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Abstract: A simple, efficient and eco-friendly procedure for the selective monohydrolysis 
of diethyl 2,6-dimethyl-4-aryl-4H-pyran-3,5-dicarboxylates under quaternary ammonium 
salt catalysis conditions is presented. The catalytic activities of various quaternary 
ammonium salts were investigated using different molar ratios of NaOH and water-organic 
solvent mixtures. The results indicate that the combination of 1.0 equivalent of  
tetraethyl-ammonium bromide (TEAB) with 1.2 equivalents of NaOH in a 10%  
water-ethanol media at 40 °C displays remarkable selectivity for the monohydrolysis of 
diethyl 2,6-dimethyl-4-aryl-4H-pyran-3,5-dicarboxylates. The utility of this process is 
demonstrated by the monohydrolysis of a series of 4-aryl-4H-pyran-3,5-dicarboxylate esters 
to afford the corresponding monoesters in 20–80% yields under the optimized conditions. 

Keywords: monohydrolysis; 4-aryl-4H-pyran; quaternary ammonium salt; monoester; 
symmetric diester 

 

1. Introduction 

The 4H-pyran moiety represents a privileged structure because many of its derivatives possess 
useful pharmacological activities [1,2]. In recent years, polyfunctionalized 4H-pyrans and their 
derivatives have been the subject of significant interest from the synthetic community and have been 
widely recognized as versatile scaffolds with diverse biological activities [3,4]. Diethyl 2,6-dimethyl-
4-aryl-4H-pyran-3,5-dicarboxylates 1 represent an important class of 4H-pyrans that is widely used in 
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therapeutic areas, especially for the inhibition of the HIV-1 proteases [5-8]. The mono-carboxylic 
acids, or monoesters 2 of compounds 1 hold potential biological activities similar to the biological 
activity of 1, and are very versatile building blocks in organic synthesis. Diethyl 2,6-dimethyl-4-aryl-
4H-pyran-3,5-dicarboxylates 1 have routinely been efficiently synthesized by the reaction of aryl 
aldehydes and 1,3-diketones catalyzed by ZnCl2 under ultrasound irradiation [9]. Here, we report the 
synthesis of 4H-pyran hemiesters 2 by the selective monohydrolysis of symmetric diesters 1. 

Ester hydrolysis is one of the most fundamental reactions in organic chemistry and commonly 
referred to as alkaline hydrolysis or saponification. This method, using a base such as NaOH in 
aqueous alcohol, has proven highly reliable for the hydrolysis of a single ester into a carboxylic acid 
on large scales and at low cost. Unfortunately, it usually does not afford good results when applied to 
diesters. In that case it typically produces complex mixtures of diacids, monoesters and the starting 
diesters, and the separation of these product mixtures is often very difficult. One effective method for 
the monohydrolysis of symmetric diesters utilizes enzymes [10-13]. The monohydrolysis of symmetric 
diesters without the use of enzymes has proven to be a more challenging task. The only previously 
reported non-enzymatic, selective monohydrolysis utilizes an aqueous NaOH solution with THF and 
water as co-solvents [14-17]. Recently, quaternary ammonium salts have emerged as useful catalysts in 
a number of organic transformations. Their cost, ready availability and inherent properties, such as 
environmental compatibility, greater selectivity, operational simplicity, non-corrosive nature and ease 
of reusability, make them highly practical choices for many applications [18-20]. We therefore became 
interested in examining the behavior of quaternary ammonium ions as catalysts for the selective 
monohydrolysis of diethyl 2,6-dimethyl-4-aryl-4H-pyran-3,5-dicarboxylates 1 in water-mediated 
solvents (Scheme 1). 

Scheme 1. Formation of 2 from 1 in the presence of TEAB catalyst. 
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2. Results and Discussion 

In order to study the behavior of quaternary ammonium salts as catalysts for the selective 
monohydrolysis of diethyl 2,6-dimethyl-4-aryl-4H-pyran-3,5-dicarboxylates 1, and to determine the 
optimal conditions with regard to the types of catalyst, equivalents of NaOH, solvents and reaction 
temperature, an initial model study was carried out on the monohydrolysis of diethyl 2,6-dimethyl-4-
aryl-4H-pyran-3,5-dicarboxylate (1a). 



