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We describe a low-input RNase footprinting approach for the rapid quantification of ribosome-protected fragments with as

few as 1000 cultured cells. The assay uses a simplified procedure to selectively capture ribosome footprints based on opti-

mized RNase digestion. It simultaneously maps cytosolic and mitochondrial translation with single-nucleotide resolution.

We applied it to reveal selective functions of the elongation factor TUFM in mitochondrial translation, as well as synchro-

nized repression of cytosolic translation after TUFM perturbation. We show the assay is applicable to small amounts of pri-

mary tissue samples with low protein synthesis rates, including snap-frozen tissues and immune cells from an individual’s

blood draw. We showed its feasibility to characterize the personalized immuno-translatome. Our analyses revealed that

thousands of genes show lower translation efficiency in monocytes compared with lymphocytes, and identified thousands

of translated noncanonical open reading frames (ORFs). Altogether, our RNase footprinting approach opens an avenue to

assay transcriptome-wide translation using low-input samples from a wide range of physiological conditions.

[Supplemental material is available for this article.]

RNA translation controls the protein production in a cell and is
dynamically regulated during diverse biological processes, such
as the stress response, cell differentiation, oncogenesis, and
neuronal diseases (Holcik and Sonenberg 2005; Kapur et al.
2017; Costa-Mattioli and Walter 2020; Xu and Ruggero 2020).
Quantifying ribosome-protected RNA fragments represents a
state-of-art approach to examine the regulation of RNA translation
in vivo, and distinguishes protein synthesis from other layers of
protein and RNAmetabolic processes. Ribosome profiling technol-
ogy uses RNase to digest RNA fragments not protected by protein
complexes, isolates the translating ribosome complexes, and puri-
fies the protected footprints for deep sequencing (Ingolia et al.
2009; Ingolia 2014). This method reveals active translation at sin-
gle-nucleotide resolution. It has been widely used to study various
aspects of protein synthesis, such as the regulation of translation
efficiency (Guo et al. 2010; Brar et al. 2012), alternative translation
initiation (Ingolia et al. 2011; Lee et al. 2012), ribosome elongation
and pausing (Liu et al. 2013; Wu et al. 2019), codon usage
(Radhakrishnan et al. 2016), and identification of novel translated
open reading frames (ORFs) and micropeptides (fewer than 100
amino acids) encoded in a genome (Ji et al. 2015; Calviello et al.
2016; Chen et al. 2020).

However, current ribosome profiling protocols typically in-
volve complicated experimental procedures to isolate 80S cytosol-
ic ribosome complexes, such as ultracentrifugation through a
sucrose cushion/gradient (Ingolia et al. 2009; McGlincy and
Ingolia 2017), size-exclusion chromatography (Khajuria et al.
2018; van Heesch et al. 2019), or ribosome immunoprecipitation
(Clamer et al. 2018). To study mitochondrial translation, estab-
lishedmethods use a sucrose gradient to purify 55Smitoribosomes

(Rooijers et al. 2013; Couvillion et al. 2016; Morscher et al. 2018).
These complex isolation steps are time-consuming and require
many input cells (the protocols typically recommend 1.5 million
to 10 million cells) (Ingolia et al. 2012; McGlincy and Ingolia
2017). Additionally, the primary cells from physiological tissues
show lower protein synthesis rates than proliferative cultured cells
(Liu et al. 2019). These technical barriers have prevented the appli-
cation of ribosome profiling tomany physiological samples with a
small number of cells. As a result, most of the current understand-
ing of translational control is based on experiments with cultured
cells and is not in the physiological context. To address this tech-
nical challenge, here we aimed to develop a low-input RNase foot-
printing approach to rapidly quantify cytosolic andmitochondrial
ribosome footprints simultaneously. And we applied our method
to characterize the translation landscape in diverse primary tissue
samples.

Results

RNase digestion distinguishes RNA fragments bound

by 80S ribosomes versus other RBPs

As suggested by previous studies, translating ribosomes (i.e., 80S
cytosolic ribosomes and 55S mitoribosomes) have a stronger pro-
tection affinity to RNA fragments than other RNA-binding pro-
teins (RBPs) in coding regions. To capture RNA fragments bound
by 40S scanning ribosomes or splicing factors, we need to cross-
link and stabilize RNA–protein complexes before RNase digestion
using formaldehyde (RIP-seq) or UV (CLIP-seq) (Darnell 2010;
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Archer et al. 2016; Van Nostrand et al. 2017). In contrast, translat-
ing ribosomes (i.e., 80S cytosolic ribosomes and mitoribosomes)
show stronger protection of RNAs, and the cross-linking step is
not needed to capture these footprints (Ingolia et al. 2009;
Rooijers et al. 2013; Couvillion et al. 2016). Based on this distinc-
tion, we hypothesized that by treating cell lysates with concentrat-
ed RNase, we can selectively retain footprints protected by
translating ribosomes, while digesting the fragments bound by
other RBPs in coding regions (Fig. 1A).

To this end, we treated the cells with three different doses of
RNase varying approximately 1000-fold: low (0.05 RNase units/
total RNA amount [U/μg]), medium (0.5 U/μg), and high (50 U/
μg). Then we isolated the RNA fragments after RNase digestion
for sequencing (Fig. 1B,C; Supplemental Fig. S1A). We next com-
pared the read distribution generated by high-dose RNase treat-
ment versus those from lower concentrations as well as
published CLIP-seq data for translation factors (Van Nostrand
et al. 2020). High-dose RNase treatment resulted in RNA fragments
with decreased lengths, stronger enrichment in coding regions of
mRNAs, and depletion of those mapped to 3′ UTRs and introns

(Fig. 1C–E; Supplemental Fig. S1B). For example, the binding frag-
ments of the cleavage and polyadenylation complexes can be cap-
turedwith low-dose RNase treatment butwere completely digested
by concentrated RNase (Supplemental Fig. S1C,D).

