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The dynamics of cooperation, 
power, and inequality 
in a group‑structured society
Denis Tverskoi1,2*, Athmanathan Senthilnathan2,3 & Sergey Gavrilets1,2,3,4

Most human societies are characterized by the presence of different identity groups which cooperate 
but also compete for resources and power. To deepen our understanding of the underlying social 
dynamics, we model a society subdivided into groups with constant sizes and dynamically changing 
powers. Both individuals within groups and groups themselves participate in collective actions. The 
groups are also engaged in political contests over power which determines how jointly produced 
resources are divided. Using analytical approximations and agent-based simulations, we show that the 
model exhibits rich behavior characterized by multiple stable equilibria and, under some conditions, 
non-equilibrium dynamics. We demonstrate that societies in which individuals act independently are 
more stable than those in which actions of individuals are completely synchronized. We show that 
mechanisms preventing politically powerful groups from bending the rules of competition in their 
favor play a key role in promoting between-group cooperation and reducing inequality between 
groups. We also show that small groups can be more successful in competition than large groups if 
the jointly-produced goods are rivalrous and the potential benefit of cooperation is relatively small. 
Otherwise large groups dominate. Overall our model contributes towards a better understanding 
of the causes of variation between societies in terms of the economic and political inequality within 
them.

Throughout our evolutionary history, humans have lived and interacted in groups. Group living implies coopera-
tion but also competition and conflicts between groupmates as well as conflicts between individual and group 
interests, i.e. social dilemmas1–4. Such processes underlying group living are present at all levels of biological 
organization5. In our close relatives chimpanzees, males within a band compete for mating opportunities but 
cooperate in border patrols aiming to reduce the strength of a neighboring band6. Similarly, human groups 
are engaged in cooperation but also in various types of conflicts including power struggles aiming to shape 
between-group interactions and social institutions regulating them to their own advantage. As Aristotle put it, 
“man is by nature a political animal”7. Examples of groups engaged both in cooperation and power conflicts 
are common in modern human societies. These include social classes, political parties, and different ethnic, 
religious, or regional groups.

Power struggles often lead to power inequality which then translates into economic inequality and other types 
of inequality. Horizontal inequality, which is inequality between different identity groups in modern societies, 
is an important topic of study in economics, sociology, social anthropology, and political science8–11. Horizontal 
inequality negatively affects economic efficiency12, the production of public goods13 and government efficiency14, 
and it often leads to social instability and conflicts15. Inequality also negatively affect the well-being of citizens in 
different ways especially when it becomes institutionalized (e.g., as studied in the Social Dominance Theory16). 
Between-group inequality affected the historical development and survival of many tribes, chiefdoms, states, and 
empires17–19. To better understand these processes, we need to consider the dynamics of collective action4,20–27 
in cooperation and conflict at multiple levels5.

In the fields of biological and cultural evolution, there is now an extensive theory of “multilevel selection” 
describing both within-group cooperation and between-group competition. The former is usually modeled by 
linear public goods games (PGG). The latter is usually described by models of differential group survival adapted 
from population genetics in which between-group interactions are indirect28–30 but some models consider direct 
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conflicts as well31–33. Usually competition at the group level happens globally, i.e. each group competes with all 
other groups with equal intensity34–36, but see, e.g., a recent model37 in which groups interact locally.

There are a variety of models in economics that describe between-group contests. In these models, coopera-
tive groups secure a higher share of contested resource or have higher probabilities to win the contest38,39. Most 
of these models implicitly equate the power of the group with its effort in the contest which controls the share 
of the resource it secures. However there are also models of between-group conflict with a broader interpreta-
tion of power. For example, Refs.40–42 modeled contests for power between two or three factions in the society 
(e.g. the elite, middle class, and commoners or the authoritarian government and the military or two political 
groups), the winner of which determines the economic and political outcomes (e.g., democratic or despotic). 
Ref.43 studied how the equilibrium contributions to conflict depend on the indices of inequality, fractionalization, 
and polarization44 in the society. These studies highlight the political aspects of human societies which play an 
important role in their dynamics.

Previous work based on non-cooperative game theory has largely ignored the possibility of between-group 
cooperation. In a rare exception, Refs.45,46 studied a multilevel game in which individuals are engaged in a cascade 
of different hierarchical PGGs. However there was no between-group competition in their models. There is also a 
diversity of models from cooperative game theory focusing on coalition formation47. In these models, the power 
of individual factions is constant and determined endogenously, while economic factors are usually disregarded.

Recently Ref.48 introduced a novel approach for modeling cooperation and conflict in a society composed 
by multiple factions engaged in economic and political interactions. In their model, which follows the general 
approach of Ref.49, factions are engaged in an economic game and a separate political game about power. Spe-
cifically, at each time step the factions first cooperate or defect in an economic collective goods game played 
according to the current state of a dynamic set of rules. Then they participate in a contest for the power to 
change the rules of the economic game to be played at the next time step, in terms of how the collective goods 
are divided among the factions. This model was an extension of a model50 describing non-equilibrium dynamics 
of resources and power in a society engaged in the redistribution of a fixed amount of resource. In Ref.48 model 
there are three possible outcomes: complete loss of cooperation, stable hierarchy (where one faction persists on 
top of the hierarchy with some fluctuations in the power of other factions), and continuous turnover (where 
cycles of cooperation and defection are coupled with cycles in power and inequality). However their model as 
well as that of Ref.50 described the processes of societal evolution only at a meso-scale51 and did not consider 
individuals explicitly. Therefore, the model neglects the collective action problem at the within-faction level and 
the effects of the group size20.

