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ABSTRACT

Introduction: Spinal cord injury (SCI) is associated with severe dysfunction of nervous tissue, and repair
via the transplantation of bone marrow—derived mononuclear cells (BM-MNCs) into cerebrospinal fluid
yields promising results. It is essential to understand the underlying mechanisms; therefore, this study
aimed to evaluate the regenerative potential of autologous BM-MNC transplantation in a canine model of
acute SCIL
Methods: Six dogs were included in this study, and SCI was induced using an epidural balloon catheter
between L2 and L3, particularly in the area of the anterior longitudinal ligament. BM-MNC trans-
plantation was performed, and T2-weighted magnetic resonance imaging (MRI) was conducted at spe-
cific time points (i.e.,, immediately after inducing SCI and at 1, 2, and 4 weeks after inducing SCI);
moreover, the expression of growth-associated protein 43 (GAP-43) was evaluated.
Results: MRI revealed that the signal intensity reduced over time in both BM-MNC—treated and control
groups. However, the BM-MNC—treated group exhibited a significantly faster reduction than the control
group during the early stages of SCI induction (BM-MNC—treated group: 4.82 + 0.135 cm [day 0],
1.71 + 0.134 cm [1 week], 1.37 + 0.036 cm [2 weeks], 1.21 cm [4 weeks]; control group: 4.96 + 0.211 cm
[day 0], 2.49 + 0.570 cm [1 week], 1.56 + 0.045 cm [2 weeks], 1.32 cm [4 weeks]). During the early stages
of treatment, GAP-43 was significantly expressed at the proximal end of the injured spinal cord in the
BM-MSC—treated group, whereas it was scarcely expressed in the control group.
Conclusions: In SCI, transplanted BM-MNCs can activate the expression of GAP-43, which is involved in
axonal elongation (an important process in spinal cord regeneration). Thus, cell therapy with BM-MNCs
can provide favorable outcomes in terms of better regenerative capabilities compared with other
therapies.
© 2023, The Japanese Society for Regenerative Medicine. Production and hosting by Elsevier B.V. This is
an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/
4.0/).

1. Introduction

Abbreviations: BM-MNC, Bone marrow-derived mononuclear cell; EGF,

Epidermal growth factor; HGF, Hepatocyte growth factor; MRI, Magnetic resonance
imaging; NGF, Nerve growth factor; SCI, Spinal cord injury.

Spinal cord injury (SCI) leads to severe neurological dysfunction,
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in many countries [1,2]. There is currently no definitive treatment
for SCI. However, various studies using experimental animal
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develop cell transplantation techniques to promote tissue
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regeneration, which include the application of Schwann cells,
neural stem/progenitor cells derived from fetal tissues, embryonic
stem cells, induced pluripotent stem cells, olfactory ensheathing
cells, mesenchymal stem cells, and bone marrow—derived mono-
nuclear cells (BM-MNCs) [3—11].

BM-MNCs constitute a broad category of various cell types, such
as stromal cells, immune cells, and mature and immature blood
cells [9,10]. BM-MNCs are available immediately after isolation
without the need for culturing. The use of BM-MNCs can reduce
problems associated with immunological rejection, which is
frequently caused by allogeneic cell transplantation [12]. Various
transplantation methods, including intravenous, intramedullary,
and intracerebrospinal fluid transplantation, can be used to deliver
BM-MNCs to the injured spinal cord [9—11,13,14]. BM-MNCs are
known to mobilize in response to injury, releasing inflammatory
cytokines in the peripheral blood; these cells eventually reach the
injured tissue and contribute to its regeneration [15]. Previous
studies using rat models have shown that BM-MNC transplantation
following SCI has a neuroprotective effect and contributes to high
survival rate and functional improvement through the release of
growth factors [9—11,13,14]. Functional improvement has also been
reported in dogs receiving BM-MNCs [16—18]. However, the
mechanisms and time course of nerve sprouting after BM-MNC
transplantation following SCI in dogs remain unclear. To the best
of our knowledge, no prior reports regarding BM-MNC trans-
plantation in a canine model of SCI have been published to date, but
research in this regard is considered of great importance in terms of
veterinary medicine as well as future development of effective
treatment strategies for human SCI. Previous human-based clinical
studies have mostly assessed changes in the chronic stage of SCI,
whereas the acute stage has not been well investigated. Further,
assessment of degenerative changes in nervous tissue associated
with the chronic stage requires the application of appropriate
regenerative therapy; therefore, the role of BM-MNCs in repair
processes should be investigated. Growth-associated protein-43
(GAP-43) is a protein related to axonal regeneration localized to the
growth cones and presynaptic membranes of neuritis [19—21].
GAP-43 is found in neuronal cell membranes, and its expression is
associated with axonal elongation [22]. GAP-43 expression is
known to be upregulated in the rat spinal cord following SCI,
including compression trauma, and contributes to axonal regen-
eration [23]. Thus, it is reasonable to consider GAP-43 as a
biomarker for axonal regeneration. However, it remains unknown
whether the administration of BM-MNCs can induce GAP-43
expression.

