There could be more than one potential minima that meet the
requirement of being a quiescent phase. A voting mechanism
is designed to select the most stable point in both systole
and diastole. Within both quiescent periods of a cardiac cycle
for each subject, the quiescent phases were identified on a
beat-by-beat basis by implementing a voting mechanism in
which two candidate quiescent phases of least velocity within
each cardiac cycle were recognized in the first round, forming
two groups of quiescent phases dependent on heart rate. The
quiescent phases are expected to be in a linear relationship
with respect to heart rate, as it is reported in [9]. In the second
round of voting, the total least squares residuals calculated by
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forming a linear fit of data in each group were compared and
the group with less residual was considered as more robust
and therefore quiescent phases in this group were selected
as the most optimal phases for gating within the quiescent
period.

C. TEMPLATE IDENTIFICATION AND GENERATION
Different morphologies in a cardiac signal correspond to spe-
cific physiological events in the cardiac cycle. For example,
the high frequency accelerometric components of SCG are
associated with the heart sounds [22]. We study the rela-
tionship between the timing of two waveforms associated
with heart sound and their corresponding quiescent phases in
systole and diastole.

The annotation approach [35] to identify the cardiac events
of SCG is nontrivial and unstable due to the large variation
in inter- and intra-personal cardiac signals. This study pro-
poses to use the waveforms of the heart sounds and applies
a template matching approach to detect the occurrence of
heart sounds in real time for predicting the quiescent phases.
Raw data is pre-processed to obtain a cleaner signal for later
steps. To reduce the noise and interference components, the
SCG signal is first conditioned with a low-pass filter (fc =
20 Hz) [37], and then passed through a notch filter centered
at 0 Hz with a cutoff of approximately 2 Hz to remove
the DC component and respiratory baseline wander in the
signal. The frequency range of the noise signal was deter-
mined from the signal spectrum in the frequency domain.
The redundancy of the ECG signals from the custom SCG
acquisition device and the ultrasound machine are used to
temporally synchronize across the three modalities. The ECG
signal recorded from the custom SCG acquisition device is
low-pass filtered with a cutoff of 50 Hz to remove the high
frequency content. Similarly, the ECG signal recorded from
the ultrasound machine is passed through a low-pass filter
with a cutoff of 30 Hz. Both the resulting ECG signals from
the custom device and the ultrasound machine are filtered
with the same notch filter as described for SCG.

The synchronized R-R intervals of the ECG were used
to segment the conditioned SCG signals into cardiac cycles.
To extract the waveforms associated with the first and second
heart sounds, temporal windows containing the two wave-
forms individually are designed based on statistics from pre-
vious studies on the occurrence of heart sounds [21], [38].
Normally, S1 component is lower in frequency and lasts for
a longer duration than S2 component [21]. The average dura-
tion of S1 and S2 components are approximately 0.13 second
and 0.08 second, respectively [38]. Because our custom-built
device synchronously acquires data at a rate of 1.2 kHz,
the searching windows in systole and diastole are 160 and
100 samples long, respectively. In prior work, the timing of
quiescent periods was studied by analyzing SCG signals from
seven healthy subjects and eleven patients with valvular or
structural cardiac disease [11]. It was found that on average,
the center of systolic and diastolic quiescent periods were at
29% and 76% for healthy subjects, and 33% and 79% for

patients with cardiovascular disease. Accordingly, the search
range of the two waveforms were set from Sstart = 1%
to Send = 30% and Dstart = 30% to Dend = 65% for
healthy subjects, and 1% to 33% and 33% to 79% for the car-
diac patients. The procedures for identifying each waveform
(SS1 and SS2) and generating the corresponding waveform
template consisted of the following steps:

1) Extract the waveform associated with the heart sound
with the aforementionedwindowed searching approach
in each cardiac cycle. For a specific subject, denote
the the waveform from the i-th cardiac cycle w(i), i =
1, . . . ,N .