Here we seek to remove these limitations. Specifically, we investigate the joint dynamics of three important 
processes: within-group cooperation in production of public goods, between-group cooperation in production 
of collective club goods (i.e., collective goods which are excluded from non-cooperating groups), and between-
group contest for the shares of jointly produced collective goods. In our framework, the collective action problem 
is present at both within- and between-group levels. We assume that both individuals and groups are bounded 
rational: they use myopic best response (with errors) to make their strategic decisions. We explicitly model the 
dynamics of power focusing on the effects of a parameter measuring the strength of mechanisms preventing 
politically powerful factions from bending the rules of competition in their own favor40,41,52,53. We investigate 
the effects of the degree of rivalry of the goods produced and allow for groups to have different sizes54. The latter 
feature let us study Olson’s group-size paradox20,55–60. We aim to shed light on the following questions: when 
and why cooperation emerge in group-structured societies? What are the causes of variation between societies 
in terms of economic and political inequality within them? What are the effects of checks-and-balances pre-
venting politically powerful factions from bending the rules of competition in their own favor on cooperation 
and inequality? How do the group size and within-group interactions affect cooperation and inequality at the 
between-group level?

The model
We consider a society composed by G groups which interact repeatedly in time. Time is discrete. Let nj and fj 
be the size and political power of group j ( 0 ≤ fj ≤ 1 , 

∑

fj = 1 ). Individuals within each group are engaged in 
an economic game leading to the production of certain resources. Group members can divide these resources 
among themselves equally or invest into another economic game at the level of groups. Groups also participate in 
a separate political game about power to obtain a share of the jointly produced resources which then are divided 
equally within each group. For example, from about 100 to 700 CE some societies in the Moche Valley, Peru, 
were organized as a collection of interacting villages differing in power which depended on the role in religious 
rituals. The villages cooperated in building irrigation systems but also competed over the extent of control over 
them61. One can also think of any modern country where different states politically compete for shares of national 
resources or jointly produced domestic products. Figure 1 illustrates the structure of our model.

Within‑group economic game.  At the beginning of each time step, each individual i in a group j has 
a baseline amount of resource π0 > 0 . First, each individual makes a decision to contribute ( xij = 1 ) or not 
( xij = 0 ) to the group effort Xj =

∑

i xij . The cost of contribution is c ( 0 < c ≤ π0 ). The resource Pj produced 
by the group as a result of within-group cooperation is an increasing function of the combined effort Xj of group 
members4:

(1)Pj = B1
Xj

Xj + X0
.
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Here B1 is the maximum possible benefit of the within-groups cooperation and X0 is a half-effort parameter 
(which specifies the level of group effort at which Pj = B1/2 ). Equation (1) describes a public good game with 
non-linear production function and diminishing marginal return of group productivity62,63. Parameters B1 and 
X0 can reflect the quality of the environment experienced by groups.

Between‑group economic game.  After completion of within-group games, each group (or its repre-
sentative) decides on whether to keep the produced benefit ( θj = 0 ) or invest it in between-group cooperation 
( θj = 1 ). Cooperating groups can be viewed as a coalition of elites; defecting groups can be viewed as counter-
elites64. We assume that groups with Xj = 0 are never part of the elites.

Let C be the size of the coalition, i.e. the number of groups that have decided to participate in the between-
group game. Let Z =

∑

Pj be their combined contribution. We postulate that the resource Q produced as a result 
of between-group cooperation is an increasing function of Z4:

where B2 is the maximum possible benefit and Z0 is a half-effort parameter at the group level. Parameters B2 and 
Z0 can reflect the quality of the environment experienced by the society. Note that both games utilize a nonlin-
ear production function used in earlier studies of “us vs. nature” and “us vs. them” games4, 65–67. This function 
is more realistic than a standard linear production function in both capturing diminishing marginal return of 
productivity and allowing for partial participation (i.e., a situation where cooperators and defectors coexist) 
expected in many real-world situations.

A cooperating group j gets a share vj of the produced resource which is equal to its relative power within the 
coalition:

where the sum is over the set of all cooperating factions. In this model of “club goods”68, only the coalition of 
elites share the amount of goods Q dividing them according to their power, whereas the counter-elites just keep 
their own production Pj.

The total material payoff obtained by group j is thus

where �0
j = njπ

0 is the total baseline resource of group j.
After completion of the games, the resource obtained by each individual in group j represents a 1/nαj -share 

of its group resource. Here parameter 0 ≤ α ≤ 1 characterizes the degree of rivalrousness of the goods55,56. For 
example, if α = 1 , the goods are fully rival. In contrast, if α = 0 , the goods are pure public. For α > 0 increas-
ing the size of the group decreases the individual’s share/value, while if α = 0 , the individual’s share/value does 

(2)Q = B2
Z

Z + Z0
,

(3)vj =
fj

∑

k fk
,

(4)�j = �0
j − cXj +

{

Pj , if the group defects
vjQ if the group cooperates.

Figure 1.   The model structure. Shown is an example of a society with three groups each with 5 individuals. 
First, individuals and groups are engaged in economic games. Individuals cooperating in within-group game (in 
blue) contribute to group production Pi ; defecting individuals are shown in red. Groups 1 and 2 contribute their 
production P1 and P2 to cooperate in the between-group game and produce resource Q to be divided according 
to their relative power. Group 3 defects and just keeps the resource P3 it produced. After that groups contribute 
the effort �i(1− ε + εfi) to a political game the result of which modifies their political power from fi to f ′i .
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not depend on the group size. Ref.69,70 show that many publicly provided goods exhibit a high degree of rivalry 
(i.e., α is high).