We hypothesized that high GAP-43 expression is associated
with tissue findings directly linked to nerve regeneration, causing
an increase in protein expression over time. Moreover, we hy-
pothesized a reduction in T2-weighted magnetic resonance imag-
ing (MRI) signal intensity, wherein high values are indicative of
tissue damage.

In this pilot study, we aimed to evaluate the efficacy of autolo-
gous BM-MNC transplantation into cerebrospinal fluid in a canine
model of SCI based on the resulting GAP-43 expression.

2. Methods
2.1. Animal selection and experimental design

In this study, we included six adult female dogs weighing
8.2—10.5 kg. SCI was induced via epidural balloon compression. The
dogs were intramuscularly anesthetized with xylazine hydrochlo-
ride at a dose of 5 mg/kg, ketamine hydrochloride at a dose of
12.5 mg/kg, and atropine sulfate at a dose of 0.25 mg per dog.
Anesthesia was maintained via inhalation of 2.5 % sevoflurane
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during SCI. All animal experiments in this study were performed in
accordance with the Guidelines for Animal Experiments of Kyoto
University (1989) as well as all relevant national and international
guidelines (e.g., ARRIVE guidelines). This study was approved by
the ethics committee (approval number: R-17-100).

2.2. Preparation of BM-MNCs

To prepare BM-MNCs, BM cells, including stem cells, were
collected under aseptic conditions, as described previously (with
some minor modifications) [16]. BM-MNCs were collected from the
proximal humerus with a BM aspiration needle (16-G x 2.688 in,
Angiotech Pharmaceuticals, Gainesville, FL, USA). BM-MNCs were
then isolated by adding a heparin-added saline solution (1 mL of
heparin sodium solution in 4 mL of physiological saline [Shimizu
Pharmaceutical, Shizuoka, Japan]) to 5 mL of the collected BM cells
and then subjecting the resulting mixture to density gradient
centrifugation. Subsequently, 10 mL of the BM-—saline mixture was
layered in 4 mL of density gradient medium (density: 1.077, Lym-
phoprep, Nycomed Pharma, Oslo, Norway) and was centrifuged at
450 x g for 30 min. The cloud-like layer of BM-MNCs was isolated,
and 10 mL of physiological saline was added, following which the
solution was centrifuged at 400 x g for 5 min and washed twice.
Next, 1 mL of the BM-MNC solution was subjected to cell counting
and cytologic examination. Trypan blue dye was used for exami-
nation, and viable BM-MNCs were counted using a standard he-
macytometer. The BM-MNC transplant solution (2.0 x 108 cells/
100 pL of physiological saline) was prepared as described previ-
ously [16].

2.3. SCI induction and BM-MNC transplantation

To induce SCI while the dogs were under general anesthesia,
each dog's spinal cord was compressed using an epidural balloon
catheter for 30 min [24, 25]. Following anesthetic stabilization,
each dog was placed in the right lateral supine position on an
operating table. An 18-G spinal needle (89-mm; TOP Corporation,
Tokyo, Japan) was inserted through the lumbosacral joint into the
lumbar epidural space under fluoroscopic guidance (Bransist Alexa,
Shimadzu Corporation, Kyoto, Japan). A guidewire was then intro-
duced through the needle. The spinal needle was withdrawn after
fluoroscopic confirmation of the guidewire position. An introducer
and dilator (7-Fr Check-Flo Performer Introducer Set; Cook Medical,
Bloomington, IN, USA) were inserted into the epidural space using
the guidewire, after which the dilator and guidewire were with-
drawn (leaving the introducer). A balloon catheter (5-Fr Fogarty,
Edwards Lifesciences Corporation, Irvine, CA, USA) was inserted
through the introducer into the epidural space. The balloon cath-
eter was then advanced under fluoroscopic guidance to a position
between L2 and L3. Iohexol (lomeron 300, Eisai Co., Ltd., Tokyo,
Japan) was administered using an inflation device, and the balloon
catheter was inflated to the desired amount of 1.0 mL for 30 min in
the epidural space. The balloon catheter was then deflated and
removed. Immediately after inducing SCI, the BM-MNC transplant
solution (100 pL) was injected slowly into the subarachnoid space
using a 23-G needle (25-mm) to perform cisternal puncture for 30 s
(for dogs 1, 3, and 5). In the control group, saline was injected using
the same procedure (for dogs 2, 4, and 6). Buprenorphine (lepetan
injection [0.2 mg], Otsuka Pharmaceutical Co., Ltd., Tokyo, Japan)
was intramuscularly administered at a dose of 10 ug/kg to induce
postoperative analgesia. For dysuria, manual expression of the
bladder was performed daily, and ampicillin/cloxacillin (Viccillin-
S500 injection, Meiji Seika Pharma Co., Ltd., Tokyo, Japan) was
intramuscularly administered at a dose of 500 mg/day for 4 weeks.
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24. MRI