2) Use the longest waveform as the reference length, zero
padding the rest of the waveforms to be equal length to
the reference length, and obtain the composite wave-
form w̄ = 1

N

∑N
i=1 w(i).

3) Apply Hilbert transform to obtain an upper (eupper )
and lower envelope (elower ) around the composite
waveform. The composite envelope is the difference
between the two envelopes w̄d = eupper − elower [22].

4) Find the time position τP, in terms of sample index in
the composite waveform, of the peak of the difference
envelope. Then, the time delay from the start of the
previous R-peak to the τP is τPR = τP+ L̄ ∗ searchstart ,
where searchstart = Sstart or Dstart and L̄ is the average
cycle length.

5) Recapture waveform associated with heart sound by
extracting waveform around τPR in each cardiac cycle
and τPR being the center of the window and with the
window details the same as aforementioned.

6) Generate the waveform template by averaging the
recaptured waveform, normalized to unit energy.

The ensemble average in step 2) and 3) reduces the noise
and artifacts, and the composite waveform can be used to
robustly determine the optimal peak of the heart sound wave-
form on average. The difference envelope increases the time
resolution in detecting the optimal peak of the high frequency
waveform. Any real signal s(t) can be written uniquely in
the form s(t) = e(t)cos(2π fct + θ (t)) where e(t) is the
envelope and θ (t) is the phase of s(t). The relationship of
the signal and its Hilbert transform is s̃(t) = 1

√
2
e(t)ejθ (t).

It is noted that the Hilbert transform was originally defined
for periodic functions. The waveform associated with the two
heart sounds in this study are sinusoidal-like (and thus quasi-
periodic), so the Hilbert transform works well in finding their
envelopes. However, the Hilbert transform may not be able to
accurately capture the envelopes of some random waveform.
The upper and lower envelope, as well as the difference enve-
lope are shown in Fig. 4. The peak of the difference envelope
indicates the time position corresponding to the peak of the
waveform. Steps 1) - 4) approximately capture waveform of
the high frequency components of the heart sounds; step 5)
more accurately captures the optimal peak location τPR.

Figure 2 shows an example of the SCG signal after syn-
thesizing the SCG with the waveform template. This is
achieved by convolving the waveform template with the con-
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FIGURE 4. Example of the composite envelope and the difference
envelope which is the difference between the upper and lower envelope
formed using Hilbert transform. The peak of the difference envelope is
considered the optimal peak of the composite waveform.

ditioned SCG; the peak of convolved result locates the center
of SS1 and SS2. Ideally, after convolution, each cardiac cycle
should have one peak indicating the center of waveform in
systole and one in diastole. However, the conditioned SCG
signal can still be distorted and noisy, whereby peaks may
be absent or occur in the wrong phase of the cardiac cycle.
The false peaks outside the searching range [Sstart , Send ] for
systole or [Dstart ,Dend ] for diastole are filtered out. In this
case, the waveform detection and identification algorithm
does not provide an optimal output if it fails in locating the
waveform suggesting the need for fusing ECG and SCG.

D. PHASE DELAY FUNCTION
For computational efficiency, the phase delay function is a
linear function with respect to heart rate that characterizes the
time relationship between the peak of waveform associated
with heart sound waveform in SCG and the quiescent phase
in echocardiography in each cardiac cycle. More formally,
the phase delay functions for systole and diastole can be
represented by:

PSysDelay(r) = PSysECHO(r)− P
Sys
SCG(r), (1)

PDiasDelay(r) = PDiasECHO(r)− P
Dias
SCG(r), (2)

where PSysSCG(r) and PDiasSCG(r) are phases of the peak of the
waveform in systole (SS1) and diastole (SS2), respectively,
for heart rate r . PSysECHO(r) and P

Dias
ECHO(r) are quiescent phases

in systole and diastole obtained from echocardiography. The
phase delay function arises since the waveform associated
with heart sound in SCG occurs, and can be detected, earlier
than the quiescent phase in echocardiography.