Molecules 2011, 16              
 

3847

The solvents ethanol and acetone used in classical ester hydrolysis were chosen for monohydrolysis 
of 1a, and tetrahydrofuran and acetonitrile were also used in the co-solvent hydrolysis. The conditions 
below were ascertained according to the reference [21-23]. These results presented in Table 1 were 
obtianed under the conditions of 1.2 equivalents of NaOH and 1.0 equivalent of tetraethyl-ammonium 
bromide (TEAB) as a catalyst in a 10% aqueous-organic solvent system at 40 °C. 

Table 1. Solvent effects on the monohydrolysis of 1a using 1.2 equivalents of NaOH. 

Entry Solvents Temperature 
(°C) Time (h) Ratio a 

2a:3a 
Yield b (%) 

2a 
1 Tetrahydrofuran 25 4.5 61:39 46 
2 Tetrahydrofuran 40 5.0 70:30 50 
3 Tetrahydrofuran 55 5.0 63:37 47 
4 Ethanol 25 4.0 78:22 62 
5 Ethanol 40 4.0 81:19 80 
6 Ethanol 55 4.0 75:25 63 
7 Acetone 25 5.0 42:58 35 
8 Acetone 40 5.0 50:50 40 
9 Acetone 55 5.0 45:55 38 
10 Acetonitrile 25 6.0 36:64 25 
11 Acetonitrile 40 5.5 41:59 32 
12 Acetonitrile 55 6.0 34:66 23 

a Ratios based on HPLC analysis; b Isolated yields of 2a recrystallization from acetone. 

In the monohydrolysis of 1a, the product ratios of 2a and 3a appeared to be higher in ethanol than 
the other solvents at 40 °C, showing high partial selectivity. It seemed that the polar protic nature of 
ethanol was beneficial for higher selectivity, whereas aprotic solvents were not as effective. The 
efficacy of the ethanol was apparent in these reactions, as it appeared to increase the solubilities of the 
diester 1 and monoester 2 and more efficiently disperse them in the reaction mixture. Other advantages 
of ethanol as solvent include that it is somewhat more environmentally friendly and allows for 
straightforward recovery of the catalyst by filtration through a short column of magnesium sulfate. 
There was a great reason that ethanol provided a polar environment in which TEAB played a much 
more obvious effect on monohydrolysis of 1a than other solvent. 

Table 2. The effect of water-ethanol percentages on the monohydrolysis of 1a using  
1.2 equivalents of NaOH. 

Entry % Water 
(w/w%) Time (h) Ratio a

2a:3a 
Yield b (%) 

2a 
1 0 12.0 46:54 35 
2 1 9.0 48:52 38 
3 5 5.5 53:47 48 
4 8 5.5 74:26 65 
5 10 4.0 81:19 80 
6 15 3.5 53:47 50 
7 20 3.5 36:64 28 

a Ratios based on HPLC analysis; b Isolated yields of 2a recrystallization from acetone. 
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Regarding the selective monohydrolysis of 1a, the effect of the percentage of water (from 0%–20%) 
in ethanol was also studied with 1.2 equivalents of NaOH and 1.0 equivalent of TEAB at 40 °C, as 
depicted in Table 2. While increased water content was found to consistently enhance the rate of 
hydrolysis, the optimal product ratio of 2a to 3a was observed in a 10% water-ethanol media. The 
percentages were below or over 10%, the decreasing ratios of 2a and 3a were due to either less or 
more exposure of the carboethoxy group to the aqueous NaOH, resulting in less reactivity to the diester 
1a and higher reactivity to the diacid 3a, respectively. 

The amount of NaOH used in the monohydrolysis proved to affect the selectivity for monoester 2a 
under standard conditions significantly (Table 3). Low amounts of NaOH resulted in lower yields of 
2a, along with lower ratios of 2a and 3a. Alternatively, excess NaOH led to increase in diacid 3a. 
Interestingly, 1.0 equivalent of NaOH was not enough to maximize the ratio of 2a and 3a. In a 
relatively short reaction time, 1.2 equivalents of NaOH was preferable to 1.5 and 2.0 equivalents of 
NaOH, whereas the ratio of 2a and 3a was higher than those of the 1.5 and 2.0 equivalents of NaOH. 