The location and extent of each injury site were examined using
MRI (MAGNETOM Symphony Sonata 1.5 T, Siemens, Erlangen,
Germany). T2-weighted images with a scan thickness of 2 mm were
acquired in the supine position, with high-intensity images indi-
cating lesions of considerable neurological damage [26]. A field of
view of 28 cm and pixel matrix of 512 x 512 were adopted for each
slice. Using a human knee coil, T2-weighted images (fast spin echo,
repetition time/echo time = 4000/116) were captured in the
sagittal plane. Lengths of all lesions were measured using medical
imaging software (OsiriX, Bernex, Switzerland, www.osirix-viewer.
com). The area of each spinal cord lesion was defined as the area of
the anterior longitudinal ligament that showed significantly higher
intensity on T2-weighted images than the intact portions of the
spinal cord (equal to the strength of the anterior longitudinal lig-
ament). MRI was performed immediately after inducing SCI (day 0)
and at 1, 2, and 4 weeks after the procedure. Two of the six dogs
were sacrificed under general anesthesia at three time points (1, 2,
or 4 weeks after inducing SCI) after MRI, as described below.

2.5. Neurological evaluation after SCI

After inducing SCI, the neurological condition of each dog was
evaluated according to the following five categories: pain without
other symptoms (grade 1), ambulatory paresis (grade 2), non-
ambulatory paresis (grade 3), paraplegia (grade 4), and paraplegia
without nociception (grade 5) [27].

2.6. Tissue preparation and histopathological procedures

To evaluate the histopathological changes, the dogs were deeply
anesthetized with ketamine hydrochloride (30-mg/kg intramus-
cular injection), followed by an overdose (1000 mg) of intravenous
pentobarbital sodium to sacrifice the experimental models. Dogs
#1 and #2, #3 and #4, and #5 and #6 were sacrificed at 1, 2, and 4
weeks after inducing SCI, respectively.

All spinal cords were harvested and perfusion fixed overnight in
10 % neutral-buffered formalin. The samples were then embedded
with paraffin, sectioned at a thickness of 3 um, and stained with
hematoxylin and eosin. For immunohistochemical analysis,
paraffin-embedded sections were deparaffinized and boiled in an
ethylenediaminetetraacetic acid solution for 20 min. The sections
were then cooled at room temperature for 30 min and washed with
Tris-buffered saline and Tween 20 (TBST). After blocking with
Protein Block (X0909, DAKO), Dylight 488-labeled rabbit GAP-43
polyclonal antibody (NB300-143G, Novus Biologicals, Centennial,
Colorado, USA) diluted in Dako REAL (S2022, DAKO, Carpinteria, CA,
USA) was added to the sections, which were then incubated over-
night at 4 °C. After washing with TBST, the sections were covered
with VECTASHIELD Mounting Medium with DAPI (4’,6-diamidino-
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2-phenylindole; H-1200, Vector Laboratories, Burlingame, Califor-
nia, USA) to identify nuclei. Fluorescent staining was performed,
and digital images were captured under a fluorescence microscope
BX50 (Olympus, Tokyo, Japan).

2.7. Statistical analysis

The lengths of high-intensity regions on T2-weighted MR images
of samples treated with BM-MNCs as well as those of untreated
samples (i.e., controls) were compared using a mixed effects model
within and between both groups at 0, 1, 2, and 4 weeks of experi-
ment. Statistical analyses were performed using R statistical software
(version 4.1.0, Foundation for Statistical Computing, Vienna, Austria).
A p-value <0.05 was considered to indicate statistical significance.

