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Decision makers are responsible for directing staffing, logistics, selecting

public health interventions, communicating to professionals and the

public, planning future response needs, and establishing strategic and tacti-

cal priorities along with their funding requirements. Decision makers need

to rapidly synthesize data from different experts across multiple disciplines,

bridge data gaps and translate epidemiological analysis into an operational

set of decisions for disease control. Analytic approaches can be defined for

specific response phases: investigation, scale-up and control. These

approaches include: improved applications of quantitative methods to gen-

erate insightful epidemiological descriptions of outbreaks; robust

investigations of causal agents and risk factors; tools to assess response

needs; identifying and monitoring optimal interventions or combinations

of interventions; and forecasting for response planning. Data science and

quantitative approaches can improve decision-making in outbreak response.

To realize these benefits, we need to develop a structured approach that will

improve the quality and timeliness of data collected during outbreaks, estab-

lish analytic teams within the response structure and define a research

agenda for data analytics in outbreak response.

This article is part of the theme issue ‘Modelling infectious disease out-

breaks in humans, animals and plants: epidemic forecasting and control’.

This theme issue is linked with the earlier issue ‘Modelling infectious disease

outbreaks in humans, animals and plants: approaches and important themes’.
1. What is decision-making for outbreak responses?
The process of decision-making during outbreak responses is not well

described. Decision makers are responsible for selecting the types and compo-

sition of public health interventions, directing the deployment of staff and

logistical capacities, summarizing key messages to communicate to pro-

fessionals and the public, forecasting future response needs, and establishing

strategic and tactical priorities along with their funding requirements. How-

ever, making leadership decisions during an outbreak responses can

sometimes feel like operating in a ‘data-free’ zone, especially at the start of an

outbreak when there may be little epidemiological information available or

when the causative agent is not yet known. Decision makers may also contend

with an incomplete understanding of the cultural or political context where the

event is occurring, uncertainty around the impact and relative advantage of

different disease control measures, or delays in reports of operational

information from on-the-ground responders.

In the absence of sufficiently complete and timely data, decision makers

usually draw on experiential knowledge from previous outbreaks, partially

from their own experience, but also through consulting disease experts who

are also knowledgeable about the published and unpublished literature.

While this is a pragmatic approach to bridging the data void, there are some

drawbacks. There can be considerable variation in the recommendations from

disease experts because they do not all have the same level of experience,
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have different interpretations of the published and unpub-

lished data and may have differing abilities to apply data

for decision-making in new outbreaks. A second limitation

is that the ‘expert opinion’ approach is not explicit about

what the key variables or factors are that need to be taken

into account when making decisions, which in turn makes

it hard for non-disease experts to engage in the decision-

making process; decision makers must therefore have ‘faith’

that the disease experts are right. A third limitation is that

experts often put a lot of emphasis on one scientific disci-

pline, such as epidemiology or virology, usually occluding

other important disciplines like anthropology, behaviour

change, economics, etc. In the end, it is left to decision

makers to rapidly synthesize data from different experts

across multiple disciplines, bridge data gaps as best they

can and translate epidemiological analysis into an operational

set of decisions for disease control: this is what makes

leadership in outbreak responses so challenging.

Over the last 10 or so years, there has been considerable

progress in the use of analytic approaches to support decision

makers in the control of infectious diseases [1]. There are

many examples of decision support using statistical model-

ling from disease control programmes such as vaccination

[2], TB control [3] and prevention of HIV [4]. There have

also been many important examples of analytic approaches

to help decision makers during outbreak responses. A par-

ticularly high-profile example of this was the forecasting of

the West Africa Ebola outbreak by Meltzer et al. [5], which

was a key factor in the decision of the US government to

deploy its military to Liberia to support outbreak control

activities. However, despite some notable successes, we con-

tinue to fail to apply analytic approaches systematically in

outbreak responses. This is largely because decision makers

themselves have not clearly described what support they

need. In this article, I define what decision makers need

and how analytic approaches can be systematically used to

support them for better decision-making during outbreak

responses.
2. Quantitative approaches needed for
decision-making in outbreak responses

Quantitative approaches cover a large number of different

aspects of working with data, including data management,

visualization, statistical analysis, modelling, machine learning

(ML) and geospatial analysis [6–8]. Applying quantitative

approaches to decision-making for outbreak responses has

the potential to overcome many of the limitations mentioned

above by assisting decision makers to use available data opti-

mally. Formulating decisions more explicitly also helps

engage multiple stakeholders in the decision-making process

and aids communication to interested parties and the public.