With the concentrated RNase treatment, the features of se-
quencing reads mapped to protein-coding regions of mRNAs re-
flected those of ribosome footprints, supported by the following
evidence. First, the lengths of footprints showed two enriched
peaks at 29 nucleotides (nt) and 21 nt, respectively (Fig. 1E). A re-
cent study found that the ∼29-nt footprints represent the ribo-
some conformational state with occupied A-sites, whereas the
∼21-nt footprints are from the RNase digestion of ribosomes
with empty A-sites (Wu et al. 2019). Both states represent actively
translating ribosomes. Second, the footprinting reads with the
peak sizes (i.e., 20–22 nt and 28–31 nt) showed 3-nt periodicity
across coding regions, representing that 80S ribosomes move
3 nt per step to decode RNAs (Fig. 1F; Supplemental Fig. S2A–D;
Ingolia et al. 2009). The results are consistent with our hypothesis
that 80S ribosome footprints can be selectively retained after con-
centrated RNase digestion.
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Figure 1. Different doses of RNase treatment effectively distinguish RNA footprints bound by 80S ribosomes versus other RBPs in coding regions. (A)
Schematic illustration of RNA–protein complexes. (B) Experimental steps of isolating RNase footprints for sequencing with three different doses of
RNase: low (0.05 U/μg), medium (0.5 U/μg), and high (50 U/μg). (C) Example read distribution across the gene MCL1 with three different doses of
RNase. Both RNA-seq and ribosome profiling data are shown for comparison. (D) Relative enrichment of reads in different regions of mRNAs (i.e., coding
region [CDS], 5′ UTR, 3′ UTR, and intron).We calculated the fraction of reads in each region and then normalized the value by the relative total length of the
region. (E) The distribution of the lengths of RNA fragments in coding regions of mRNAs. (F) RNase footprinting (high-dose) read distribution around the
start and stop codons of mRNAs. For footprints showing strong 3-nt periodicity, we adjusted their 5′-end genomic location to the ribosomal A-sites, and
plotted the read permillion (RPM) values (for details, seeMethods). (G) Correlation of read counts in coding regionsmeasured by RNase footprinting (high-
dose) and ribosome profiling. The x-axis and y-axis represent log2(read count + 1). We highlighted a few genes showingmore than 1.2-fold greater expres-
sion levels by RNase footprinting compared with ribosome profiling. (H) The correlation between RibORF-predicted translation probabilities of candidate
ORFs using RNase footprinting (high-dose) versus ribosome profiling data in HEK293T cells. We randomly picked 2000 candidate ORFs for the scatter plot
colored by density (red color indicates more data points). The Pearson correlation coefficient value is indicated in the plot.
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RNase footprinting simplifies experimental procedures to profile

cytosolic translation and identifies in-frame-translated ORFs

Next, we examined whether RNA fragments from our RNase foot-
printing can quantitatively measure ribosome occupancy. To this
end, we performed detailed comparisons with the ribosome profil-
ing data generated by the conventional protocol, which uses ultra-
centrifugation through a sucrose cushion to enrich complexes
with a higher molecular weight (McGlincy and Ingolia 2017).
For each fragment size between 18 nt and 35 nt, we plotted the
read distribution around start codons and stop codons of mRNAs
(Supplemental Fig. S2D,E). For each fragment size, we observed
consistent read distribution patterns between RNase footprinting
and ribosome profiling, and the reads are highly enriched in cod-
ing regions (Supplemental Fig. S2D–F). Based on these results, we
selected sequencing reads with lengths of 18–35 nt in coding re-
gions to quantify ribosome occupancy (McGlincy and Ingolia
2017). The inferred ribosome occupancies using our RNase foot-
printing data showed a significant correlation with ribosome pro-
filing (R=0.99) (Fig. 1G; Supplemental Fig. S1E–G), indicating that
our RNase footprinting quantitatively measures ribosome binding
levels.

A few genes show higher expression (approximately 1.2-fold)
fromRNase footprinting than from ribosome profiling, such as the
mitochondrial transcripts MT-ND5, MT-ND4, and MT-ND4L (Fig.
1G). The data are in line with 55S mitoribosomes having a smaller
molecular weight than 80S cytosolic ribosomes. Because RNase
footprinting does not perform the centrifugation steps of the con-
ventional protocol, it captures more mitoribosomes. The results
are reproducible between biological replicates (R=0.994) (Supple-
mental Fig. S1H).

Studies including our work (Michel et al. 2012; Bazzini et al.
2014; Ji et al. 2015; Calviello et al. 2016; Chen et al. 2020) showed
ribosome footprints can be used to identify translated noncanon-
ical ORFs based on the continuous 3-nt periodicity read distribu-
tion pattern in actively translated regions. Using the ribORF
software we developed (Ji 2018b), we selected read fragments
showing strong 3-nt periodicity (>50% assigned to first nucleo-
tides of codons in canonical ORFs), adjusted their 5′-end locations
to ribosomal A-sites, and used these reads to build a logistic regres-
sion classifier to calculate translation probabilities of candidate
ORFs. The analyses showed that RNase footprinting reads can ac-
curately distinguish translated canonical ORFs versus internal
off-frame ORFs (area under the receiver operating characteristic
[ROC] curve =0.991) (Supplemental Fig. S2G). We trained a model
using the RNase footprinting data and another model using ribo-
some profiling and applied both models to predict the translation
probabilities of candidate noncanonical ORFs, including upstream
ORFs (uORFs; in 5′ UTRs of mRNAs), downstream ORFs (dORFs; in
3′ UTRs), lncRNA, and pseudogene ORFs. The inferred translation
probabilities were well correlated between the two models (R=
0.92) (Fig. 1H). The data further indicated that our RNase foot-
printing can reliably identify in-frame-translated ORFs.

RNase footprinting identifies nonribosomal footprints

in localized noncoding regions

Our above analyses showed consistent footprint distribution in
translated regions between RNase footprinting and ribosome pro-
filing.We next compared footprints in other genomic regions and
observedmajor differences in small noncoding RNAs (Supplemen-
tal Fig. S3A); 11.5% of our RNase footprinting reads were mapped
to small noncoding RNAs, which is 3.7-fold that of ribosome pro-

filing (Supplemental Fig. S3A–C). These reads were found within
functional domains of small noncoding RNAs (Supplemental
Fig. S3D,E), representing the binding of nonribosomal RNA–pro-
tein complexes. The footprints showed highly localized distribu-
tion without 3-nt periodicity (Supplemental Fig. S3F,G) and had
different lengths compared with ribosome footprints (Supplemen-
tal Fig. S3I). For example, the reads in microRNAs were located in
maturemicroRNA regions (Supplemental Fig. S3D) andmay repre-
sent the binding of RNA-induced silencing complex (RISC). The
reads in H/ACA type snoRNAs were mapped to the H-box and
ACA-box (Supplemental Fig. S3E). These nonribosomal footprints
also exist in conventional ribosome profiling data with a lower
amount. The results are consistent with previous reports showing
that the ultracentrifugation step during ribosome profiling is not
specific to 80S ribosomes but also isolates native stable nonriboso-
mal RNA–protein complexes in abundant structured small non-
coding RNAs (Ingolia et al. 2014; Ji et al. 2016). Here, because
our RNase footprinting did not perform centrifugation, we re-
tained more of these smaller molecular weight complexes.