3. Results
3.1. Neurological evaluation after SCI

All dogs included in this study developed paraplegia without
nociception (grade 5) as well as urinary dysfunction. Therefore,
manual expression was conducted daily for 4 weeks after inducing
SCI (Table 1).

3.2. MRI evaluation

MRI results of both BM-MNC—treated and control groups
initially revealed high-intensity regions on T2-weighted images. On
the day of SCI, a large number of faint signals were observed in both
groups (Fig. 1a and b). The length of T2-weighted high-intensity
regions was 4.82 + 0.135 and 4.96 + 0.211 cm in the BM-
MNC—treated and control groups, respectively (Table 1). In both
groups, the length of T2-weighted high-intensity regions decreased
with time (Fig. 2). The BM-MNC—treated group initially showed a
faster decrease in the area of abnormal signal intensity than the
control group. The length of these regions in the BM-MNC—treated
and control groups were 1.71 + 0.134 and 2.49 + 0.570 cm at 1 week
after SCI induction (Fig. 1c and d) and 137 + 0.036 and
1.56 + 0.045 cm at 2 weeks after SCI induction (Fig. 1e and f),
respectively. At 4 weeks after SCI induction, the length of these
regions became similar between the two groups (1.21 and 1.32 cm
in the BM-MNC—treated and control groups, respectively) (Fig. 1g
and h).

Moreover, we conducted statistical analysis to obtain estimates
and p-values based on a mixed effects model, which are listed in
Table 2. Reduction in the measured values at each time point (1, 2,
and 4 weeks after SCI induction) compared with those at day 0 in
the BM-MNC—treated group were as follows: —3.106
(p <0.001), —3.451 (p < 0.001), and —3.607 (p < 0.001), respectively
(Table 2). Similarly, reduction in the measured values at the
abovementioned time points compared with those at day 0 in the

Summary of neurological evaluation and lesion length on MR images in BM-MNC—treated and control groups.

Dog no. Weight (kg) Treatment Neurological evaluation (Grade) Lesion length on MR images (cm)
Day 0 Week 1 Week 2 Week 4 Day 0 Week 1 Week 2 Week 4

1 8.2 BM-MNCs 5 5 - - 4,904 1.808 - -

2 10 Saline 5 5 - - 4.732 2.992 - -

3 9.3 BM-MNCs 5 5 5 - 4.661 1.555 1.391 -

4 9.5 Saline 5 5 5 - 5.149 1.869 1.595 -

5 10.5 BM-MNCs 5 5 5 5 4.885 1.769 1.340 1.21

6 10.2 Saline 5 5 5 5 4.996 2.604 1.531 1.32

BM-MNCs, bone marrow—derived mononuclear cells; MR, magnetic resonance.

Neurological evaluation: pain without other symptoms (grade 1), ambulatory paresis (grade 2), nonambulatory paresis (grade 3), paraplegia (grade 4), and paraplegia without

nociception (grade 5).
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Fig. 1. Magnetic resonance imaging (MRI; T2-weighted sagittal view) of all dogs. The spinal cord samples of dogs #1, #3, and #5 were treated with bone marrow—derived
mononuclear cells (BM-MNCs), and dogs #2, #4, and #6 were treated with saline. MRI was performed immediately after spinal cord injury (SCI) was induced (0 weeks) and 1,
2, and 4 weeks later. Arrows indicate contusion epicenters (white bar: 1 cm; arrow: SCI region), which were obviously increasing in size in dogs #2, #4, and #6 and remaining

significantly smaller in dogs #1, #3, and #5.

control group were as follows: 0.635 (p = 0.083), 0.055 (p = 0.884),
and —0.032 (p = 0.946), respectively (Table 2), which showed no
statistically significant differences.

3.3. GAP-43 expression

In the BM-MNC—treated group, GAP-43 expression was clearly
observed 1, 2, and 4 weeks after SCI induction (Fig. 3a). After 1 week
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Fig. 2. Comparative changes in the lengths of T2-weighted high-intensity regions over
time in the dogs treated with bone marrow—derived mononuclear cells (BM-MNCs)
and the control group are shown on a linear graph that clearly indicates the greater
reduction in length of lesion in the treated group.
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of SCI induction and BM-MNC transplantation (dog #1; Fig. 4a),
GAP-43 expression was detected in the spinal cord parenchyma in
the vicinity of SCI. After 2 weeks of SCI induction and BM-MNC
transplantation, strong fluorescence was observed in the injured
spinal cord region and its limbus (dog #3; Fig. 4b). Four weeks after
SCI induction and BM-MNC transplantation, continuous GAP-43
expression was noted in the limbus of SCI region (dog #5;
Fig. 4c). After 1 week, in the control group, there was no GAP-43
expression; however, GAP-43 expression was moderate 2 weeks
after SCI induction and obvious after 4 weeks (Fig. 3b). In the
control group, we found no GAP-43 expression in the region of SCI 1
week after SCI induction (dog #2; Fig. 4d), and GAP-43 expression
was barely noticeable after 2 weeks (dog #4; Fig. 4e); however,
GAP-43 was significantly expressed in the spinal cord parenchyma
near SCI after 4 weeks (dog #6; Fig. 4f).