Correspondingly, the payoff to each individual is

Below in illustrating our results, we will also use the normalized parameters

The former is the maximum benefit of within-group cooperation per individual. The latter is the maximum 
benefit of between-group cooperation per individual while assuming an equal division of the jointly produced 
reward.

Between‑group political game.  After completion of economics games, all groups are engaged in a politi-
cal game that results in a modification of political powers. Specifically, we define the effective effort of group j in 
the political game as

and postulate that the group j power at the next time step is given by the Tullock contest success function38:

The incumbency effect parameter ε controls the strength of dependence of yj on power fj ( 0 ≤ ε ≤ 1 ). If 
ε = 0 , then yj = �j and only the amount of the faction’s material resource �j matters; if ε = 1 , then yj = �jfj , 
so that the material resource and power combine multiplicatively in defining yj . The smaller this parameter is, 
the stronger are the forces in the society (such as the rule of law, checks and balances, and democratic institu-
tions) preventing politically powerful factions from bending the rules of competition in their own favor71,72. With 
larger values of ε , politically powerful factions manage to increase disproportionately their shares of resources.

Strategy revision and decision‑making.  Each individual updates their strategy in the within-group 
economic game randomly and independently with a fixed probability µ1 . Each group updates its strategy in 
the between-group economic game randomly and independently with a fixed probability µ2 . Both individuals 
and groups use myopic best response subject to random errors to maximize their material payoff. Specifically, 
when making decisions, each updating individual always compares the expected payoffs of two actions ( x = 0 
and x = 1 ) and chooses the action which gives the higher payoff (with precision � as specified in the Quantum 
Response Equilibrium approach73). Similarly, each updating group chooses the action, θ = 0 or θ = 1 , which 
gives the higher payoff. The decisions are made synchronously for all updating individuals first, then for all 
updating groups. After that the power of groups is updated. In the main text, we focus on the case of infinite 
precision � = ∞.

All model parameters are assumed to be time-independent. Table S1 in the Supplementary Materials (SM) 
summarizes the variables, functions, and constant parameters of our model.

Results
Our model exhibits a very rich behavior: it can have multiple simultaneously stable equilibria and also show 
non-equilibrium dynamics. “Methods” section summarizes our analytical results on some symmetric equilibria. 
Here we discuss more complex dynamics observed in numerical simulations. In our simulations, for generating 
the initial distribution of power we use a “broken stick distribution”74,75, if groups have equal size; and assume 
that initially groups have equal power, if they have different sizes. We assume that initially, each individual and 
each group cooperate randomly and independently with probability 0.5. To estimate characteristics of long-term 
dynamics, the model was run 100 (or 200) times for 4000 time steps and the statistics were computed over the 
last 1000 time steps.

Groups with identical sizes.  We start by assuming that groups have equal size n. In this case, two possible 
types of dynamics are observed: equilibrium and non-equilibrium. We will describe them separately focusing 
on the effects of parameters. Throughout we will assume that the ratio of the maximum group benefit B1 to the 
group cost cX0 at half-effort R1 = B1/(cX0) is sufficiently large so that each group has at least one cooperating 
member. Here we discuss numerical results for the case of groups with n = 10 individuals. Our analytical results 
and additional numerical simulations (Figs. S10–S12 in the SM) show that groups of other sizes have similar 
behavior.

Equilibria.  Convergence to an equilibrium is the most common type of dynamics. The structure of equilibria 
is very complex: there are many of them and they can be locally stable simultaneously (see section 5.1 in the SM 
and Fig.  9). These equilibria share some properties. Specifically, at equilibrium, all non-cooperating groups (i.e. 
counter-elites) have the same number of contributing individuals and have the same power. Among cooperating 

(5)πij = π0 − cxj +

{

Pj/n
α
j , if the group defects

vjQ/n
α
j if the group cooperates.

(6)b1,j = B1/n
α
j , b2 = B2/

∑

j

nαj .

(7)yj = �j(1− ε + εfj)

(8)f ′j =

{

yj
∑

yk
, if

∑

yk > 0
1
G , otherwise.
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groups (i.e, elites), all groups can have the same number of cooperators and same power (equal elites) or there 
can be just two types of groups, which we will call dominant and subordinate (non-equal elites). All dominant 
groups have the same number of cooperating individuals and the same power. All subordinate groups also have 
the same number of cooperating individuals and the same power which however is smaller than that of domi-
nant groups.

For small values of the incumbency parameter ε , there can be several stable equilibria with equal (Fig. 2a) and 
non-equal elites (Fig. 2d). For intermediates values of ε , the number of stable equilibria can increase (Fig. 2a,d). 
The number of cooperators X in a cooperating group can be either smaller or larger than that in a defecting group 
(Fig. 2b,e). The number of cooperators X in subordinate cooperating groups can be either larger or smaller than 
that in dominant groups (Fig. 2e). In general, non-cooperating groups are less powerful than dominant groups 
(Fig. 2f). They are less powerful than subordinate groups, if the incumbency parameter ε and the benefit per 
individual b2 are small; and more powerful than subordinate groups, if the incumbency parameter is relatively 
large (Fig. 2f). Increasing the incumbency parameter ε increases power of cooperating groups relative to that of 
non-cooperating groups in the equilibria of the first type (Fig. 2c). For additional examples see Figs. S5–S9 in 
the SM. The resource Q produced in an equilibrium with C = G equal cooperating groups is large compared to 
other equilibria. However, the maximum amount of Q is observed when there is one dominant group and G − 1 
subordinate groups (see Fig. S13 in the SM).