Nevertheless, as discussed previously for the ribosome profil-
ing data analyses (Ingolia et al. 2014, 2019; Ji et al. 2015, 2016), the
existence of highly localized nonribosomal footprints in noncod-
ing regions does not affect the calculation of ribosome binding in
translated ORFs. Based on different distribution patterns of these
two types of RNase footprints, we previously developed the per-
centage of maximum entropy (PME) value to measure the uni-
formness of read distribution across candidate ORF regions (Ji
et al. 2016; Ji 2018a). The PME value effectively distinguishes non-
ribosomal footprints in small noncoding RNAs versus ribosomal
footprints in mRNAs (area under the ROC curve =0.964) (Supple-
mental Fig. S3H). The false-positive rate is 0.8% and the true-pos-
itive rate is 98.1% when using the cutoff PME<0.6 to identify
nonribosomal footprints.

Low-input RNase footprinting rapidly quantifies RNA translation

using 1000–50,000 cultured cells

To make the data most comparable, the adapter ligation steps we
used during RNase footprinting above were the same as in ribo-
some profiling (McGlincy and Ingolia 2017). However, these steps
tend to lose many input materials. To further reduce the starting
material, we made two major modifications to the library genera-
tion steps. First, we performed A-tailing of the footprints and re-
verse-transcription-primed with oligo(dT) in conjunction with
template switching using SMARTer oligos (Fig. 2A). A-tailing and
the SMARTer oligo-based template switch work well for low-input
sequencing library preparation (Picelli et al. 2013; Hornstein et al.
2016). We added four random nucleotides to the 3′-end of
SMARTer oligos before the locked nucleic acids GGG, which can
increase the sequencing quality. Additionally, we designed 15 ran-
domnucleotides in the SMART-RT primer as the uniquemolecular
identifier (UMI) to examine the PCR duplication rate. Second, to
enrich ribosome footprints, the conventional protocol performed
fragment selection using gel purification after the footprint isola-
tion from the sucrose cushion (McGlincy and Ingolia 2017). In
contrast, we performed the size selection of the DNA library after
PCR amplification and used computational analyses to select
wanted fragment sizes (i.e., 18–35 nt) to calculate ribosome occu-
pancy. Our procedure further reduced required starting materials
by skipping intermediate footprint selection steps. Our low-input
RNase footprinting method drastically simplified the ribosome
profiling procedure and can be performed in ∼1.5 d, the total
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working time from cell harvesting to final library purification (Fig.
2B; Supplemental Fig. S4).

Efficient RNase digestion is a key step of our RNase footprint-
ing assay, and we optimized RNase treatment conditions (i.e.,
RNase concentration and digestion time) for both low and ultra-
low cell counts (50,000 and 1000 cultured cells, respectively).
We determined the RNase amount based on its ratio to total cellu-
lar RNA (∼50 U/μg), which is about fivefold higher than used in re-
cent ribosome profiling studies (Wu et al. 2019, 2020). We also
found that RNase concentration is critical to achieving efficient
digestion, and we addedmore RNase to adjust the final concentra-

tion to 0.5–1 U/μL in the reaction
volume. This parameter is especially im-
portant for ultra-low-input conditions
(e.g., 1000 cultured cells). We optimized
other library construction steps includ-
ing A-tailing, Smart-RT, and PCR condi-
tions (for details, see Methods). We
generated RNase footprinting libraries
for HEK293T and K562 cells with either
50,000 or 1000 cells (Fig. 2C; Supplemen-
tal Fig. S5A). Next, we performed system-
atic comparisons between our low-input
RNase footprinting data versus conven-
tional ribosome profiling generated by
this study as well as published work
(Iwasaki et al. 2016; Calviello et al.
2020; Martinez et al. 2020).

The following analysis results
indicated that our low-input RNase foot-
printing can accurately examine differ-
ent aspects of protein synthesis. First,
the gene-level ribosome occupancies in-
ferred using 50,000 cells and 1000 cells
were significantly correlated with those
from the conventional ribosome profil-
ing with millions of input cells (R>0.97
compared with our data and R>0.93
compared with published data sets) (Fig.
2D; Supplemental Fig. S5B), although
different linker ligation methods used
by ribosome profiling data sets can gen-
erate variable biases at the 5′- and/or 3′-
end of the footprints (Supplemental Fig.
S6; Supplemental Table S1; O’Connor
et al. 2016). Second, we used the CON-
CUR software (Frye and Bornelov 2021)
to calculate the codon occupancy using
the data sets. The overall codon usage
levels learned from our low-input RNase
footprinting were well correlated with
those from the ribosome profiling (R>
0.92 compared with our data and R>
0.82 compared with published data
sets) (Fig. 2E; Supplemental Fig. S5C).

Third, based on the combination of
the read sequences andUMI, we calculat-
ed that the PCR duplication rate in our
sequencing library was 5.9% (SD=2.0)
for 50,000 input cells and 9.2% (SD=
1.4) for 1000 cells, which is comparable
to high-quality RNA-seq libraries (Fu

et al. 2018). Fourth, the reads showed comparable uniformity of
distribution across codons (Fig. 2F; Supplemental Fig. S5D), and
the downsampling analyses (Hornstein et al. 2016) showed that
the same number sequencing reads can detect similar numbers
of genes and unique footprints when comparing RNase footprint-
ing with ribosome profiling (Fig. 2G,H; Supplemental Fig. S5E,F).
We can quantitatively examine ribosome occupancy for approxi-
mately 9000 protein-coding genes (transcript per millions [TPM]
value >3), and approximately 12,000 genes were detectable in to-
tal (TPM>0) (Supplemental Fig. S5G–I). Finally, RNase footprint-
ing reliably inferred differential ribosome binding between

E

BA
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Figure 2. Low-input RNase footprinting quantifies ribosome occupancies using 1000 and 50,000
HEK293T cells. (A) The experimental procedure of low-input RNase footprinting. (B) Comparison of prep-
aration time and starting material between RNase footprinting and conventional ribosome profiling. (C)
Read distribution representing different RNase footprinting methods across the example gene UTP23.
RNA-seq data are shown as the control. (D) Correlation of ribosome occupancies inferred by our
RNase footprinting and conventional ribosome profiling data sets. The x-axis and y-axis represent
log2(RPM+1) in coding regions. The Pearson correlation coefficient values are indicated in the plot.
(E) Correlation of codon usage levels (log2) at the ribosomal P-sites inferred by our RNase footprinting
and conventional ribosome profiling data sets. The Pearson correlation coefficient values are indicated
in the plot. (F) The distribution of the percentage of maximum entropy (PME) values, measuring the uni-
formness of read coverage across codons of canonical ORFs. We included genes with more than 10 reads
in the analysis. A PME value closer to one indicates higher uniformness of read distribution. (G,H) We
downsampled the sequencing reads and then calculated the number of genes (G) and unique footprints
(H) detected by different data sets with a fixed number of reads. (I) The differential ribosome occupancy
between HEK293T and K562, comparing our RNase footprinting data to ribosome profiling data. The
Pearson correlation coefficient value is indicated in the plot.
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HEK293T and K562 cells (R=0.94 vs. ribosome profiling) (Fig. 2I).
Taken together, the data showed that our low-input RNase foot-
printing is in concordance with established ribosome profiling
methods and quantitatively measures cytosolic ribosome binding.