It has been discussed in Section II-B that a linear func-
tion can be used to describe the relationship of quiescent
phases with respect to heart rate. Similarly, the timing of the
waveforms in the SCG with respect to heart rate can also
be modeled using a linear function. For both of the linear
functions, SCG heart sound waveform and echocardiography

quiescent phase with respect to heart rate, an outlier removal
technique was applied to get an unbiased linear function.
Outlier removal is applied to both the detected phases and
heart rate. For phases in the linear function, any sample which
strays away from the linear fit by more than two standard
deviations was removed. For heart rates, any sample which
strays away from the average heart rate by more than three
standard deviation was removed. A new linear fit is con-
structed after removing the outliers.3

E. ECG GATING FUNCTION
Currently, cardiac CTA is triggered by ECG, specifically, a
predefined piece-wise constant gating function relying upon
a predicted heart rate. Previous literature has extensively
studied the optimal systolic and diastolic reconstruction inter-
vals for ECG-based CTA using retrospective analysis. This
work selectively uses a very comprehensive gating function
from [15],

PECG(r̂) =


65% r̂ ≤ 60 bpm,
75% 60 bpm < r̂ ≤ 70 bpm,
85% 70 bpm < r̂ ≤ 83 bpm,
35% r̂ > 83 bpm.

(3)

where r̂ is the predicted heart rate. PECG is the delay, in terms
of phase of the cardiac cycle (% interval within the cycle),
from the start of the most recent R peak of the ECG to the
start of the quiescent period.

As an important aside, the given function provides the
phase of the triggering signal with respect to the beginning of
the systolic and diastolic quiescent phases rather than the cen-
ter of the acquisition window. A linear conversion was made
to the gating function which becomes a heart-rate-dependent
piece-wise function. The retrospective cardiac CTA data were
acquired using a Siemens Somatom Definition dual-source
64-sliece CT Scanner (Siemens Corp., Erlangen, Germany)
whose reconstruction window length is 83ms.

F. HEART RATE PREDICTION
The heart rates corresponding to six prior heart beats can be
used to predict the upcoming heart rate [39]. In this study,
a linear regression with six previous samples gives the least
mean square error (MSE) in predicting the next instantaneous
heart rate as compared to polynomial fit of other forms and
autoregressive (AR) model. The mathematical model can be
expressed as

rn = L6(ri) =
n−1∑
i=n−6

βnri + εn, (4)

where rn is the current heart rate to be predicted, ri is the
previous heart rate with index i, and εn is the n-th noise term,
that is, random error. Linear regression is a useful linear

3The cardiac phases havemore natural variance as compared to heart rates,
and so the outlier remover for phases was set to have a tighter range of
tolerance.
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model that can be applied to real-valued time series to recog-
nize the pattern of a set of samples and thus is an appropriate
model in predicting the instantaneous heart rate.

G. TRAINING AND TESTING
For each subject, the synchronized ECG and SCG data are
divided into two parts. Inspired by machine learning, the data
used for generating the phase delay function is called training
data. The data used to generate the predicted quiescent phase
of the SCG is called the testing data. Again, following the
rule of thumb frommachine learning, the ratio of training and
testing data is 4 to 1 [39]. The training and testing data are
exclusive independent continuous cardiac cycles. The testing
data is used to predict the quiescent phase, and compare the
SCG predicted quiescent phase with that calculated from the
ECG gating function. The synchronized raw ECG and SCG
data were pre-processed first as described in Section II-C.

Whereas the training data are used to generate the phase
delay function, the testing data are used to predict the qui-
escent phase on a beat-by-beat basis. For each patient, using
the patient-specific template waveform generated by the algo-
rithm described in Section II-C, the current waveform can be
identified and its timing with respect to the most adjacent
previous R-peak, denoted as tSCG (sec), can be identified.
The heart rate prediction algorithm presented in Section II-F
provides the predicted heart rate r̂ (bpm) for the current
cardiac cycle. The phase of the current waveform is PwSCG =
tSCG · r̂/60. Therefore, the predicted quiescent phase from
SCG is PSCG(r̂) = PwSCG + PDelay(r̂) where PDelay(r̂) is
calculated as described in Section II-D from the training data.