Figure 2f shows that for relatively high values of ε , subordinate groups (marked by golden color) do not switch 
to defection in spite of the fact that defecting groups (marked by blue color) have higher power. Because such 
subordinate groups have a very low number of contributors (see Fig. 2e) simply defecting will only decrease their 
power. To make defection pay, they would also need to increase the number of contributors. Planning two-steps 
ahead however is not allowed within myopic best response updating we use here.

Non‑equilibrium dynamics.  Non-equilibrium dynamics mostly happen when the incumbency parameter ε is 
small and only within certain ranges of other parameters (for details see Figs. S14, S15 in the SM). In this regime 
the cooperating coalition typically includes all groups but the number of cooperating individuals within groups 
fluctuates. These fluctuations are coupled with fluctuations in power, which, in turn, lead to a turnover of domi-
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Figure 2.   Effects of the incumbency parameter ε on the number of cooperating groups C (a,d), the number 
of cooperating individuals per group X (b,e) and group power f (c,f). First row of graphs: equilibria with just 
one type of cooperating groups. Defecting groups are shown in blue symbols. Second row of graphs: equilibria 
with dominant (violet symbols) and subordinate (golden symbols) cooperating groups. Curves show the 
average values of corresponding characteristics. The equilibria illustrated in the top and the bottom rows are 
simultaneously stable. Eight groups of the same size n = 10 . Other parameters: b1 = 20 , b2 = 10 , α = 1 , c = 1 , 
π0 = 1 , X0 = 5 , Z0 = 50 , µ1 = µ2 = 0.25 . The results shown are based on 200 runs with 4000 time steps for 
each parameter combination. The outcomes for each run are averages of the last 1000 time steps.
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nant groups. Below variable θj = 1 if group j cooperates in the coalition of “elites” and θj = 0 if not. An example 
of non-equilibrium dynamics shown in Fig. 3.

Effects of parameters.  We will focus on the number of cooperating groups C, the Gini index of inequality in 
power among them I, and the standard deviation σ of cooperating group efforts. The Gini index is mathemati-
cally equivalent to half of the relative mean absolute difference.

Incumbency parameter ε.  Increasing ε decreases the size C of the cooperative coalition (Fig. 4a) as low-power 
groups do not receive large enough share of the jointly produced resource and leave the coalition. With suffi-
ciently large ε , only one group remains engaged in the between-group economic game. The inequality in power 
and group efforts (Fig. 4a) among cooperating groups exhibit a hump-shaped dependence on ε . For more details 
see Fig. S16 in the SM.

Benefit of within‑group cooperation b
1
.  When b1 is small, increasing it increases between-group cooperation. 

However, when b1 is high enough, the benefit of within-group cooperation exceeds that of between-group coop-
eration leading to a decline in cooperation (Fig. 4b). This process accelerates for higher ε (for more details see 
Figs. S17–S19 from the SM). The inequality in power (Fig. 4b) and group efforts (Fig. 4b) among cooperating 
groups exhibit a hump-shaped dependence on b1.

Benefit of between‑group cooperation b
2
.  Effects of b2 depend on the incumbency parameter ε (see Figs. S20, 

S21 in the SM). If ε is small, increasing b2 increases the number of cooperating groups C. There is no inequal-
ity between cooperating groups for small b2 but then it starts slowly increasing once b2 is sufficiently large. For 
intermediate values of ε , increasing b2 first leads to an increase in the coalition size which then shrinks to just one 
group as b2 becomes large enough (Fig. 4c). The inequality in power (Fig. 4c) and group efforts (Fig. 4c) among 
cooperating groups exhibit a hump-shaped dependence on b2 . With large ε , the coalition is never large as one of 
its members quickly increases in power which causes all other groups to defect.

Effects of parameters Z0, � and G are discussed in the SM.

Groups with different sizes.  Differences in group sizes have three structural effects. Increasing the group 
size n: (1) increases the group’s total baseline amount of resource �0 making it more powerful, (2) decreases shares 
of the resources 1/nα of each group member making cooperation more difficult (if α  = 0 ); and (3) increases the 
maximum possible group effort X. Because in our models within-group cooperation is typically low, the last 
effect is weak. The trade-off between the first two effects drives the dynamics of the model. Below first we analyze 
the average effects of various parameters while keeping the sizes of groups constant. Then we consider the effects 
of changing the size of one group. At the end, we discuss non-equilibrium dynamics in more details.

Effects of parameters.   We will consider four groups with 5, 10, 15 and 20 individuals, respectively. We assume 
that all other parameters are identical between different groups and set groups’ initial power to 1/4.

If the benefit of between-group cooperation per individual b2 is small so that no between-group cooperation 
is observed, smaller groups make larger efforts and have higher power in the case of rivalrous goods ( α = 1 ; 
see Fig. 5). This is well in line with Olson’s group-size paradox20. In contrast, with non-rivalrous goods ( α = 0 ), 

0 200 400 600 800
0

2

4

6

X
0 200 400 600 800

0

0.2

0.4

f

0 200 400 600 800

t

1

2

3

4
gr
ou

ps

Figure 3.   An example of non-equilibrium dynamics. Top: the number of contributing individuals in each 
group. Middle: faction powers. Bottom: groups cooperating at time t (i.e., those with θj = 1 ) are shown as black 
pixels, while defecting groups (i.e., those with θj = 0 ) are shown as white pixels. Four groups of size n = 10 each. 
Other parameters: b1 = 10 , b2 = 26 , ε = 0.1 , c = 1 , π0 = 1 , X0 = 5 , Z0 = 50 , µ1 = µ2 = 0.25.