While decision-making for outbreak responses is a highly

iterative process, it is helpful to characterize how analytic

approaches could help in distinct phases of outbreak

responses. Table 1 summarizes three phases of outbreak

responses: investigation, scale-up and control. A fourth

phase of enhanced surveillance once the outbreak is over

could also be defined [9], but the tools are the same as for

routine surveillance outside of a response and so I have not

included it here. The investigation phase is the earliest part of

a response and can be characterized as having the greatest
uncertainty in terms of understanding the epidemiology of

the outbreak. During this phase, case–patient data may be

limited and collected retrospectively for patients who have

died or recovered. Data visualizations are the most helpful

for decision makers during this phase, giving an early indi-

cation of the extent of the outbreak. It may be possible to

do some preliminary statistical modelling to understand the

transmission dynamics and make limited forecasts with par-

ameters from previous outbreaks. Hypotheses about the

epidemiology that may need testing are often identified in

this phase. The scale-up phase is inherently operational, with

significant effort going into deployment of teams, logistics

and establishing systems. Implementing robust data collec-

tion systems is the critical enabling step for analytics during

the scale-up phase. The systems that get established in this

phase, however imperfect, often endure to the end of the

response. Input from data scientists can improve the data col-

lection, and cleaning and data linkage systems, using tools

such as R and Python to automate much of the data manage-

ment work. More granular data collected in this phase can

facilitate further statistical modelling and response planning.

The control phase is the longest part of a response and is

characterized by an increasingly sophisticated response.

Strong monitoring and ongoing improvements in control

interventions best characterize the control phase. Modelling

can be particularly helpful in designing control strategies,

as well as gaining yet further insights into disease trans-

mission, such as through analysis of genetic sequences of

pathogens. Testing hypotheses about risk factors is also

most likely to be achievable in this phase, which in turn

should inform the composition of interventions. Using data

visualization tools for response monitoring dashboards is

invaluable to decision makers so they can quantitatively

track the quality of response operations and adjust the

response accordingly.

As can be seen from table 1, many quantitative

approaches can be applied during more than one of the

response phases. For the following discussion, I have there-

fore summarized the broad categories of quantitative

approaches for outbreak response as: improved quantitative

methods for epidemiological descriptions of outbreaks; inves-

tigations of causal agents and risk factors; tools to assess

response needs; identifying and monitoring optimal interven-

tions or combinations of interventions; and forecasting for

response planning.
(a) Epidemiological descriptions of outbreaks
At the heart of epidemiology is the description of disease by

person, place and time [10]. An iconic example of this is the

investigation of cholera in London conducted by John Snow

in 1854, which is now considered to be the first modern

epidemiological investigation [11]. Good descriptive epid-

emiology is extremely powerful for decision makers as it

can quickly guide the direction of an outbreak response. In

fact, in many instances, descriptive analysis alone is sufficient

for guiding disease control efforts in the early phase of an

outbreak and more sophisticated analysis sometimes only

provides marginal gains for decision makers, often because

the results are usually available too late to be operationally

relevant.

Tools for visualization of public health data beyond the

traditional person, place and time epidemiological



Table 1. Response actions, analytic approaches to aid decision makers and examples of analytic tools.

response actions
areas where analytic approaches
could help decision makers examples of analytic tools

investigation phase

(days or weeks)

deployment of investigation

teams

verification and validation of

initial information reported

data visualization of person, place

and time

quantifying transmission dynamics

generation of hypotheses for further

analysis

ArcGIS and R for visualization and geospatial

analysis

statistical modelling with aggregated event

data and parameters from previous

outbreaks

scale-up phase

(weeks)

deployment of response team

define strategic response

logistical movement of

material

establishment of data

management systems

implement initial control

measures

data systems design and linkage

data cleaning and reporting routines

forecasting size of the event

planning the size and extent of

response

online and handheld device data collection

systems

R and Python scripts for data cleaning and

linkage

forecasting using patient-level data

scenario simulations for response planning

control phase

(weeks or months)