H. PERFORMANCE METRICS
For each subject, the first and second heart sound-associated
waveforms were identified on a beat-by-beat basis using
the proposed waveform identification method elaborated in
Section II-C. For those cardiac cycles in which heart sound-
associated waveforms are not identified, the default is to
apply what is predicted by the ECG algorithm.

There are two ways to evaluate the performance of SCG
prediction. One is to use patient-specific phase delay func-
tions, and the other is to use cohort-specific approach for
prediction. Within each cohort, for a specific subject/patient,
an average phase delay function can be generated with the
information of the rest of the subjects in the same cohort.
In cohort-specific approach, the population is split between
two cohorts, one is the healthy subjects population, the other
is the heart disease patients population. The average phase
delay function is the difference between the average echocar-
diography quiescent phase function (PECHO(r)) and the aver-
age SCG heart sound waveform phase function (PwSCG(r)),
that is,

P̄Delay(r) = P̄ECHO(r)− P̄wSCG(r), (5)

P̄ECHO(r) =
1

N − 1

∑
j

PECHO(rj), (6)

P̄wSCG(r) =
1

N − 1

∑
j

PwSCG(rj), (7)

where j is the index of the subjects/patients exclusive of the
current subject of study. N is the cardinality of the cohort of
study. The phase error is defined as the absolute difference
between the predicted quiescent phase and the echocardiog-
raphy baseline quiescent phase,

ESCG(rn) = |PSCG(r̂n)− PECHO(rn)|, (8)

or,

EECG(rn) = |PECG(r̂n)− PECHO(rn)|, (9)

where n is the index of a specific cardiac cycle; rn represents
the true heart rate and r̂n is the predicted heart rate. The pre-
dicted quiescent phase is obtained on a beat-by-beat basis in a
simulated real-time scenario; the baseline quiescent phase is
obtained from the echocardiography linear function against
true heart rate. Heart rate error is the numerical difference
between the true heart rate and the predicted heart rate,

EHR(rn) = rn − r̂n, (10)

The average heart rate error for a specific subject is the
mean of the absolute value of the heart rate values:

ĒHR =
1
N

N∑
n=1

|EHR(rn)|, (11)

For each subject, the average phase error is the mean of all
the phase error over all the testing cardiac cycles, and the heart
rate variation is the variation of heart rate over the testing data,

ĒSCG =
1
N

N∑
n=1

ESCG(r̂n), (12)

or,

ĒECG =
1
N

N∑
n=1

EECG(r̂n), (13)

varHR =
1
N

N∑
n=1

(rn − µHR)2, (14)

The following four metrics are examined:
1) Waveform identification rate: The percentage of valid

waveforms that are identified within the training data
range of each subject. This measures the robustness of
the proposed waveform identification algorithm.

2) The variation of phase error along with the change of
heart rate.

3) The change of phase error against the heart rate error.
4) The overall phase error versus heart rate variation.

III. RESULTS
Two forms of evaluation are presented. The first is generated
with the patient-specific phase delay function. The second is
with the phase delay function obtained in each cohort with
application of leave-one-out method. The summarized statis-
tics in TABLE 1 are shown graphically in Fig. 6 to Fig. 10.
The calculated average phase errors and overall results of all
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TABLE 1. Error statistics.

subjects are summarized numerically in TABLE 1 with the
phase errors presented both as patient specific, and in terms of
their cohort. The corresponding errors in time (millisecond)
are also presented. Note that the cardiac cycles where wave
packet detection failed were omitted, and therefore were
not included in the calculation of phase errors. On average,
the average phase errors of SCG-based prediction in systole
and diastole are 5.53% and 8.21%, respectively, and 7.17%
and 8.52% with ECG-based prediction. In TABLE 2 and
TABLE 3, the two cohorts, healthy subjects and cardiac dis-
ease patients, are further grouped based on their heart rates,
as low heart rate (<75 beats per minute) or high heart rate

(≥75 beats per minute). The numerical value provides the
average phase error and standard deviation of that group.
In the subsections below, selective plots of individuals are
shown, and plots of average absolute phase error calculated
with patient-specific and cohort phase delay function are
presented (Fig. 6 to Fig. 10).