Table 3. The effect of NaOH stoichiometry on the monohydrolysis of 1a. 

Entry NaOH equiv. Time (h) Ratio a

2a:3a 
Yield b (%) 

2a 
1 0.1 10.0 51:49 34 
2 0.3 9.5 52:48 35 
3 0.5 8.0 60:40 43 
4 1.0 6.0 73:27 70 
5 1.2 4.0 81:19 80 
6 1.5 4.5 43:57 41 
7 2.0 3.5  25:75 23 

a Ratios based on HPLC analysis; b Isolated yields of 2a recrystallization from acetone. 

Four catalysts were used to investigate the effect on the monohydrolysis of 1a: PEG-400 
(polyethylene glycol-400), β-CD (β-cyclodextrins), tetraethyl-ammonium bromide (TEAB) and 
tetrabutyl-ammonium bromide (TBAB) under standard conditions (Table 4).  

Table 4. The effect of catalysts on the monohydrolysis of 1a using 1.2 equivalents of NaOH. 

Entry Catalyst Time (h) Ratio a 
2a:3a 

Yield b (%) 
2a 

1 None 12.0 40:60 34 
2 PEG-400 8.0 46:54 45 
3 β-CD 8.5 37:63 34 
4 TEAB 4.0 81:19 80 
5 TBAB 4.0 75:25 65 

a Ratios based on HPLC analysis; b Isolated yields of 2a recrystallization from acetone. 

Either in the absence of a catalyst or with PEG-400, β-CD and TBAB used as catalyst, the yields of 
and selectivities for 2a were lower, with lower 2a:3a ratios. However the purity of 2a was higher when 
the reaction was carried out in the presence of TEAB. Only TBAB displayed even comparable 
catalytic activity to TEAB. Presumably, the shorter alkyl substitutes of TEAB make it more 
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hydrophilic, and thus more soluble, than TBAB, explaining the improved outcome [24]. In this 
selective monohydrolysis, the mechanisms of TEAB appear to be a surfactant and a cation source of an 
ion pair. As a surfactant, TEAB forms micelles in 10% water-ethanol media and gives carboxylate 
anion by coordinating with hydroxide. The subsequent nucleophilic attack forms the carboxyl group 
functionality and regenerates the TEAB in the aqueous NaOH media. As the cation of an ion pair, 
TEAB provides Q+ in forming ion pairs with the carboxyl anion of monoesters to slow down the 
second hydrolysis reaction [22]. 

The amount of TEAB catalyst played a crucial role in the selective monohydrolysis of 1a under 
standard conditions (Table 5). The optimal quantity of TEAB proved to be 1.0 equivalent of 1a, and the 
purity of 2a was better in a 80% conversion. The reason was that quaternary cation associated with the 
carboxylate anion of monoester was more than unassociated with anion. The generation of ion pairs of 
monoester 2a with Q+ resulted the further hydrolysis of 1a to diacid 3a subsequently. When more than 
1.0 equivalent of TEAB was used, the ratios of 2a and 3a decreased, particularly when greater than 2.0 
equivalents of TEAB were used; in this case, the major product was diacid 3a. 

Table 5. The effect of TEAB stoichiometry on the monohydrolysis of 1a using  
1.2 equivalents of NaOH. 

Entry TEAB 
Equiv.  Time (h) Ratio a

2a:3a 
Yield b(%) 

2a 
1 0.5 5.5 60:40 43 
2 1.0 4.0 81:19 80 
3 1.5 3.5 72:28 67 
4 2.0 3.5 26:74 25 
5 2.5 3.5 10:90 9 

a Ratios based on HPLC analysis; b Isolated yields of 2a recrystallization from acetone. 

In order to analyze the scope of the methodology, different substituted dicarboxylate products 1b–k 
were used under the following conditions: 10% water-ethanol media, 1.2 equivalents of NaOH and  
1.0 equivalent of TEAB at 40 °C, as shown in Table 6. 

Table 6. Monohydrolysis yields for a variety of 4-aryl-4H-pyrans 2 using 1.2 equivalents of NaOH. 