7

Vol.:(0123456789)

Scientific Reports |        (2021) 11:18670  | https://doi.org/10.1038/s41598-021-97863-7

www.nature.com/scientificreports/

efforts of smaller groups do not exceed efforts of larger groups and they obtain lower material payoffs and power 
than larger groups (see Figs. S30, S31 in the SM). Increasing b2 brings more potential benefits of between-groups 
cooperation. As a result, some groups switch to cooperation with the largest group typically being the first to 
do so (see Fig. 5).

If ε is small, then all groups, one by one will switch to cooperation as b2 grows (see Fig. 5a) independently of 
the degree of rivalrousness α (see Figs. S27–S31 in the SM). For intermediate and large values of ε , smaller groups 
usually remain as defectors (see Fig. 5b,c). Larger groups are more successful within the cooperative coalition 
(i.e., they have higher powers, obtain higher payoffs and are characterized by higher levels of a within-group 
cooperation compared to smaller groups from the coalition) regardless of α (see Figs. S27–S31 in the SM). It 
implies that high benefits of group interactions result in the disappearance of Olson’s group-size paradox inde-
pendently of rivalrousness.

Overall, the effects of other parameters are similar to those in models with equal group sizes (for details see 
Fig. 5, Figs. S27–S31 from the SM). However, while in the former case which groups cooperate and which defect 
is mostly determined by initial conditions and chance, in the later case it strongly depends on the group size.

Effect of changing the group size.   Here we assume that there are 3 groups of 5, 10 and 15 individuals, respec-
tively, plus one additional focal group of size n which we will vary. For small and intermediate values of n, the 
likelihood of cooperation for the focal group increases with n (see Fig. 6b) independently of rivalrousness (see 
Figs.  S32–S45 in the SM). Most often the largest group has the highest power within the cooperative coali-
tion regardless of α (see Figs.  S32–S45, right panels). However, the effects of further increases in n depend 
on the degree of rivalrousness. With non-rivalrous goods further increasing n promotes growth in the focal 
group power, which, in turn, stimulates other groups to defect. This process is slowing down by a decrease in 
the incumbency parameter. Eventually, for very high values of n, only the focal group remains engaged in the 
between-group economic game. For more details see Figs. S40–S45 in the SM.

With rivalrous goods, further increases in n can lead to the loss of cooperation within the focal group (Figs. 6, 
7b). Nevertheless, equilibria with the largest group characterized by the highest power within the coalition can 
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b2 on the number of cooperating groups C, the Gini index of inequality I, and standard deviation of efforts σ 
among them for different number of groups G. Groups of the same size n = 10 are considered. The shaded 
areas shows the corresponding confidence intervals. Other parameters: α = 1 , c = 1 , π0 = 1 , X0 = 5,Z0 = 50 , 
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still be observed (Figs. 6, 7a). Decreasing ε , Z0 and increasing B2 increase the value of the focal group size n for 
which the likelihood of the focal group cooperation starts to decline with further increase in n; and the value 
of the focal group size for which the focal group always defects with further increase in n. For more details see 
Figs. S32–S39 in the SM.

Non‑equilibrium dynamics.   Here we illustrate two interesting types of non-equilibrium dynamics. The first 
type occurs when the system repeatedly transitions between equilibria with C and C + 1 cooperative groups (see 
Fig. 7d). In this regime, which is observed if ε is intermediate, a subordinate group in the coalition switches to 
defection once its power becomes low enough. This causes a decline in the resource obtained by the dominant 
group resulting in decreases in its power. Once it has become sufficiently low, the most powerful among the 
defecting groups returns to the coalition and the process repeats.

The second type of non-equilibrium dynamics is observed if ε is small (see Fig. 7c) when all groups cooperate. 
In these dynamics, the cooperating coalition typically includes all groups but their powers as well as the number 
of cooperating individuals within each of them fluctuate. This regime is similar to that observed if groups have 
the same size. See Figs. S46–S49 in the SM for more details on the effects of various parameters.

Discussion
An important feature of many human societies is the existence of different identity groups (e.g., ethnic, cultural, 
religious, political) which are engaged in economic cooperation but simultaneously are involved in competi-
tive interactions juggling for political power. These dynamics often lead to the emergence of different types of 
(horizontal) inequalities between identity groups which often undermine economic developments and trigger 
conflicts within society and its instability12–15. Understanding these processes is complicated by the fact that 
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Figure 7.   The dynamics of three groups of 5, 10, 15 individuals respectively and the focal group of n individuals 
are illustrated. Examples of two main types of dynamics for high values of n are shown: (a) the focal group 
cooperates and has the highest power among all groups; (b) there is no contributing individuals in the focal 
group. Baseline parameters: n = 22 , B1 = 100 , B2 = 1500 , α = 1 , ε = 0.3 , c = 1 , π0 = 1 , X0 = 5 , Z0 = 300 , 
µ1 = µ2 = 0.25 . Examples of non-equilibrium dynamics for (c) ε = 0 ; and (d) ε = 0.3 . Baseline parameters: 
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individuals also interact at the within-group level. Our main goal here was to introduce a general theoretical 
framework for addressing a number of important questions including: when are societies composed of groups 
differing in power more (or less) stable? When is horizontal inequality high (or low)? When is cooperation and 
production at the society level high (or low)?