Note that in TABLE 1, there are average phase errors in
systole that do not apply to ECG. This is because for each
predicted heart rate, there is only one predicted quiescent
phase from ECG, which is either in systole or diastole. For
subject 1, especially when the heart rate is low, all the pre-
dicted quiescent phases lie in the diastole. So this subject

1900314 VOLUME 5, 2017



J. Yao et al.: SCG-Based Cardiac Computed Tomography Gating

TABLE 2. Average error calculated with patient-specific phase delay function.

TABLE 3. Average error calculated with the cohort-specific phase delay function.

only has phase errors in diastole. From TABLE 2 which
shows results generated from the patient-specific phase delay
function, the SCG-based prediction demonstrated less aver-
age phase error and standard deviation among all subjects,
while ECG gives more average phase error and variance in all
groups in TABLE 2. TABLE 3 shows results generated from
the cohort phase delay function. With increasing heart rate,
the phase error increases for both healthy subjects and cardiac
patients. For healthy subjects, SCG-based prediction caused
less average phase error than ECG both in systole and dias-
tole. For cardiac patients, particularly with high heart rate,
SCG-based prediction in both systole and diastole produced
slightly more average phase errors than ECG. The second
waveform resulted in the largest average phase error in both
cohorts, for low and high heart rates. Also of note, the phase
error standard deviation is much higher for cardiac patients,
in particular patients with high heart rate.

A. WAVEFORM IDENTIFICATION RATE
For each subject, the number of valid waveforms associated
with heart sound identified within each cardiac cycle over
the total number of cardiac cycles among the SCG testing
data is calculated as an indicator of the performance of the
waveform identification algorithm. Fig. 5 shows the identifi-
cation rate of the first and second waveform separately. The
first seven data are from the seven healthy subjects and the
following eleven data are from patients with cardiac disease.
The average identification rate over the 18 subjects for the
first waveform is 78.8%, and 67.5% for the second wave-
form. The algorithm performed poorly for the sixth healthy
subject due to the noisy SCG data. Of the 17 other subjects
whose waveforms were identified successfully, 15 had higher

FIGURE 5. Waveform identification rate. The first seven scatter points are
from healthy subjects and the rest are from cardiac subjects. H represents
healthy subjects and P represents congenital heart disease patients. The
subject number is reconciled with those in TABLE 1.

identification rates for the SS1 waveform as compared to the
SS2 waveform. Therefore, in general, the SS1 tends to be
easier to identify, perhaps because the intensity of the SS1
is generally stronger, and the range of SS1 timing is smaller
than that of SS2. Also, the quiescent phase in diastole varies
more with respect to heart rate variation, and SS2 is produced
at the end of ventricular systole and leads ventricular diastole,
implying a higher level of variability in the timing of SS2.

Factors that could affect the rate of identification:
1) The quality of signal. Noisy signals contain more high-

frequency components on top of the true signal making
it hard to distinguish the high-frequency waveforms.

2) The morphology of the signal itself. Abnormal mor-
phology appears in signals of cardiac patients, which
makes the identification process difficult.
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FIGURE 6. Example of absolute phase error versus heart rate of the two heart sound waveforms of SCG and ECG. The left figure is from a healthy
subject (subject No. 4), and the right figure is from a cardiac patient (subject No. 14). The absolute phase errors were calculated based on the
phase delay function within each cohort.

FIGURE 7. Average absolute phase error against average heart rate of all the 18 subjects. The absolute phase errors in the left figure were
calculated based on the patient-specific phase delay function, and in the right figure was from each cohort.

FIGURE 8. Example of absolute phase error versus heart rate error for ECG and the two heart sound waveforms from SCG. The figure on the left is
from the a healthy subject (subject No. 7), and the figure on the right is from a cardiac patient (subject No. 9). The absolute phase errors are
calculated based on the patient-specific phase delay function.