RNase footprinting maps mitochondrial translation

Mitochondria have their own translation machinery to generate
the 13 proteins encoded by the mitochondrial genome, which
are all subunits of respiratory chain complexes (Pearce et al.
2017). As proteins composing the mitochondrial translation ma-
chinery are encoded by the nuclear genome, the cytosolic and mi-
tochondrial translational programs are synchronously regulated

during biological processes (Couvillion et al. 2016; Dennerlein
et al. 2017; Suhm et al. 2018). Our RNase footprinting reads in mi-
tochondrial protein-coding regions show the features expected of
fragments associated with translating ribosomes. The read lengths
show a dynamic range between 18 and 35 nt with a peak at 32 nt.
Those at the peak size of 32 nt show3-nt periodicity across the cod-
ing regions (Fig. 3A–C). A minor peak at 21 nt suggests that mitor-
ibosome complexes may also have two conformation states,
similar to the cytosolic machinery (Fig. 3A).

To further examine whether our RNase footprinting can
quantitatively measure mitoribosome occupancy, we performed
a previously described method (Rooijers et al. 2013) that uses a
sucrose gradient to isolate 55S mitoribosomes and 80S ribosomes
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Figure 3. RNase footprinting examines mitochondrial translation. (A) The distribution of footprint lengths across mitochondrial protein-coding regions.
(B) The fractions of reads in the three codon frames. The 32-nt-long footprints (the peak size) inmitochondrial coding regions were used for the calculation.
The SD represents the variation across 13 mitochondria-encoded protein-coding genes. (C ) An example transcript region of MT-CO1, showing the 3-nt
periodicity of read distribution. (D) We used the sucrose gradient to isolate 55S mitoribosome and 80S ribosome complexes and then extracted associated
footprints for sequencing. We performed western blots for ribosomal proteins to show the fractions containing 55S mitoribosomes and 80S ribosomes. (E)
The correlation of footprint length distribution in mitochondrial coding regions calculated using our RNase footprinting and sucrose gradient-based ribo-
some profiling. (F,G) The correlation of ribosome occupancies in mitochondrial-encoded (F ) and nuclear-encoded (G) coding genes calculated using the
two methods. The RNase footprinting data using 50,000 HEK293T cells were used for the analyses.
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after RNase treatment of 20 million HEK293T cells (Fig. 3D). The
resulting footprints in the mitochondrial coding regions showed
a consistent length distribution with those from our RNase foot-
printing (using 50,000 HEK293T cells; R=0.986) (Fig. 3E). The in-
ferred ribosome occupancies of mitochondrial coding genes
(calculated using 18- to 35-nt footprints) showed a significant cor-
relation between the two methods (R= 0.987) (Fig. 3F). A similar
correlation was observed for cytosolic coding genes (R=0.987)
(Fig. 3G). These results confirmed that our RNase footprinting pro-
vides a simplifiedmethod to quantifymitochondrial and cytosolic
translation programs simultaneously.

RNase footprinting identifies the selective functions

of TUFM in mitochondrial translation

The mitochondrial translation machinery is a macromolecular
complex composed of approximately 80 proteins (D’Souza and
Minczuk 2018). Currently, the heterogeneity of the complex and
specialized functions of individual translation factors remain poor-
ly understood. Using RNase footprinting, we studied the function-
al roles of the mitochondrial translation elongation factor TUFM
in cells. We performed RNase footprinting and RNA-seq in HeLa
cells after TUFM knockout (Fig. 4A,B; Supplemental Fig. S7A–C).
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Figure 4. Regulation ofmitochondrial and cytosolic RNA translation after TUFM knockout. (A) Thewestern blots showing TUFM knockout. The expression
of actin (ACTB) was used as the control. (B) RNase footprinting and RNA-seq read distribution across theMT-CO3 gene in TUFM knockout and control cells.
(C ) The regulation of ribosome occupancy (ribosome footprints [RFP]), RNA expression (RNA), and translation efficiency (TE) of 13 mitochondria-encoded
genes after TUFM knockout. (R1/R2) Replicates 1 and 2. Complexes of the mitochondrial electron transport chain are indicated at left (I, III, IV, and V). (D)
The regulation of ribosome pausing of mitochondria-encoded genes after TUFM knockout. The ribosome pausing level was calculated as the ratio of RNase
footprinting read density in the first 20% of a transcript versus the remaining. Asterisks indicate significantly increased ribosome pausing after TUFM knock-
out with a Fisher’s exact test (P<10−3). (E) Western blots showing the expression of mitochondria-encoded (red) and nuclear-encoded (blue) mitochon-
drial proteins after TUFM knockout. The expression levels of GAPDH and ACTBwere used as the control. The ratios of protein expression between the control
and TUFM knockout are shown. Complexes I–V of the mitochondrial electron transport chain are indicated at left. (F) Change in mRNA and RFP levels after
TUFM knockout. The genes showing differential translation efficiency are highlighted. (Blue) Down-regulated; (red) up-regulated. (G) The cumulative dis-
tribution function plot showing the changes in TE of indicated gene sets. The P-values comparing “ribosome proteins” and “histone genes” versus other
genes are shown. (H) Western blots showing the expression of translation factors after TUFM knockout. (I) Nascent proteins containing the methionine
analog (AHA) were visualized by fluorescence microscopy. An identical setting was used to acquire images, and the percentage of fluorescent cells was
100%. The down-regulation of AHA fluorescence in TUFM knockout cells indicates the inhibition of new protein synthesis.
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We calculated the translation efficiency of anmRNA as the ra-
tio of read density in the coding region from RNase footprinting
versus that fromRNA-seq. The translation efficiencies of the 13mi-
tochondrial protein-coding genes were repressed at variable levels
(from fivefold down-regulation to none) after TUFM knockout
(Fig. 4C). Besides occupancy of the transcripts, ribosome elonga-
tion and pausing are another important regulatory layer of protein
synthesis. Consistent with the fact that TUFM is a mitochondrial
translation elongation factor, we found that eight mitochondrial
genes showed increased ribosomal pausing (from 1.8-fold to
sixfold) at the 5′-end (the first 20%) of transcripts after the
gene knockout (Fig. 4D). Ribosome pausing is significantly
correlated with the down-regulation of translation efficiency (R=
−0.59, P<0.05) (Supplemental Fig. S7D). Cytosolic-translated
genes did not show global increased ribosome pausing, indicating
TUFM specifically regulates mitochondrial translation elongation
(Supplemental Fig. S7E). The pulse labeling assay with the methi-
onine analog L-azidohomoalanine (AHA) (Dieterich et al. 2007)
showed that the nascent protein synthesis of mitochondrial cod-
ing genes was generally suppressed at variable levels after TUFM
knockout (Supplemental Fig. S7G).