Our model has several realistic features which have been largely neglected in earlier work. Most importantly 
it considers the joint dynamics of cooperation and competition between different identity groups in the society 
while explicitly accounting for individual behavior. We allowed for differences between groups in their sizes and 
changing political power and explicitly focused on the effects of checks and balances mechanisms limiting the 
ability of powerful groups to grab more power. We considered the effects of inequality, environmental conditions, 
and rivalrousness of produced collective goods on cooperation and social dynamics.

Our models aim to capture important properties of historic and modern societies. For example, construction 
of some large irrigation canals in the Moche Valley, Peru, involved multiple villages61. Maintaining the irrigation 
system (e.g., doing regular cleaning) required a large collective effort76. Ref.77 suggested that villages competed 
for the control over irrigation systems and the lands that they watered, and this control was performed in a 
sophisticated power-based way via construction of temples. One can also think of any multi-ethnic modern 
country where different ethnic groups politically compete for shares of national resources or jointly produced 
domestic products. Examples include Mizrahi and Ashkenazi Jews ethno-national groups which cooperated to 
built the Israel state but also competed for real and symbolic resources78; and Muslim and Christian communities 
in Ghana which cooperate and collaborate for producing communal goods, but also compete with each other79.

In our model, the most common outcome of social dynamics is a stable society in which certain groups form 
a cooperating coalition with a certain distribution of power while other groups remain outside of it. Continuous 
cycles of cooperation and defection of groups, which were prevalent in Refs.48,50 (which neglected within-group 
collective action problem and dynamics) never arose in our model. Although overall the spectrum of possible 
dynamics observed in our model was broader than that in Refs.48,50, non-equilibrium dynamics were observed 
under a much narrower range of parameters (see below). Therefore we can conclude that within-group dynamics 
can stabilize the system’s behavior and that a society with individuals acting independently is more stable than 
a society for which actions of individuals within groups are completely synchronized.

In our model, economic inequality is present at both individual and group levels. Inequality between indi-
viduals is a result of differences in individual efforts (with free-riders obtaining higher benefits) and differences 
between the groups they belong to. The latter are caused by differences in baseline resources, group sizes, and their 
power. We have shown that inequality among groups can be mitigated by decreasing the incumbency parameter 
ε . In our model, a society consisting of equal cooperating groups can exist only if the incumbency parameter is 
relatively low and groups have the same size. Such a society would produce large but not the maximum possible 
amount of the resource Q. If groups are of equal size, the maximum amount of the resource is produced if all 
groups in the society cooperate, but one of them is dominant in power and makes a disproportional high effort. 
This effect of between-group differences is analogous to the effects of within-group heterogeneity on collective 
action66.

We observed two different types of non-equilibrium regimes. In the first regime, observed for small val-
ues of the incumbency parameter ε , the cooperating coalition typically includes all groups but the number of 
cooperating individuals within the groups fluctuate. These fluctuations are coupled with fluctuations in power, 
which, in turn, may lead to the turnover of dominant groups. Turnover of governing parties in democratic states 
can be viewed as an example of such dynamics. In the second regime, observed for intermediate values of the 
incumbency parameter ε , one group persists at the top of the coalition with some fluctuations in the identity of 
other coalition members. In this regime, the growing power of the dominant group forces subordinate groups 
to leave the coalition decreasing production. Declining production decreases the power of the dominant group 
which makes it beneficial for the most powerful among the defecting groups to return to the coalition thereby 
completing the cycle.

Overall, the incumbency parameter ε plays a key role in our model. This parameter controls the extent to 
which the differences in economic resources between groups are translated in the differences in power. We have 
interpreted ε as a measure of the strength of democratic checks-and-balances or “the rule of law” mechanisms 
working to prevent politically powerful factions from bending the rules of competition in their favor (smaller 
values of ε implies stronger checks-and-balances mechanisms). We have found that reducing ε promotes coopera-
tion, reduces variation in power and, hence, mitigates between-group inequality. The effects of other parameters 
strongly depend on ε as well. In particular, increasing potential benefits of between-group cooperation promotes 
it only if the incumbency parameter is low. For intermediate values of ε , the cooperative coalition size C first 
increases with the benefit of between-group cooperation but then shrinks to just one group as the benefits become 
very large (see Fig. S20 in the SM). As a result, the model predicts that promoting cooperation and reducing 
inequality via increased benefits of cooperation works properly only in societies with strong democratic checks-
and-balances. These results are well in line with the empirical literature: political institutions play a key role in 
increasing economic efficiency and shaping economic growth80–83. Non-democratic societies with bad institutions 
(e.g., institutions that work mostly for the benefit of the ruling elite) often exhibit very low levels of economic 
growth coupled with deep economic crises and even civil wars84. However, some non-democratic regimes can 
be very successful in terms of economic development (such as former dictatorships of the East Asian “tigers”, 
such as Malaysia, Singapore, Taiwan, and South Korea). Their success arose partially due to strong nominally-
democratic institutions aiming to ensure the cooperation between elites and counter-elites81,84.