Substrate R Ratio a

2:3 Yield b(%) Melting point (°C) 

1b p-CH3 72:28 69 123.6–124.7 
1c p-OCH3 52:48 51 110.3–112.0 
1d p-Cl 69:31 66 141.8–143.1 
1e m-Cl 58:42 54 132.1–133.4 
1f p-F 75:25 69 137.4–139.1 
1g p-NO2 50:50 49 110.1–111.7 
1h m-NO2 46:54 40 121.4–121.9 
1i m-Br 65:35 62 161.4–162.7 
1j m-NHCOCH3 20:80 20 181.2–183.2 
1k 2,3,4-triOCH3 45:55 42 149.1–150.4 

a Ratios based on HPLC analysis; b Isolated yields of 2. 
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In general, the selective monohydrolysis of symmetric diesters 1 was successful and the 
corresponding monoesters 2 were obtained in 20–80% yields. The effects of substituents on the aryl 
ring of 4-aryl-4H-pyrans showed no discernable pattern. That is, for electron-withdrawing groups such 
as p-F and p-NO2, the yields of monoesters 2f and 2g (69% and 49%, respectively) with ratios of 2 and 
3 (75:25 and 50:50, respectively) were similar to those of 2b and 2c (69% and 51%, respectively) with 
ratios of 2 and 3 (72:28 and 52:48, respectively), which have electron-donating groups (p-CH3 and  
p-OCH3, respectively). An increase in the yields of 2 was observed with the electron-withdrawing 
groups of p-Cl and p-NO2 (66% and 49%, respectively) with ratios of 2 and 3 (69:31 and 50:50, 
respectively) in comparison to m-Cl, m-NO2 (54% and 40%, respectively) with ratios of 2 and 3 (58:42 
and 46:54, respectively). The lowest yield was observed with m-NHCOCH3 (2j) with the lowest ratio 
of 2j and 3j (20:80), likely due to its decreased solubility and susceptibility to hydrolysis of the acetyl 
amino group in alkaline water-ethanol media. 

3. Experimental  

3.1. General 

Melting points were determined using an X-5 apparatus (open capillaries, uncorrected values).  
1H- and 13C-NMR spectra were acquired at ambient temperature (25 °C) in CDCl3 on a Bruker AV 400 
spectrometer (400 and 100.6 MHz, respectively). Infrared spectra were recorded on a Bruker 
VERTEX70 instrument as potassium bromide pellets. Mass spectra were recorded on an Agilent 
G3250AA LC/MSD TOF system. The reaction process and the products were routinely monitored by 
HPLC (Waters 600, UV 2487 dual absorbance detector) with a C-18 column (4.6 × 250 mm; eluent: 
acetonitrile-H2O = 65:35; 25 °C; flow rate = 1 mL/min; UV detection at 220 nm). The chemical agents 
used in this study were all commercially available; diesters 1 were prepared according to our 
previously described method [9]. 

3.2. General Procedure for the Synthesis of Compounds 2 

A mixture of 1 (1.0 mmol) and TEAB (0.36 g, 1.0 mmol) was dissolved in ethanol (20 mL) and 
water (1.75 mL). The reaction mixture was stirred with the evolution of heat; to this mixture was added 
dropwise with stirring 1.0 M NaOH aqueous solution in the amount indicated in Tables 1–6 (0.1, 0.3, 
0.5, 1.0, 1.2, 1.5 and 2.0 equivalents) until the mixture temperature reached 40 °C. The reaction 
mixture was stirred until complete consumption of the starting diester 1 was observed by TLC. The 
solution was then poured into water (150 mL) and acidified to pH 1–2 with 6.0 M HCl at 5–10 °C. A 
fine white precipitate was formed and filtered off, washed with ice water until reaching pH 7 and dried 
under vacuum. 

5-(ethoxycarbonyl)-2,6-dimethyl-4-aryl-4H-pyran-3-carboxylic acid (2a). Yield (0.24 g, 80%), Mp 
98.3–100.0 °C. IR: 705, 1191, 1626, 1664, 1709, 2372, 2981, 3432 cm−1. 1H-NMR: δ = 1.21–1.23 (t, 3 H, 
CH2CH3), 2.38 (s, 6 H, CH3), 4.10–4.13 (m, 2 H, CH2CH3), 4.75 (s, 1 H, Ar–CH), 7.15 (d, J = 8.8 Hz, 
2 H, Ar–H), 7.27 (d, J = 8.8 Hz, 2 H, Ar–H), 10.40–13.05 (s, 1 H, COOH). 13C-NMR: δ = 14.2, 15.6, 
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41.8, 61.7, 106.6, 107.3, 125.8, 128.7, 129.1, 142.2, 156.6, 159.4. HRMS: m/z [M + K]+ calcd for 
C17H18O5K: 341.1218; found: 341.1220. 