Genes encoding subunits of complexes III, IV, and V of the
mitochondrial respiratory chain generally showed decreased trans-
lation efficiency and ribosome occupancy, as well as increased ri-
bosome pausing after TUFM knockout (Fig. 4C,D), and their
protein expression were drastically down-regulated (Fig. 4E). Het-
erogeneous regulation was observed for the subunits of complex
I. Translation efficiencies of genes such as MT-ND2 and MT-ND6
were decreased after TUFM knockout (Fig. 4C), but ribosome occu-
pancies of the genes were not down-regulated because their RNA
expression levels were increased, possibly owing to the compensa-
tory regulation from gene transcription (Fig. 4C).MT-ND1 did not
show significant regulation of ribosome occupancy or pausing,
and its protein expression was unchanged (Fig. 4C–E). Altogether,
these data indicate a selective function of TUFM in regulating mi-
tochondrial translation and show the ability of RNase footprinting
to dissect the heterogeneity and redundancy of the translation
machinery.

Additionally, we examined the expression of nuclear-encod-
ed respiratory chain subunits, which have been commonly used
as markers for complex activity (Baechler et al. 2019; Rudler et al.
2019). For NDUFB8 (complex I), UQCRC2 (complex III), and
COX4I1 (complex IV), their protein levels were drastically down-
regulated (more than fourfold) (Fig. 4E), but the ribosome occu-
pancies across these transcripts showed modest down-regulation
(1.1- to 1.8-fold) (Supplemental Fig. S7F). These data suggest that
TUFM knockout translationally suppressed the expression ofmito-
chondria-encoded respiratory chain proteins, causing complex in-
stability and the degradation of nuclear-encoded protein subunits.

RNase footprinting shows the suppression of cytosolic translation

upon mitochondrial translation dysfunction

A total of 220 cytosolic mRNAs showed inhibition of translation
efficiency greater than 1.5-fold after TUFM knockout (Fig. 4F; Sup-
plemental Fig. S7I,J; Supplemental Table S2). These genes are en-
riched with ribosomal proteins and histone genes (Fig. 4G;
Supplemental Table S3). Only 24 genes showed increased transla-
tion efficiency, and nine of themhad high ribosome occupancy in
their uORFs in 5′ UTRs, such as ATF4 and PPP1R16A (Supplemen-
tal Table S2). Gene Ontology analyses showed that the transcrip-
tionally up-regulated genes were enriched in pathways such as

“response to extracellular stimulus,” “immune response,” and
“regulation of apoptosis” (P<10−3) (Supplemental Table S3).West-
ern blots showed that the translation initiation factor EIF2A is
more phosphorylated and EIF4EBP1 shows decreased phosphory-
lation after TUFM knockout (Fig. 4H). Using pulse-AHA labeling,
we showed that the global nascent protein synthesis rate was de-
creased by 2.3-fold (Fig. 4I; Supplemental Fig. S7H). Altogether,
the data indicate that cytosolic translation activity is inhibited in
response to cellular stress induced by mitochondrial dysfunction
after TUFM knockout, and the regulated genes and pathways are
similar to those mediated by other stress responses (Andreev
et al. 2015; Gameiro and Struhl 2018). These results showed that
our RNase footprinting data can be used to dissect the synchro-
nized regulation between mitochondrial and cytosolic translation
programs.

RNase footprinting reveals base-resolution translation using

low amounts of snap-frozen tissues

Poorly proliferative primary tissues show lower translational activ-
ity than rapidly dividing cultured cells, and this makes it a chal-
lenge to quantify the small number of actively translating
ribosome complexes in cells. We applied our RNase footprinting
approach to assay RNA translation in snap-frozen tumor and
spleen samples (with only 1 mg input material) from the mouse
4T1 breast cancer model (Fig. 5A). We calibrated RNase digestion
and library preparation conditions based on the cellular total
RNA amount (for details, see Methods). The lengths of the ribo-
some footprints showed enrichment around 29 nt and a minor
peak at 21 nt (Fig. 5B). The reads (18–35 nt) were highly enriched
in coding regions (Fig. 5C), and those with peak size (∼29 nt)
showed continuous 3-nt periodicity across ORFs, indicating active
translation (Fig. 5D). The calculated ribosome occupancy levels
were highly consistent between replicates (R>0.98) (Fig. 5E,F).
The data indicate that our RNase footprinting can quantify ribo-
some footprints using snap-frozen tissue samples.

RNase footprinting reveals the regulation of RNA translation

among primary immune cells

RNA translation is highly regulated during blood development
and disorders (Signer et al. 2014; Khajuria et al. 2018). However,
it has been a challenge to apply ribosome profiling to clinical
samples, because primary peripheral blood mononuclear cells
(PBMCs) showed a 30-fold lower protein synthesis rate than did
cultured K562 cancer cells (Supplemental Fig. S8A). Using a stan-
dard blood draw, we performed RNase footprinting and RNA-seq
for mixed PBMCs and purified T cells, B cells, and monocytes
(Fig. 6A; Supplemental Fig. S8B–E). Footprinting profiles of these
immune cells effectively captured the marker gene expression
and classified the cell types (Fig. 6B; Supplemental Fig. S8F–H).
Two thousand forty-eight genes showedmore than 1.5-fold differ-
ential translation efficiency comparing T cells, B cells, and mono-
cytes (Fig. 6C; Supplemental Fig. S9A–C; Supplemental Table S4).
These translationally regulated genes showed little overlap with
those regulated by gene transcription as identified by RNA-seq
(Fig. 6D,E; Supplemental Fig. S9D–G; Supplemental Table S4).
The data indicate that RNA translation and gene transcription
are two complementary regulatory layers of immune cell activities.
Transcriptionally regulated genes are enriched in the genes associ-
ated with cell type–specific functions. Genes uniquely activated in
T cells and B cells are enriched in the pathways “T-cell activation”
and “B-cell activation,” respectively (Supplemental Table S5).
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Monocyte-specific genes are enriched in the pathway of “inflam-
matory response” (Supplemental Table S5). Most translationally
regulated genes (1360 genes, 66% of total) show consistently
higher translation efficiency in both T cells and B cells compared
with monocytes (Fig. 6C), representing lymphocyte-specific regu-
lation via translation. These genes are enriched in pathways such
as “cell cycle,” “RNA processing,” “regulation of transcription,”
and “chromatin organization” (Fig. 6F; Supplemental Fig. S9H–J;
Supplemental Table S5).