sustained response

interventions tailored to

context

rigorous monitoring of

response performance

testing hypotheses

further detailed epidemiological

descriptions

characterization of transmission

dynamics

investigation of hypotheses about

risk factors

designing intervention strategies

estimating end of outbreak

ArcGIS for response monitoring dashboards

statistical modelling of intervention strategies

risk assessment for neighbouring unaffected

areas

phylogenetic tree analysis of virus

relatedness
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descriptions are developing extremely quickly, especially

within the R environment [12]. The presentations of Hans

Rosling are a great example of how visualizations and anima-

tions of data can be very powerful ways of interrogating and

communicating data [13]; in a recent example, for the

response to an outbreak of Ebola virus in North Kivu, Demo-

cratic Republic of the Congo (DRC), we used R to create

dynamic transmission chain diagrams that allowed decision

makers to interact with the data in many different ways.

Further development of R packages could improve how we

look at not just cases, but also contacts and perhaps other

risk factor data. For the Ebola outbreak, we also created ani-

mations that not only increased our understanding of how

the outbreak was spreading along major road networks;

additionally, we were able to include data about community

resistance to show how resistance was concentrated in some

communities or families, which drove further transmission.

These visualizations helped decision makers adjust interven-

tions to screen travellers along major road networks, prepare

healthcare providers in towns and cities where cases might

travel to recognize and report patients with suspected

Ebola virus disease (EVD), and to pinpoint community

engagement efforts.

Another aspect that can be assisted with better

approaches and tools is the management of data from

responses. Optimal decision-making depends on high-

quality data available in a timely fashion: poor quality data

may result in the wrong decisions and slow data availability

means that data are unavailable during the operationally
relevant time window. Unfortunately, the complexities of

data management are often underestimated and sufficient

numbers of people and specialists dedicated to data manage-

ment are frequently absent during emergency responses.

Data management for outbreak responses is increasingly

complex as larger quantities of different types and formats

are collected, often requiring linkage between many different

data collection systems, such as surveillance systems, clinical

data, laboratory diagnostics, contact follow-up and so on.

Additionally, data may be collected in many different

locations and using different data collection systems. Faster,

more reliable data management can speed-up the generation

of good descriptive summaries and other analyses, and by

extension decisions. Data science tools such as R and

Python can automate and reduce time for data cleaning,

management and preparation, which often consume a

considerable amount of time for epidemiologists. Imputation

and matching algorithms can also be used for filling data

gaps, which are common during outbreak investigations, as

well as faster and more robust merging of datasets without

unique IDs, which is still an unfortunately common occur-

rence. During the 2014–2016 West Africa Ebola outbreak,

considerable data cleaning was needed before the estimation

of transmission parameters by Imperial College, the WHO

Collaborating Center for infectious disease modelling [14].

The Imperial College team was able to set up robust data

cleaning routines for data management and the ongoing ana-

lytic work throughout the outbreak. However, despite this

example, decision makers rarely invest sufficient resources
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for robust data management on the ground during emer-

gency responses, which consequently limits further analytic

work by others.

(b) Investigations of causal agents and risk factors
Epidemiological approaches to investigating the link between

outbreaks and causative agents or exposures have tradition-

ally relied on estimates of effect determined from study

designs such as cohort studies, case–control studies and

derivatives of these designs such as case–case studies,

quasi-experimental methods [15] and spatio-temporal ana-

lyses [16]. While these analytic designs remain foundational

for epidemiologists, advances in data science and analytic

approaches enable other data sources to be incorporated in

our epidemiological assessment of disease outbreaks and

other health emergencies. For example, the growing avail-

ability of whole-genome sequencing (WGS) data, aided by

the development of technology that enables WGS in the

field, means that the relatedness of pathogen variants

is increasingly being used to understand transmission

dynamics in concert with other epidemiological information

[17]. This can be particularly advantageous when self-

report data from patients about exposures and contacts are

not available, incomplete or inaccurate [18]. Working with

WGS data is computationally intensive, requiring the proces-

sing of large volumes of data and the application of

sophisticated data processing and analytic methods, which

extend beyond the capacities of most epidemiologists and

require input from data science.