Differences in group sizes and their effects are related to the so called group-size paradox, i.e. the observa-
tion that larger groups can be less successful than smaller groups in collective actions due to increased free-
riding20,55. This paradox has been extensively studied for both within-group cooperation85,86 and between-group 
contests87,88. Here we considered the effects of group size on the group success in the context of more complex 
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group interactions including both cooperation and competition. We have shown that differences in group sizes 
have two main structural effects. First, larger groups have more baseline resources making them potentially 
more powerful. Second, in larger groups individuals receive smaller shares of the collectively produced resources 
making cooperation more difficult because of increased free-riding. The strength of the latter effect declines with 
decreasing rivalrousness α of the goods. [When α is close to one, each individual’s share is inversely proportional 
to the group size. In contrast, if α is close to zero, the amount of resources received by each individual does not 
depend on its group’s size.] The interaction between the above two effects drives the dynamics of the model. 
For groups not involved in between-group cooperation, smaller size leads to more resources (and power) if the 
goods are rivalrous but less power and equal resources (compared to those produced by larger groups) if goods 
are non-rivalrous. Similar results were obtained for a related model in Ref.56. For groups involved in between-
group cooperation, larger size most often leads to more resources and power for any degree of rivalrousness. 
Nevertheless with fully rivalrous goods, cooperation in very large groups breaks down and such group withdraw 
from between-group cooperation. This will also decrease their power.

There are a number of parallels between our model predictions and observations from real societies. Dif-
ferent stable states predicted in our model are similar to those found in some past and present societies. For 
example, some alliances of Middle East tribes17 and cooperative structures among Native American Nations89 
can be viewed as examples of equilibria with a relatively egalitarian coalition. Conversely, confederations of 
Turco-Mongolin tribes with leading and subordinate tribes17 can be treated as an illustration of equilibria with 
high inequality between coalition members. The non-equilibrium dynamics (observed under some conditions 
in our model) has been a focus of recent research on historical societies19,50. The important role of social institu-
tions, and checks and balances preserving cooperation (which we explicitly modeled here via parameter ε ) is 
well appreciated in the social sciences. For example, Botswana has a very high per-capita growth rate compared 
to other African countries. This can be explained by strong institutions that existed in Tswana tribes in the pre-
colonial period, aimed to maintain cooperation and resolve conflicts among them18. These institutions were 
preserved and reinforced during history because of a relatively small effect of colonialism on Tswana tribes, 
and due to the inclusive nature of these institutions with respect to other ethnic groups90. See also the example 
of the East Asia “tigers” briefly discussed above. Another interesting example related to our model are Pueblo 
societies, some of which were organized as a collection of interacting clans differing in power which depended 
on land-ownership and their role in religious rituals. The clans cooperated in the cultivation of the land but also 
competed for control over it91. Under good environmental conditions social relationships between clans were 
egalitarian and cooperative. However under bad conditions (e.g., rain or early frost) more powerful clans had 
food and stayed in the village while less powerful clans had to go out to hunt and gather. In our model, deterio-
ration of environmental conditions can be captured by a decrease in the benefit parameter B2 . Decreasing B2 
decreases the size of the cooperative coalition if the incumbency parameter is relatively small, or the incumbency 
parameter and the benefit parameter B2 are both intermediate (for more details see Figs. S20, S21 in the SM). 
This prediction is well in line with the anthropological observations mentioned above.

Our hope is that future work will allow for some predictions of our model to be tested using proxies and data 
collected from real societies. For example, the level of cooperation in the society can potentially be estimated 
using GDP-type measures. There are also a number of ways to measure horizontal inequality12,92, while the 
strength of checks and balances mechanisms can be estimated using data on the strength of democratic institu-
tions and similar measures from the World Values Surveys93.

Our model has a number of limitations. First, because of within-group free-riding, the levels of within-
group cooperation observed in our model are relatively low. In particular, only dominant groups can contain 
relatively high number of cooperating individuals. However there is a number of additional mechanisms poten-
tially increasing within-group cooperation which we did not consider. These include reputation, punishment21, 

22,25,94,95, between-individual differences65, and social norms67,96,97. Certain types of free-riding can be mitigated 
if individuals update their strategies by using imitation or foresight25–27 rather than the myopic best response we 
used here. We anticipate that some equilibria we observed would not occur with foresight. An example is a stable 
equilibrium where subordinate members of the coalition have lower power and payoffs than defecting groups. If 
a subordinate group takes into account future actions of its members, it may be beneficial for it to switch to defec-
tion. Although that would reduce its immediate payoff, the future payoffs will be higher. Second, here we dealt 
with well-defined and stable groups. However, the structure of social interactions can be much more complex. 
For example, interactions between individuals can be represented as a multilayer network98, 99, where each layer 
corresponds to a different type of interaction (e.g., social relationships, business collaborations, contacts via social 
networks). Third, groups can also face additional costs of building a coalition. These costs are implicitly embed-
ded into our parameters (e.g., in the benefit parameter B2 ). However, the model can be generalized to capture 
different forms of the coalition costs. Naturally, we anticipate that introducing additional costs will decrease 
the tendency of groups to cooperate. Fourth, here we assume that groups cooperate to produce some collective 
action as in “us versus nature” games66. However, many historic alliances were founded to win conflicts against 
other societies. Describing such interactions could be done within the framework of “us versus them” game66 at 
a new inter-society level. Fifth, the incumbency parameter by itself can be a multidimensional parameter rather 
than a scalar, or it can be formed endogenously as a response to changes in the focal social system. Finally, in 
our model individuals try to maximize their material payoffs. In real life situations, non-material factors (e.g., 
beliefs, conformity with group-members, injunctive norms or different rituals) can have a significant impact on 
individual decision-making100,101. It would be also good to find a way for scaling up group sizes perhaps using 
the mean field game theory methods102 as well as to add spatial structure which has been a focus of many studies 
of cooperation103–105. We leave these extensions and generalizations for future work.



12

Vol:.(1234567890)

Scientific Reports |        (2021) 11:18670  | https://doi.org/10.1038/s41598-021-97863-7

www.nature.com/scientificreports/

Overall, our paper highlights the challenges of maintaining cooperation in complex societies and provides an 
additional argument towards the importance of social institutions aiming to prevent politically powerful groups 
from bending the rules of competition in their own favor.