Ribosomal proteins showed significantly lower RNA ex-
pression in monocytes compared to lymphocytes (P<10−17,
Wilcoxon rank-sum test) (Fig. 6G). This is a possible mechanistic
explanation for the decreased translational activity observed in
monocytes. Translation initiation factors were mildly regulated
at the transcriptional level but showed significantly lower trans-
lation efficiency in monocytes than lymphocytes (P<10−8,
Wilcoxon rank-sum test) (Fig. 6H). The suppression of initiation
factors at the translational level may further decrease the transla-
tion activity in monocytes. Altogether, these results show the fea-
sibility and significance of profiling the translatomic landscape of
human primary tissue samples, which can lead to novelmechanis-
tic insights into biological systems.

RNase footprinting examines translated noncanonical ORFs

in individual’s immune cells

Next, we used the RNase footprinting data to study the immune
translatome and examine the regulation of noncanonical ORFs.
Using the RibORF software (Ji et al. 2015; Ji 2018b), we selected
read fragments that show strong 3-nt periodicity (Fig. 7A) to train
a logistic regression model to predict the translation probability of
a candidate ORF. Footprinting data from immune cells can accu-
rately distinguish in-frame-translated ORFs versus internal off-
frame ones (area under the ROC curve=0.987) (Fig. 7B). In total,
we identified 2639 translated uORFs in 5′ UTRs, 381 dORFs, 265
lncRNA ORFs, and 134 pseudogene ORFs (Fig. 7C; Supplemental

Table S6). Three hundred twenty-one of
thesenoncanonicalORFs showeda great-
er than 1.5-fold differential ribosome
occupancy among the individual’s pri-
mary immune cell types (Fig. 7D; Supple-
mental Table S7). Our data showed that
personalized translatomics data from
RNase footprinting canbeused to charac-
terize the regulation of noncanonical
ORFs.

Discussion

The original ribosome profiling protocol
used the sucrose gradient to isolate 80S ri-
bosome complexes and associated foot-
prints to study RNA translation (Ingolia
et al. 2009). Later on, to simplify the ex-
perimental procedure, ultracentrifuga-
tion through a sucrose cushion or size-
exclusion chromatography was used to
enrich complexes with higher molecular
weights (McGlincy and Ingolia 2017).
Here, by leveraging that translating
ribosomes (80S ribosomes and 55Smitor-
ibosomes) show stronger protection effi-

ciency than other RBPs, we optimized the digestion conditions
using concentrated RNase and effectively retained ribosome-pro-
tected fragments while digesting other RNA fragments in coding
regions. The simplified procedure to select translating ribosome-
protected footprints allowed for rapid ribosome profiling.

In combinationwith A-tailing and SMARTer oligo-based tem-
plate switching to add sequencing adapters, our RNase footprint-
ing reveals base-resolution active translation using as few as 1000
cultured cells, which is about 1000-fold fewer starting materials
than those of conventional protocols. We showed that our
RNase footprinting data can quantitatively measure different as-
pects of protein synthesis. The calculated gene-level ribosome oc-
cupancy, codon usage level, and ORF translation probability are
well correlatedwith conventional ribosome profiling data sets gen-
erated by sucrose cushion, sucrose gradient, and size-exclusion
chromatography methods. The template switch step (SMART-RT)
used by our protocol tends to amplify footprints with the nucleo-
tide G at the 5′-end (Supplemental Fig. S6A; Supplemental Table
S1; Wulf et al. 2019). This bias needs to be taken into account
when interpreting ribosome occupancy in individual genomic
sites.We calibrated our protocol for a variety of primary tissue sam-
ples with low protein synthesis rates and showed it worked robust-
ly for snap-frozen tissues and primary immune cells. Our method
does not require any specialized equipment. The working hour of
our RNase footprinting protocol is about 1.5 workdays (compara-
ble with regular RNA-seq) and is <25% of that needed for conven-
tional ribosome profiling.

We performed quality control of our RNase footprinting data
using a set of analyses. The footprint lengths show peaks in ∼29 nt
and ∼21 nt (minor in some cells), representing optimized RNase
digestion (Martinez et al. 2020). The reads around the peak sizes
show 3-nt periodicity across canonical ORFs. Additionally, the
reads between 18 and 35 nt in length show high enrichment in
coding regions compared with 3′ UTRs. The original ribosome pro-
filing protocol only captured the∼29-nt footprints and did not ex-
amine the ∼21-nt ones. Only recently, several studies highlighted
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Figure 5. RNase footprinting maps RNA translation landscape using snap-frozen tumor and spleen tis-
sues. (A) RNase footprinting and RNA-seq read distribution across the example gene CYC1. (B) The dis-
tribution of footprint lengths in coding regions of mRNAs. (C) The log2 ratio of read density in coding
regions versus 3′ UTRs for each fragment size (18–35 nt). (D) Adjusted read distribution around the
stop codons of mRNAs using RNase footprinting data of the 4T1 tumor and spleen tissues. We adjusted
5′-end genomic locations of the 29-nt footprints to the ribosomal A-sites. (E,F ) Correlation of ribosome
occupancy levels between two replicates of 4T1 tumor (E) and spleen tissues (F ). The x-axis and y-axis
represent log2(read count + 1) in coding regions.
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the fraction of ribosome footprints with∼21 nt (Lareau et al. 2014;
Wu et al. 2019). Consistent with the previous study (Wu et al.
2019), the ratio of 29-nt versus 21-nt reads appears to be variable
across different cells and tissues. It will be interesting to dissect
the biological roles of dynamic regulation of these two ribosome
conformational states. During the data analyses, we used 18- to
35-nt reads to calculate ribosome occupancy, but when we calcu-
lated codon usage levels and identified actively translated nonca-
nonical ORFs, we only used the reads showing strong 3-nt
periodicity (typically those around peak sizes) because these anal-
yses require accurate correction of read location to the ribosomal
A-site or P-site.