4. Discussion

To the best of our knowledge, this is the first report evaluating
GAP-43 expression and MRI changes following BM-MNC trans-
plantation in SCI models. In this study, the BM-MNC—treated group
exhibited more dynamic repair, as demonstrated by the faster

Table 2

A mixed effects model of lesion lengths obtained using MR images.
Term Estimate p-value
Intercept 4.817 <0.001
Control (saline) 0.142 0.555
BM-MNCs (1 week) -3.106 <0.001
BM-MNCs (2 weeks) —3.451 <0.001
BM-MNCs (4 weeks) —3.607 <0.001
Control 1 (1 week) 0.635 0.083
Control 2 (2 weeks) 0.055 0.884
Control 3 (4 weeks) —0.032 0.946

BM-MNCs, bone marrow—derived mononuclear cells; MR, magnetic resonance.
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(c) GAP-43 protein

(d) Merged

(c) GAP-43 protein (d) Merged

Fig. 3. Growth-associated protein 43 (GAP-43) expression following bone marrow—derived mononuclear cell (BM-MNC) transplantation in the canine model of spinal cord injury
detected by fluorescence: (a) 4',6-diamidino-2-phenylindole (DAPI). (b) Autofluorescence. (c) GAP-43 protein. (d) A merged image ( x40). The BM-MNC—treated group at 1, 2, and 4
weeks (a). The control group at 1, 2, and 4 weeks (b). In the BM-MNC—treated group, GAP-43 expression was clearly observed 1, 2, and 4 weeks after SCI induction. In the control
group, we found no GAP-43 expression 1 week after SCI induction; however, we detected moderate GAP-43 expression after 2 weeks and clear GAP-43 expression after 4 weeks.

reductions in length at given time points (Table 1). Compared with
the control group, the negative estimates of the length of lesions
(Table 2) and extremely small p-values (<0.001) in the mixed ef-
fects model in the BM-MNC—treated group indicate the negative
trend in the change of the length of lesions. Therefore, lesion
healing was significantly enhanced by the introduction of BM-MNC
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therapy. The p-value obtained through the comparison of lesion
sizes between the BM-MNC—treated and control groups at 1 week
after SCI induction was 0.083, which was greater than the level of
significance, indicating that it is only marginally significant. How-
ever, considering the small amount of data, this finding represents a
clear trend.
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Fig. 4. Coronal sections of the spinal cord obtained from the dogs treated with bone marrow—derived mononuclear cells (BM-MNCs) (a) 1 week (dog #1), (b) 2 weeks (dog #3), and
(c) 4 weeks (dog #5) after spinal cord injury (SCI) induction and BM-MNC transplantation and from the control group (d) 1 week (dog #2), (e) 2 weeks (dog #4), and (f) 4 weeks (dog
#6) after SCI induction and saline treatment (bar: 200 pm). The white dotted line indicates the border between the intact and injured areas of the spinal cord (*: region of SCI).
Arrowheads indicate the regions of GAP-43 expression. Merged images depict the areas with different types of fluorescence shown in specific colors (blue: 4’,6-diamidino-2-
phenylindole; green: GAP-43 protein; mixed colors: autofluorescent tissues). In the BM-MSC—treated group, GAP-43 expression was sporadically observed in the spinal cord
parenchyma in the vicinity of SCI 1 week after SCI induction (a). GAP-43 expression was concentrated at the border between the injured and intact areas of the spinal cord 2 weeks
after SCI induction (b) and persisted in the limbus of the region of SCI 4 weeks after SCI induction (c). In the control group, we found no GAP-43 expression 1 week after SCI
induction (d) and unremarkable GAP-43 expression 2 weeks after SCI induction (e). However, 4 weeks after SCI induction, we observed GAP-43 expression in the spinal cord

parenchyma in the vicinity of SCI (f).