B. PHASE ERROR VS. HEART RATE
Depicted in Fig. 6 are examples of scatter plots of the phase
error with respect to heart rate from a healthy subject and

one patient with heart disease, respectively. The phase delay
functions are generated using the cohort-specific phase delay
function method. The phase errors are calculated based on
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FIGURE 9. Average absolute phase error against average heart rate error of all the 18 subjects. The absolute phase errors on the left are
calculated based on the patient-specific phase delay function, and on the right are from each cohort.

FIGURE 10. Average absolute phase error against average heart rate variation of all the 18 subjects. The absolute phase errors on the left are
calculated based on the patient-specific phase delay function, and on the right are from each cohort.

the predicted heart rate, but the horizontal axis shown in
the plots represents the true heart rate. The healthy subject
shown in the left of Fig. 6 has a higher heart rate and larger
heart rate variation than the cardiac patient shown in the
right of Fig. 6. In both plots in Fig. 6, ECG phase error
decreases as heart rate increases, indicating that ECG could
be a better predictor at higher heart rate. Also, particularly
for the cardiac patients, SCG phase error increases as heart
rate increases, again indicating that ECG could be a better
indicator for high heart rates. However, these results do not
imply that SCG is less effective than ECG for predicting
cardiac CTA gating. Ultimately the true value of cardiac CTA
is in excluding coronary artery disease in low risk patients
presenting chest pain and without any known coronary or
other heart disease. Our rationale for including patients with
structural and valvular heart disease in this research was to
enlarge the testing population since we scan several of these
patients prior to various interventions. In these two examples,
the SCG-predicted phases still demonstrated higher accuracy
than ECG-predicted phases, if neglecting the outliers. The
first and second waveform had comparable performance in
prediction.

Summarized plots of average absolute phase error against
average heart rate of all the 18 subjects are shown in Fig. 7.
SCG-prediction was generated using the patient-specific
phase delay function on the left and was generated using
the cohort-specific phase delay function on the right. The
average phase errors of SCG-based prediction are generally
lower using the patient-specific approach. The SS1 waveform
overall performs better than that of ECG-based prediction
in both patient-specific and cohort-specific approach. The
performance of the SS2 waveform is comparable to that
of ECG.

C. PHASE ERROR VS. HEART RATE ERROR
The predicted phase error is expected to increase as the heart
rate error grows. Therefore, the expected plot of phase error
against heart rate error for a specific subject is intuitively a
V shape centered at zero heart rate error. Note that not all
the waveforms associated with heart sounds in SCG were
identified successfully, however, the predicted heart rate from
each cardiac cycle corresponds to a predicted quiescent phase
in the ECG piece-wise constant gating function discussed
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in Section II-E. Thus, the number of scatter points indicating
phase errors associated with the SS1 or SS2 waveform is no
more than that of ECG in Fig. 8. The SCG-based prediction
for both subjects in Fig. 8 similarly exhibit a V-shape. Both
figures are generated using the patient-specific phase delay
function. The absolute phase error is increased as heart rate
error increases when using ECG-based prediction relative to
SCG-based prediction.

Figure 9 illustrates summarized plots of the average phase
error with respect to the average heart rate error of all the
18 subjects. Plots are generated using the patient-
specific phase delay function. The average heart rate
error takes the average of the absolute value of heart
rate errors. The SS1 waveform of SCG provides com-
paratively better prediction than that of ECG and
the SS2 waveform. As heart rate error increases, the
average phase error becomes much higher by using
ECG-based prediction than that of SCG-based prediction.

D. AVERAGE PHASE ERROR VS. HEART RATE VARIATION
Figure 10 shows the impact of heart rate variation on the
average phase error. The plots are generated from results of
all the 18 subjects, using the patient-specific and cohort phase
delay function. SCG-based prediction produces less phase
error with the patient-specific phase delay function. The S1
waveform of SCG is able to more accurately predict with
the cohort-specific phase delay function than ECG-based
prediction.