The RNase footprinting assaywas inspired by our previous in-
depth analyses of ribosome profiling data (Ji et al. 2015, 2016). We
and others previously found that the ultracentrifugation step
through a sucrose cushion used by conventional ribosome profil-
ing is not specific for translating 80S ribosomes, and the transcrip-
tomic RNase footprinting nature of the assay also isolates
nonribosomal RNA–protein complexes in noncoding RNAs/
regions (Ingolia et al. 2014; Ji et al. 2016). Based on the ultracentri-
fuge parameters, we calculated that RNA fragments in more than
7–10S protein complexes can be isolated for sequencing (Ji et al.
2016). These findings motivated us to skip the ultracentrifuge
step. Different from the previously published footprintingmethod
(Silverman et al. 2014), we did not perform the RNA–protein cross-
linking steps and treated the cell lysates with highly concentrated
RNase. As a result, only the most stable RNA–protein complexes
were retained after RNase digestion. The nonribosomal footprints

show highly localized distribution without 3-nt periodicity and
have different lengths compared with ribosomal ones. Based on
these read distribution patterns, we can computationally distin-
guish the two types of footprints (Ingolia et al. 2014, 2019; Ji
et al. 2016). As discussed previously (Ji et al. 2016), the character-
ization of nonribosomal footprints could provide biological in-
sights into corresponding noncoding regions. Additionally,
similar to conventional ribosome profiling, ∼78% of our sequenc-
ing reads are fragments from ribosomal RNAs (rRNAs). And ∼10%
of reads aremapped to annotatedmRNAs and lncRNAs.We recom-
mend a sequencing depth of more than 50 million for each sam-
ple. Future study is needed to develop effective methods to
deplete unwanted rRNA fragments to increase the fraction of reads
usable to study RNA translation. For low-input RNase footprinting
conditions, the biotinylated oligonucleotide pulldown approach
can decrease RNA amount and cause the PCR overamplification is-
sue. However, the CRISPR-based depletion of unwanted fragments
in the DNA library could be a promising approach (Hardigan et al.
2019).

Because of the unbiased assay of transcriptomic RNase foot-
prints, our footprinting data allow the simultaneous quantifica-
tion of cytosolic and mitochondrial translation. Current assays
used to study mitochondrial translation involve complicated pro-
cedures using sucrose gradient to purify 55S mitoribosome com-
plexes (Rooijers et al. 2013; Couvillion et al. 2016; Morscher
et al. 2018). Our RNase footprinting provides a simplified method
to tacklemitochondrial translation and obtains comparable results
(i.e., ribosome occupancy and footprint lengths) versus the
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Figure 6. Regulation of RNA translation across human primary immune cell types. (A) Experimental steps to isolate T cells, B cells, and monocytes from
PBMCs and then perform RNase footprinting and RNA-seq. (B) The principal component analysis (PCA) of ribosome occupancies of T cells, B cells, mono-
cytes, and PBMCs. Genes showing more than twofold regulation across cells were used in the analyses. The percentages of variance explained by PC1 and
PC2 are shown in parentheses. (C,D) The heatmap showing genes with regulation of translation efficiency (C ) and RNA expression (D) comparing T cells, B
cells, and monocytes. (E) Example genes showing differential RNA expression and translation efficiency, comparing T cells versus monocytes. (F–H)
Boxplots showing the relative levels of ribosome occupancy (RFP), RNA expression, and translation efficiency (TE) for indicated genesets comparing T cells,
B cells, monocytes, and PBMCs: “cell cycle” (F ), “ribosomal proteins” (G), and “translation initiation factors” (H). The ∗ or # label indicates the Wilcoxon
rank-sum test P-value showing the geneset has significantly lower expression in monocytes, compared with both T cells and B cells.
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conventional method. Using the assay, we revealed that TUFM se-
lectively regulates the translation efficiency and ribosome elonga-
tion of the 13 mitochondrial-encoded protein-coding genes, and
showed that cytosolic translation is synchronously repressed after
TUFM knockout. Similar approaches can be used to define the
functional roles of other regulators and dissect the cross talk be-
tween mitochondrial translation and cytosolic regulation during
biological processes.

Our RNase footprinting technique opens up an avenue to ex-
amine transcriptomic translation using low-input primary cells
from physiological contexts for both basic scientific research and
clinical personalized prognosis. For the proof-of-concept experi-
ment, we show that our assay reveals base-resolution active trans-
lation in snap-frozen mouse tissues (i.e., tumor and spleen) and
primary immune cells (i.e., T cells, B cells, and monocytes) from
an individual’s standard blood draw. Many genes showed lower
translation activity in monocytes than lymphocytes. This is likely
owing to the lower RNA expression of ribosomal proteins inmono-
cytes. We analyzed the RNA expression profiles of monocytes and
lymphocytes using published RNA-seq data sets and found that
this differential regulation appears to be a general phenomenon
across human individuals (Supplemental Fig. S9K). Further studies
examining RNA translation in more immune cell subtypes and
progenitor cells will provide mechanistic insights into translation-
al control during hematopoiesis.

RNA translation is tightly regulated during development, ag-
ing, and the progression of human disease (e.g., cancer and neuro-
nal disorders) (Kondrashov et al. 2011; Tahmasebi et al. 2018).
Cells in various tissue compartments are under differential
stress conditions, potentially impacting RNA translation. In
combination with other rare-cell isolation techniques, such as
fluorescence-activated cell sorting (FACS) or laser-capture micro-
dissection, our RNase footprintingmethod can be used to examine
RNA translation of individual cell types fromheterogeneous tissue
samples. The results will refine our understanding of the transla-
tional control underlying physiological and pathophysiological
conditions. We envision that our RNase footprinting method
can work for single-cell ribosome profiling with the optimization
of RNase digestion and library preparation procedures. Recently,

two single-cell protocols were developed to examine RNA transla-
tion. Ribo-STAMP uses the fusion protein of translation factor-
APOBEC1 (a cytidine deaminase enzyme) to identify RNA targets
bound by ribosomes at the single-cell level (Brannan et al. 2021).
Although this method can examine the expression of actively
translated RNAs, it cannot reveal which ORFs are translated, and
the transfection of the fusion protein is hardly applicable to prima-
ry tissue samples. Separately, a single-cell method based onMNase
digestion was developed to obtain ∼35-nt ribosome footprints for
sequencing without the ultracentrifuge step to isolate the ribo-
some complex (Reid et al. 2015; VanInsberghe et al. 2021). Howev-
er, because RNase digestion has been most commonly used for
ribosome profiling and the biological regulation of RNase foot-
prints has been well characterized, the further development
of our RNase footprinting method toward the single-cell level
would be valuable to understand the heterogeneous translational
response across cell types.

Recent studies showed thatmicropeptides encoded by nonca-
nonical ORFs can serve as novel cancer biomarkers/targets
(Prensner et al. 2021) and can be used to design novel neoantigens
for immunotherapy (Laumont et al. 2018; Chong et al. 2020; Ruiz
Cuevas et al. 2021; Ouspenskaia et al. 2022). A potentially exciting
application of RNase footprinting is to define the comprehensive
translatome and noncanonical ORFs using patient samples, which
can lead to novel clinical disease diagnosis and personalized treat-
ment strategies.

Methods

Low-input RNase footprinting

The protocol has two major steps.