In heterogenous populations of BM-MNCs, transforming growth
factor-p1 (TGF-B1), vascular endothelial growth factor-A (VEGF-A),
hepatocyte growth factor (HGF), epidermal growth factor (EGF), and
interleukin-10 are highly expressed [28]. These cytokines have been
predicted to induce proinflammatory response and tissue regener-
ation [22—28,33]. TGF-B1 is an inducer of fibroblasts, and VEGF-A
plays a crucial role in angiogenesis [28,29]. IL-10 primarily elicits
an anti-inflammatory response by inhibiting inflammatory cell dif-
ferentiation and secretion of inflammatory cytokines [32]. EGF pro-
motes mitosis and activates cell division [31,33]. HGF is expected to
be effective in the treatment of various diseases. Moreover, it pos-
sesses antiapoptotic properties in cells and regenerative and pro-
tective properties in various tissues [30,34—36]. It also has
antifibrotic and anti-inflammatory properties [37]. IL-1b and TNF-a.
are known inflammatory cytokines, whose expressions are markedly
downregulated in BM-MNCs [38]. These results indicate that treat-
ment with BM-MNCs effectively suppresses the signal intensity in
the early stage following SCI induction and may prevent secondary
damage during SCI, as indicated by the significantly more negative
estimates of lesion size in the BM-MNC—treated group at week 1.
However, other cytokines such as IL-1b and TNF-a are highly
expressed in BM-MNCs [39,40]. Thus, cell transplantation may lead
to a temporary exacerbation of inflammation.

GAP-43 was markedly expressed in the BM-MNC—treated
group, whereas it was scarcely expressed in the control group.
Nerve growth factor (NGF), an important functional protein
involved in numerous biological processes (including the regula-
tion of growth, maintenance, proliferation, and survival of nerve
cells), also induces GAP-43 expression [20,21]. IL-6 is involved in
GAP-43 activation [38]. NGF and IL-6 are expressed in BM-MNCs
[27]. These findings suggest that NGF and IL-6 in BM-MNCs pro-
mote GAP-43 expression. In the BM-MNC—treated group, GAP-43
was only sporadically expressed in spinal cord parenchyma at
week 1 following SCI induction and BM-MSC transplantation.
However, GAP-43 expression became more pronounced in the
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injured spinal cord over time. GAP-43 is closely related to axonal
elongation, especially axonal sprouting [41]. In particular, axonal
regeneration starts from germination, and the direction of elon-
gation is guided by the release of chemicals; however, a previous
study demonstrated limited axonal regeneration by GAP-43 [42].
GAP-43 was expressed in the injured spinal cords evaluated in this
study, suggesting that the administration of BM-MNCs increases
the possibility of regeneration and elongation of injured axons in
canine models of SCI. This may be associated with the significantly
greater reductions in the length of lesions in the BM-MNC—treated
group. In particular, the evaluation of GAP-43 expression in
advanced stages of SCI facilitated by BM-MNC therapy is important,
as it may correlate with the clinical manifestation of chronic dis-
eases. Recent studies have demonstrated that BM-MNC trans-
plantation is effective and safe, enhances functional recovery, and
improves the quality of life of patients with SCI in the subacute and
chronic stages, chronic traumatic brain injury, and chronic trau-
matic brachial plexus injury [43—46].

This study has several limitations. First, dogs were used as
experimental animals in this study, and it was not possible to
conduct more precise verification with a larger number of dogs.
Therefore, it is necessary to enhance the evidence by accumulating
research data on a restricted number of animals. In particular, the
initial parameters of lesions were not thoroughly investigated in
our study, which may interfere with the outcomes. Further, no
association was observed between GAP-43 expression and changes
in the length of lesions, indicating no direct role of GAP-43 in
regeneration via axonal elongation. In addition, we could not sta-
tistically analyze the difference in GAP-43 expression between two
groups as well as before and after the onset of therapy. Finally, no
detailed characteristics of cell lines could be obtained. Therefore,
in vitro studies with greater number of samples for comprehensive
evaluation of parameters are warranted, thus achieving optimal
efficacy and safety of BM-MNC transplantation in further clinical
studies.
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5. Conclusions

Autologous BM-MNC transplantation in a canine model of SCI

facilitated the process of lesion repair, possibly enhancing GAP-43
expression regardless of its activation via injury. As GAP-43 is
known to be involved in axonal elongation, an important process in
spinal cord regeneration, high GAP-43 expression may result in a
rapid cure of the lesion site; however, this finding should be veri-
fied in further investigations.
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