5-(ethoxycarbonyl)-2,6-dimethyl-4-p-tolyl-4H-pyran-3-carboxylic acid (2b). Yield (0.22 g, 69%), Mp 
123.6–124.7 °C. IR: 933, 1191, 1621, 1699, 2373, 2982, 3430 cm−1. 1H-NMR: δ = 1.19–1.23 (t, 3 H, 
CH2CH3), 2.32 (s, 3 H, CH3), 2.38 (s, 6 H, CH3), 4.09–4.11 (m, 2 H, CH2CH3), 4.75 (s, 1 H, Ar–CH), 
7.10 (d, J = 8.8 Hz, 2 H, Ar–H), 7.15 (d, J = 8.8 Hz, 2 H, Ar–H), 11.00-12.98 (s, 1 H, COOH).  
13C-NMR: δ = 14.2, 15.6, 24.3, 41.8, 61.7, 106.6, 107.3, 129.0, 135.4, 139.2, 156.6, 159.4, 167.2, 
171.3. HRMS: m/z [M + Na]+calcd for C18H20O5Na: 339.1326; found: 339.1322.  

5-(ethoxycarbonyl)-4-(4-methoxyphenyl)-2,6-dimethyl-4H-pyran-3-carboxylic acid (2c): Yield (0.17 g, 
51%), Mp 110.3–112.0 °C. IR: 932, 1180, 1625, 1715, 2371, 2982, 3433 cm−1; 1H-NMR: δ = 1.12–1.24 
(t, 3 H, CH2CH3), 2.36 (s, 6 H, CH3), 3.77 (s, 3 H, OCH3), 4.07–4.13 (m, 2 H, CH2CH3), 4.77 (s, 1 H, 
Ar–CH), 6.98 (d, J = 8.8 Hz, 2 H, Ar–H), 7.35 (d, J = 8.8 Hz, 2 H, Ar–H), 11.10–13.90 (s, 1 H, 
COOH). 13C-NMR: δ = 14.1, 18.5, 19.1, 37.2, 55.1, 60.3, 107.6, 108.8, 113.4, 129.3, 137.4, 157.8, 
158.3, 160.4, 166.5, 171.3. HRMS: m/z [M − H]+ calcd for C18H20O6: 331.1323; found: 331.1319. 

4-(4-chlorophenyl)-5-(ethoxycarbonyl)-2,6-dimethyl-4H-pyran-3-carboxylic acid (2d): Yield (0.23 g, 
66%), Mp 141.8–143.1 °C. IR: 853, 1180, 1655, 1718, 2372, 2983, 3436 cm−1; 1H-NMR: δ = 1.21–1.24 
(t, 3 H, CH2CH3), 2.37 (s, 6 H, CH3), 4.09–4.13 (m, 2 H, CH2CH3), 4.71 (s, 1 H, Ar–CH), 6.87 (d,  
J = 8.8 Hz, 2 H, Ar–H), 7.27 (d, J = 8.8 Hz, 2 H, Ar–H), 11.3 (s, 1 H, COOH). 13C-NMR: δ = 14.1, 
18.5, 19.1, 37.2, 55.1, 60.3, 107.6, 108.8, 113.4, 129.3, 137.4, 157.8, 158.3, 160.4, 166.5, 172.2. 
HRMS: m/z [2M – CH3]+ calcd for C17H17ClO5: 687.2383; found: 687.2388. 