ML is another potential tool for outbreak responses,

although practical uses for outbreak analysis are still in

their infancy. ML has been used to analyse prognostic risk

factors for EVD outcomes, with the ability to account for

missing data, which could be helpful for decision makers

who wish to consider interventions that limit the impact of

outbreaks [19]. ML has also been used as an efficient way

to estimate disease transmission dynamics, which would be

especially helpful when managing an outbreak of a new

pathogen or variant [20]. The World Health Organization

(WHO) currently employs ML for detecting signals about

new public health events from vast amounts of online data,

using the Epidemic Intelligence from Open Sources (EIOS)

platform, applying natural language processing to process,

categorize and assemble data. It is possible that these appli-

cations could be extended to analyse data from social

media, purchasing patterns, travel data and qualitative data

from other sources to gain greater insights into behavioural

risk factors for outbreak control. In the future, ML could

also be helpful for analysing large datasets from large or com-

plex non-health sector data sources that may help us

understand transmission risk factors, such as mobile phone

data for movement patterns or remote sensing data for

environmental exposures [21,22]. Combining these data

sources with the analysis of other epidemiological data can

increase our understanding of outbreaks.

(c) Response needs
Effective outbreak responses require good logistical planning

to ensure that the correct materials are available at the right

time and in the right locations. Critical logistical requirements

include medicines, vaccines, laboratory reagents, staff, phys-

ical infrastructure such as acute care beds, personal
protective equipment, accommodation for staff, vehicles

and so on. In addition to the quantity of supplies needed,

the location about where to deploy supplies may also be criti-

cal. Underestimate the needs and people may die and the

outbreak may be poorly controlled. Overestimating response

needs may increase costs and resources that are deployed,

potentially depriving other outbreak responses of vital

supplies. Take too long to determine the needs and supplies

may arrive late, retarding disease control measures and

resulting in increasing needs beyond initial assessments.

Clearly, avoiding these shortcomings in logistical planning

is especially difficult when there is uncertainty about the

magnitude and evolution of an outbreak [23]. By improving

the accuracy and timeliness of quantitative estimates of an

outbreak, the provision of supplies and medical services

can optimize outbreak responses.

Decision makers can understand response needs through

effective cooperation between disease modellers, operational

planners and on-the-ground response teams. During the

response to a large diphtheria outbreak in 2017 among the

Rohingya displaced population in Cox’s Bazar, Bangladesh,

Médecins Sans Frontières, the London School of Hygiene

and Tropical Medicine and WHO used epidemiological

data collected by field teams to model the size of the outbreak

and to estimate the necessary number of acute care beds and

medical teams required to control it [24]. Quantitative

approaches were also used during the West Africa Ebola out-

break to estimate isolation bed capacity [25]. A clear process

for estimating response needs is also important for communi-

cating budget requirements to donors as well as prioritizing

allocation of resources such as vaccines when supply is

limited.
(d) Optimizing interventions
There are many different interventions used for managing

outbreaks. These include vaccination, isolation of infectious

patients, use of medicines such as antibiotics, airport screen-

ing, improving water supply, laboratory diagnostics,

community mobilization and so on. Optimizing interventions

is not only important for reducing disease transmission as

quickly as possible, but also to avoid unnecessary use of

scarce resources such as medical supplies, funds, or deploy-

ment of skilled personnel. It is also important to consider

optimal locations for interventions to be deployed, such as

laboratories or specialist treatment facilities, or the timing

or sequence of interventions [11].

Modelling approaches have been used to optimize vac-

cine policy for disease prevention programmes, such as the

introduction of human papillomavirus (HPV) vaccine [2].

Similar approaches have been applied for reactive vaccination

interventions for outbreak control. For example, during 2018

in Yemen, the planning for oral cholera vaccination used

modelling approaches in combination with epidemiological

data from the outbreak in 2017 to select the optimal combi-

nation of districts to control the outbreak. During the Ebola

outbreak in West Africa, modelling was used to consider

how newly developed rapid diagnostic assays could be

used to improve disease control; this is likely to be an

especially helpful application of quantitative methods consid-

ering the increasingly rapid pace of technological

development for diagnostics, vaccines and therapeutics [23].