IV. DISCUSSION AND CONCLUSION
A sub-system aimed at combining SCG and ECG for qui-
escent phase prediction was proposed, and supporting algo-
rithms, including SCG template identification and gener-
ation algorithm, voting mechanism for echocardiography,
phase delay function and heart rate prediction approach, were
presented. Automated feature detection from SCG accelera-
tion signal was implemented via a novel template identifica-
tion and generation algorithm.

A. SUMMARY
Our results show that SCG in general is a predictor of qui-
escence; however, when the heart rate increases, ECG-based
prediction of quiescence improves. Thus combining SCG and
ECG could potentially lead to improved real-time gating for
cardiac CTA. It was also expected that when the heart rate
is low, triggering in diastole is better; when the heart rate is
high, triggering in systole is better. However, the predicted
phase errors presented in TABLE 2 did not imply such a
pattern. This could be caused by the noise and artifacts in
echocardiography and SCG.

B. LIMITATIONS
The primary limitation of this work is that our hardware
data acquisition system provides SCG and echocardiogra-
phy signals in sub-optimal conditions. The high-frequency
components of SCG are mixed with high-frequency noise

that adds to the difficulty in identifying the waveform of
heart sounds. Acquiring data with sensors that are more
robust to noise may be able to improve the performance of
the SCG-based prediction.

Another limitation is the small number of subjects involved
in this pilot study. A larger number of healthy subjects
and patients would make the results of this study more
generalizable. In addition, the patient population that we did
study are not representative of the patients who would benefit
from coronary CTA. The diastolic quiescent intervals were
identifiedmore accurately with ECG for patients with cardiac
disease in our cohort. However, this is not considered a sig-
nificant drawback of potentially gating with SCG. The value
of coronary CTA is in ruling out coronary disease in chest
pain patients with a low pre-test probability of coronary heart
disease. It has been shown in many studies that CTA has very
high negative predictive value (93% to 100%). Therefore,
cardiac CTA is usually used for evaluating people at low to
intermediate risk of coronary artery disease [40]–[42]. Thus,
patient for whom the value of coronary CTA is maximized are
more likely to be represented by the normal subjects in our
cohort. We included patients with non-coronary heart disease
in our research because we have a number of such patients
who obtained retrospective cardiac scans for other reasons
and not to rule out coronary heart disease. So their results
do not imply that SCG works worse than ECG. However, it
is worth pointing out that among the eleven cardiac patients,
three (subject No. 16, 17 and 18) had left ventricular ejection
fraction less than 40%. The waveform identification algo-
rithm is able recognize a reasonable number of heart sound-
associated waveforms from them.

Furthermore, since the average waveform template is gen-
erated based on the buffered data before the CTA scan, when
the morphology of cardiac signals differ significantly during
data acquisition in real time, for example, heart rate and car-
diac signalmorphologywould change after contrast injection,
the template matching method could fail or produce large
phase error in predicting quiescence. Lastly, when using a
cohort phase delay function, a few outliers could make a
big difference in the robustness of the proposed prediction
method using SCG. This effect can be minimized by gener-
ating a more generalized phase delay function from a larger
population.

C. FUTURE WORK
The ultimate goal is to design and implement an automated
system that intelligently switches between ECG and SCG for
CTA gating. The potential effect of SCG for CTA gating in
terms of image quality, feasibility and cost will require fur-
ther consideration in future research. In addition, comparing
the predicted quiescent phase from the proposed algorithm
with the observations from CTA data from the corresponding
subject to assess the accuracy is expected in future work. This
needs to be performed in patients who obtain coronary CTA
specifically to evaluate for coronary artery disease.Moreover,
the SCG performance could be estimated prior to CTA using
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approximately 1-2 minutes of data acquired while patient is
on the CT table. Future work should be able to adaptively
update the template by using the most recent cardiac cycles.
Eventually, the prediction model needs to be implemented in
real-time.
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