Methods
A single group.  Consider a single group of size n. Generalizing earlier results in Gavrilets and Shrestha26 we 
find that there will be a positive effort X∗ in the within-group game if b1 > c(1+ X0), that is, if the maximum 
benefit of within-group cooperation b1 = B1/n

α is sufficiently large relative to individual cost c and the group’s 
half-effort X0 . Let 

be the ratio of the maximum group benefit B1 to the group cost cX0 at half-effort. Group effort X∗ at equilibrium 
increases with R1 but naturally cannot exceed n. Specifically, X∗ can be approximated (see the SM) as

In the SM we also show that if the goods produced are characterized by some rivalrousness (i.e., α > 0 ), then 
under some conditions smaller groups will make a larger effort than larger groups (Fig. S1). This is an example 
of Olson’s group-size paradox20, 55–57.

Symmetric equilibria.  Here we focus on the existence and stability to small perturbations in power of 
groups of symmetric equilibria with C cooperating groups which all are identical in their efforts and power 
(see section Some equilibria in the SM). Moreover, we assume that each group contains at least one cooperating 
individual. For equilibria with C < G , we will assume that R1/nα > 1 so that each non-cooperating group has 
individuals making a nonzero effort. In deriving our results we used an approximation which treats individual 
contributions xi as continuous. This approach is justified by results in Gavrilets and Shrestha26 as well as by the 
comparisons of our analytical with numerical results.

First, an equilibrium with no cooperating groups (with C = 0 ) exists if each group would not be motivated 
to cooperate. This condition simplifies to 

where

is the benefit-to-cost ratio for the between-group game, and

 is the ratio of the costs of groups in within- and between-group games. Thus the state with no between-group 
cooperation exists only if the benefit-to-cost ratio R2 of the between-group game is sufficiently small relative to 
that for the within-group game, R1 . The upper bound on R2 declines with increasing the group size n and the 
degree of rivalrousness α but increases with parameters ω and R1.

The above equilibrium is stable to small perturbations in groups’ power, if ε < 1 . For more details see the 
SM. Figure  8 illustrates the above results.
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Figure 8.   The equilibrium with no cooperating groups ( C = 0 ) exists and is locally stable when the benefit-to-
cost ratios of the within-group game R1 and between-group game R2 lie in the corresponding shaded region for 
different group sizes n and parameter ω . Other parameters: X0 = 5,α = 1.
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Second, consider an equilibrium with C > 0 of identical cooperating groups. At this equilibrium, the effort 
of each cooperating group is

which is positive, if R1R2 > Cnα . Thus X∗
c  decreases with increasing n, ω , α , R1 and C. In contrast, X∗

c  increases 
with increasing R2 . The number of groups G has no effect on X∗

c .
Consider a general case, when the total material payoff to a cooperating group is higher than the total material 

payoff to a defecting group (the opposite case is considered in Proposition 4 in the SM). An equilibrium with 
C > 0 cooperating groups exists, if each cooperating group is not motivated to defect; and each non-cooperating 
group is not motivated to cooperate (if C < G ). The former condition can be expanded to

i.e., a cooperating group will not be interested in withdrawing from cooperation, if the benefit-to-cost ratio R1 
for the within-group game is lower than a threshold which increases with increasing the benefit-to-cost ratio R2 
for the between-group game. For more details see section Some equilibria in the SM.

The latter condition can be written as

where the boundary εmin is defined implicitly by algebraic equations (for more details see section Some equilibria 
and Proposition 2 in the SM). The above equilibrium is stable to small perturbations in groups’ power, if

where the boundary εmax is defined implicitly by algebraic equations (for more details see section Some equilibria 
and Proposition 3 in the SM).

Overall, we conclude that an equilibrium with C > 0 cooperating groups exists and is locally stable if the 
incumbency parameter is within a certain range:

Recall that the incumbency parameter ε affects the level of inequality within the society (since for high values 
of the incumbency parameter ε factions with higher power have more opportunities to bend the rules of competi-
tion in their favor). Intuitively, having ε larger than a minimal value εmin prevents non-cooperating groups from 
joining the coalition (because they will have low power and thus will not receive enough of jointly produced 
resources). At the same time, having ε smaller than a maximum value εmax prevents inequality growth within 
the coalition. Figure 9 illustrates these results (along with the results on the case when the total material payoff 
to a cooperating group is lower than the total material payoff to a defecting group).

In the case of complete between-group cooperation (i.e. with C = G)
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Figure 9.   The equilibrium with C (> 0) equal cooperating groups exists and is locally stable when the benefit-
to-cost ratio of the within-group game R1 and the incumbency parameter ε lie in the shaded regions for different 
values of R2 . Other parameters: ω = 0.1 , X0 = 5 , c = 1 , Z0 = 50 , π0 = 1 , α = 1 , G = 8 and n = 10.
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where A∗
c = �0 − cX∗ is the resource of each group before between-group game and QG is the resource produced 

as a result of between-group cooperation. Thus increasing QG or the group’s cost cX∗ decrease εmax while increas-
ing the number of groups G or group endowment π0 make εmax larger. For more details see the SM.

Data availability
Data and relevant code for this research work are stored in GitHub: dtver​skoi/​The-​dynam​ics-​of-​coope​ration-​
power-​and-​inequ​ality-​in-a-​group-​struc​tured-​socie​ty and have been archived within the Zenodo repository: 
https://​doi.​org/​10.​5281/​zenodo.​42479​50.
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