4-(3-chlorophenyl)-5-(ethoxycarbonyl)-2,6-dimethyl-4H-pyran-3-carboxylic acid (2e): Yield (0.18 g, 
54%), Mp 132.1–133.4 °C. IR: 853, 1188, 1656, 1718, 2372, 2983, 3433 cm−1; 1H-NMR: δ = 1.23–1.27 
(t, 3 H, CH2CH3), 2.39 (s, 6 H, CH3), 4.10–4.17 (m, 2 H, CH2CH3), 4.76 (s, 1 H, Ar–CH), 7.09 (d,  
J = 8.8 Hz, 2 H, Ar–H), 7.38 (d, J = 8.8 Hz, 2 H, Ar–H), 10.40–13.40 (s, 1 H, COOH). 13C-NMR:  
δ = 14.1, 18.5, 19.1, 37.2, 55.1, 60.3, 107.6, 108.8, 113.4, 129.3, 137.4, 157.8, 158.3, 163.4, 165.4, 
176.3. HRMS: m/z [M − H]+ calcd for C17H17ClO5: 335.0821; found: 335.0821. 

5-(ethoxycarbonyl)-4-(4-fluorophenyl)-2,6-dimethyl-4H-pyran-3-carboxylic acid (2f): Yield (0.22 g, 
69%), Mp 137.4–139.1 °C. IR: 849, 1128, 1192, 1710, 2372, 2983, 3152, 3425 cm−1; 1H-NMR:  
δ = 1.18–1.21 (t, 3 H, CH2CH3), 2.39 (s, 6 H, CH3), 4.06–4.11 (m, 2 H, CH2CH3), 4.72 (s, 1 H, Ar–CH), 
6.98 (d, J = 8.8 Hz, 2 H, Ar–H), 7.25 (d, J = 8.8 Hz, 2 H, Ar–H), 11.70–12.80 (s, 1 H, COOH).  
13C-NMR: δ = 14.1, 18.5, 19.2, 37.3, 60.4, 107.4, 108.5, 114.7, 114.9, 129.8, 129.9, 140.8, 158.3, 
160.4, 162.8, 166.3, 172.3. HRMS: m/z [M – CH3]+ calcd for C17H17FO5: 305.1561; found: 305.1556. 

5-(ethoxycarbonyl)-2,6-dimethyl-4-(4-nitrophenyl)-4H-pyran-3-carboxylic acid (2g): Yield (0.16 g, 
49%), Mp 110.1–111.7 °C. IR: 874, 1167, 1347, 1624, 1721, 2349, 2938, 3077, 3462 cm−1. 1H-NMR: 
δ = 1.18–1.21 (t, 3 H, CH2CH3), 2.39 (s, 6 H, CH3), 4.06–4.11 (m, 2 H, CH2CH3), 4.84 (s, 1 H,  
Ar–CH), 7.26 (d, J = 8.8 Hz, 2 H, Ar–H), 7.42 (d, J = 8.8 Hz, 2 H, Ar–H), 10.90–13.20 (s, 1 H, 
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COOH). 13C-NMR: δ = 14.1, 18.6, 19.2, 38.3, 60.7, 106.4, 107.5, 123.4, 129.3, 146.7, 152.3, 159, 
161.7, 165.8, 171.5. HRMS: m/z [M − H]+ calcd for C17H17NO7: 335.0831; found: 335.0830.  

5-(ethoxycarbonyl)-2,6-dimethyl-4-(3-nitrophenyl)-4H-pyran-3-carboxylic acid (2h): Yield (0.13 g, 
40%), Mp 121.4–121.9 °C. IR: 900, 1221, 1348, 1652, 1703, 2372, 2952, 3091, 3348 cm−1. 1H-NMR: 
δ = 1.19–1.22 (t, 3 H, CH2CH3), 2.30 (s, 6 H, CH3), 4.11–4.17 (m, 2 H, CH2CH3), 4.89 (s, 1 H,  
Ar–CH), 7.21 (d, J = 8.8 Hz, 2 H, Ar–H), 7.42 (d, J = 8.8 Hz, 2 H, Ar–H), 10.84–12.40 (s, 1 H, 
COOH). 13C-NMR: δ = 14.1, 18.6, 19.2, 38.6, 62.7, 106.4, 107.5, 123.4, 129.3, 146.7, 152.3, 160.3, 
162.7, 165.8, 175.4. HRMS: m/z [M]+ calcd for C17H17NO7: 336.0815; found: 336.0816. 