During the 2018–2019 Ebola outbreak in North Kivu, DRC,
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modelling was used to consider how, under different security

scenarios, outbreak control interventions could be optimally

combined (WHO 2018, unpublished data). From an oper-

ational perspective, the application of quantitative methods

to optimize interventions needs to incorporate contextual

information into quantitative analyses, so that constraints,

such as security limitations, local political considerations or

access restrictions for logistical planning such as damaged

roads and bridges, are taken into account. This can be done

with analysts working closely with decision makers and

other responders to iteratively refine analyses, which is prob-

ably most effectively achieved by having one of the analytics

team deployed to the response operations on the ground.
Phil.Trans.R.Soc.B
374:20180365
(e) Forecasting
Understanding the evolution of an outbreak is important for

logistical planning, optimizing interventions and evaluating

the effectiveness of existing interventions. There has been

considerable investment of energy in developing approaches

for infectious disease forecasting [26]. However, there is still

limited evidence of how such forecasts contribute to

improved decisions for outbreak management. Part of the

challenge is that despite the advances in outbreak forecasting,

the uncertainty in the forecasts continues to be too big to use

as a basis for operational decisions, especially early on in an

outbreak [27]. Another challenge is the disconnect between

those producing forecasts and decision makers; the link

between the two professional communities is often limited

or non-existent. This leads to modellers making forecasts

that decision makers may not be aware of or do not under-

stand. Establishing better connections between these

professional communities requires ongoing collaboration

and joint training. RECON (the R Epidemics Consortium) is

an excellent example of an initiative that brings modellers,

statistical programmers and emergencies responders

together. An example of this type of collaboration is pub-

lished in this journal special issue and shows how

modelling the end tail of an Ebola outbreak can be used for

public health decision-making [9].

Yet, another challenge for decision makers is that there is

a proliferation of modelling groups producing forecasts,

sometimes using aggregated data published in situational

reports performed independently from the responding

organizations. Decision makers can find it difficult to know

how to handle multiple forecasts, especially as any one of

the approaches is not necessarily superior. An evaluation

framework to assess multiple forecasts and their robustness,

such as including validation or sensitivity analysis, may be

helpful for decisions makers [28]. Different forecasts may

also complicate decision-making when divergent forecasts

are used by different responding agencies or published in

the media. Finally, even when forecasting models are well

constructed, they may not address operationally relevant

issues for decision makers. For example, there may be insuf-

ficient data for forecasts to be produced at operationally

relevant geographical levels; in addition to knowing if an out-

break is going to get bigger, decision makers also need to

know where the increase will occur. Understanding what

data are needed by modellers may help on-the-ground

response teams adjust their data collection approaches

accordingly.
3. Future opportunities and challenges
for improved decision-making during
outbreaks

We need a greater understanding of what decisions are made

and how they are taken during outbreak responses. Data

about decision-making could be captured prospectively as

a response progresses or we could use an after-action

review to evaluate the decision-making process. Retrospec-

tive reviews of previous outbreaks conducted with the

relevant decision makers could also generate additional

insights. With a better knowledge about decision-making,

we could further develop a framework for decision-making

along the lines of the one presented in this paper (table 1).

Using our framework, we can simultaneously develop our

understanding of what analytic approaches could help

decision makers and what data need to be collected by the

field teams [29].

Writing a data collection plan might be a useful approach

so that field teams and others providing remote support to the

response can work in concert to ensure that decision makers

and analysts have the most useful data in a timely way. In

addition, having a data collection plan might help with prop-

erly resourcing data management in the field, which will

address some issues of timeliness and quality of data. An ana-

lytics team should also be convened and at least one member

should be assigned to work with key decision makers to help

understand their needs and to facilitate communication of the

outputs of the analytics team. Also, another member of the

analytics team should be deployed to the field to work with

decision makers on the ground and to understand important

contextual factors. An analytics team should be recognized

as a distinct entity from the epidemiology team because epide-

miologists are involved in field activities such as case finding,

surveillance, training and so on, and rarely have dedicated

time to focus on analytic tasks. Over the medium term, a

research agenda is needed, based on our decision-making

framework, to focus partnerships with academic and other

groups on the development of new decision-making

approaches. In particular, further work on incorporating

social science approaches for behavioural risk factors should

be prioritized [30].

Here, I describe how data science and quantitative

approaches can improve decision-making for responses to

outbreaks of diseases that affect people. However, the

approaches that I discuss can equally be applied to outbreaks

of animal and plant diseases. Nonetheless, to realize the

benefits of quantitative methods for decision-making, an

explicit approach is needed within the incident management

system to drive improvement in the quality and timeliness of

data collection, to ensure that there is a dedicated analytic

team, and to promote understanding and use of analytic

outputs by decision makers.
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