4-(3-bromophenyl)-5-(ethoxycarbonyl)-2,6-dimethyl-4H-pyran-3-carboxylic acid (2i): Yield (0.24 g, 
62%), Mp 161.4–162.7 °C. IR: 900, 1221, 1380, 1628, 1700, 2372, 2952, 3091, 3348 cm−1. 1H-NMR: 
δ = 1.22–1.25 (t, 3 H, CH2CH3), 2.34 (s, 6 H, CH3), 4.09–4.15 (m, 2 H, CH2CH3), 4.73 (s, 1 H,  
Ar–CH), 7.10 (s, J = 8.8 Hz, 2 H, Ar–H), 7.15-7.35 (m, J = 8.8 Hz, 3 H, Ar–H), 11.40–13.20 (s, 1 H, 
COOH). 13C-NMR: δ = 14.2, 17.6, 28.3, 38.2, 61.7, 106.6, 107.3, 125.4, 128.3, 146.2, 156.3, 159.4, 
160.7, 165.4, 174.3. HRMS: m/z [M + Na]+ calcd for C17H17BrO5Na: 403.0315; found: 403.0315. 

4-(3-acetamidophenyl)-5-(ethoxycarbonyl)-2,6-dimethyl-4H-pyran-3-carboxylic acid (2j): Yield (0.07 
g, 20%), Mp 181.2–183.2 °C. IR: 888, 1188, 1330, 1652, 1717, 2345, 2983, 3061, 3425 cm−1.  
1H-NMR: δ = 1.20–1.24 (t, 3 H, CH2CH3), 2.16 (s, 3 H, NHCOCH3), 2.34 (s, 6 H, CH3), 4.07–4.14  
(m, 2 H, CH2CH3), 4.92 (s, 1 H, Ar–CH), 6.94–7.23 (m, 4 H, Ar–H), 7.44 (s, 1 H, NHCOCH3), 11.60–13.50 
(s, 1 H, COOH). 13C-NMR: δ = 14.2, 18.6, 22.9, 41.8, 60.7, 106.6, 107.3, 118.4, 124.3, 128.7, 138.3, 
142.4, 156.6, 165.8, 167.2, 173.3. HRMS: m/z [M + Na]+ calcd for C19H21NO6Na: 382.1464; found: 
382.1455. 

5-(ethoxycarbonyl)-2,6-dimethyl-4-(2,3,4-trimethoxyphenyl)-4H-pyran-3-carboxylic acid (2k): Yield 
(0.16 g, 42%), Mp 149.1–150.4 °C. IR: 793, 1048, 1147, 1189, 1291, 1397, 1494, 1645, 1724, 2935, 
3037, 3444 cm−1. 1H-NMR: δ = 1.21–1.25 (t, 3 H, CH2CH3), 2.32 (s, 6 H, CH3), 3.84 (t, 9 H, OCH3), 
4.08–4.16 (m, 2 H, CH2CH3), 4.77 (s, 1 H, Ar–CH), 7.20 (d, J = 8.8 Hz, 1 H, Ar–H), 7.34 (d, J = 8.8 Hz, 
1 H, Ar–H), 10.95-12.70 (s, 1 H, COOH). 13C-NMR: δ = 14.2, 17.6, 41.7, 56.5, 61.7, 106.6, 107.5, 
113.4, 128.4, 139.1, 145.8, 157.6, 167.2, 171.3, 174.4. HRMS: m/z [M + Na]+ calcd for C21H27O8Na: 
415.1527; found: 415.1526. 

4. Conclusions 

In summary, experiments were designed to study and optimize the selective monohydrolysis of 
symmetric diethyl 2,6-dimethyl-4-aryl-4H-pyran-3,5-dicarboxylate diesters 1 for the preparation of  
5-(ethoxycarbonyl)-2,6-dimethyl-4-aryl-4H-pyran-3-carboxylic acid monoesters 2. The main parameters 
that affected the yields of monoesters 2 were investigated, and the optimal conditions were established 
as a 10% water-ethanol media in the presence of a 1.0 equiv. TEAB, with the following molar ratios 
for NaOH: 1a = 1.2:1 at 40 °C. This reaction represents a unique, flexible and simple method for the 
monohydrolysis of diesters to afford monoesters in 20–80% yields under the optimized condition. 
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