Step 1. Cell harvesting, RNase treatment, and footprint purification

For cultured adherent cells, cells were seeded in onewell of amulti-
well plate the day before harvest andwere grown to 70%–80% con-
fluency. Cells were supplemented with 100 μg/mL cycloheximide
and incubated for 3 min at 37°C. To harvest cells, we quickly
washed the cells twice with cold PBS containing 100 μg/mL
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Figure 7. Regulation of noncanonical ORFs among primary immune cells. (A) Adjusted RNase footprinting read distribution around the stop codons of
mRNAs. For footprints showing strong 3-nt periodicity, we adjusted their 5′-end genomic location to the ribosomal A-sites and plotted the RPM values (for
details, see Methods). (B) The ROC curve measuring the RibORF performance in classifying in-frame-translated ORFs versus internal off-frame ORFs using
RNase footprinting data in immune cells. The area under the ROC curve (AUC) value is shown. (C ) The RibORF-identified genome-wide translated ORFs in
immune cells, which were grouped based on their genomic locations. (uORF) ORF in 5′ UTR, (dORF) ORF in 3′ UTR, and (internal) ORF within canonical
ORFs. (D) The heatmap showing lncRNA ORFs and uORFs with dynamic regulation of ribosome occupancy comparing T cells, B cells, and monocytes.
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cycloheximide. Lysis buffer was immediately added to each well
(20 mM Tris at pH 7.4, 150 mM NaCl, 5 mM MgCl2, 1 mM DTT,
100 μg/mL cycloheximide, 1% v/v Triton X-100). The cells were
left to lyse for 10 min on ice. Cell lysates were collected in a
1.5-mL microcentrifuge tube, followed by 10 times trituration
through a 26-gauge needle. For suspension-cultured cells and pri-
mary immune cells, cells were pelleted in a 1.5-mLmicrocentrifuge
tube andwerewashed twicewith cold PBS. Cells were immediately
lysed in the lysis buffer for 10min on ice, followed by 10 times trit-
uration through a 26-gauge needle. For primary tissue samples,
powdered tissue was collected in a 1.5-mL microcentrifuge tube
and was lysed in the lysis buffer. Tissue lysate was incubated for
10min on ice, followed by 10 times trituration through a 26-gauge
needle. After centrifugation at 1000g for 5 min, the supernatant
was collected in a new 1.5-mL microcentrifuge tube.

The RNase treatment condition was calibrated based on the
total RNA amount in the cell lysate. RNA concentration in the ly-
sate was measured by Qubit (Invitrogen). RNase digestion condi-
tions were then determined by the following two steps. First, we
calculated the required RNase amount with the following equa-
tion: the amount of RNase (U) = 50× total RNA amount (μg).
Second, we found that the RNase concentration in the reaction
volume is also critical to achieving efficient digestion, and we
added more RNase to adjust the final RNase concentration to
0.5–1 U/μL. The adjustment is especially important for ultralow
cell counts (e.g., 1000 cultured cells). RNase with an even higher
concentration can cause overdigestion of ribosome footprints.

Fifty thousand cultured cells (we generally obtained ∼1 μg of
total RNA from cultured HEK293T, K562, andHeLa cells) and 1mg
primary tissues (∼1 μg of total RNA) were lysed in 90 μL buffer and
digestedwith 50URNase 1. One thousand cultured cells (10–20 ng
of total RNA) and immune cells (50–100 ng of total RNA was ob-
tained from our PBMC, T cells, B cells, and monocytes) were lysed
in 60 μL buffer and digested with 60 U RNase I. Our RNase condi-
tion was optimized based on the Lucigen unit definition (10 U/μL,
catalog no. N6901K). The cell lysate was digested for 1.5 h at room
temperature (25°C). We added 400 μL of TRIzol (Ambion) and 100
μL of chloroform (Sigma-Aldrich) to extract RNase footprints, and
the footprints were precipitated overnight with isopropanol.

Step 2. Sequencing library construction using A-tailing and SMARTer oligo-

based template switching

The following are the experimental conditions used for 50,000 cul-
tured cells (HEK293T, K562, or HeLa cells) or 1mg primary tissues.
Precipitated RNase footprints were suspended in 5 μL of TNK reac-
tionmixture (0.5 μL of 10×T4 polynucleotide kinase [PNK] buffer,
1 μL of PNK [New England Biolabs], 0.5 μL of SUPERase•In RNase
inhibitor [Invitrogen], and 3 μL of RNase-free water). The foot-
prints were end-repaired for 90 min at 37°C followed by incuba-
tion for 5 min at 65°C to inactivate PNK. The end-repaired RNase
footprints were 3′ polyadenylated with 10 U of Escherichia coli
poly(A) polymerase (New England Biolabs) by incubating for 2 h
at 37°C (supplemented with 2 μL of first-strand buffer [Invitrogen,
250mMTris-HCl at pH 8.3, 375mMKCl, 15mMMgCl2], 2 μL of E.
coli poly(A) polymerase [New England Biolabs], 0.25 μL of 10 mM
ATP, 0.5 μL of SUPERase•In RNase inhibitor, and 0.25 μL of RNase-
free water). The resulting polyadenylated RNA was reverse-tran-
scribed by amodified SMART-RT reaction. The RNAwas firstmixed
with 2.5 μL of 10 μM RT primer and annealed by heating to 72°C
for 5 min and cooled on ice immediately. The reaction mixture
was then supplemented with SMART-RT mixture (2.5 μL of 10
mM dNTP, 2 μL of SuperScript II reverse transcriptase [Invitrogen],
0.5 μL of SUPERase•In RNase inhibitor, 4 μL of SuperScript II first-
strand buffer, 1.5 μL of 100mMDTT, 6 μL of 5Mbetaine, 0.12 μL of

1MMgCl2, 0.4 μL of 100 μMtemplate-switching oligos, and 0.5 μL
of RNase-free water) and incubated for 1 h at 42°C, followed by
10 cycles of heating for 2 min at 50°C and then cooling for
2 min to 42°C. The enzyme was inactivated by heating for
10 min at 70°C. The RNA fragments hybridized to DNA were
then removed by incubating the reaction mixture for 15 min at
37°C with 5 U of RNase H (New England Biolabs).

The resultant 30 μL of cDNA was combined with 50 μL of 2×
Ultra II Q5mastermix (NewEnglandBiolabs), 0.5 μMfirst-primers,
and water to obtain a final reaction volume of 100 μL. This first
round of PCR was performed with an initial 3-min denaturation
at 98°C, followed by one cycle of 20-sec denaturation at 98°C,
30-sec annealing at 65°C, and 90-sec extension at 72°C, and
then six cycles of 20-sec denaturation at 98°C, 20-sec annealing
at 67°C, and 60-sec extension at 72°C. PCR round 1 was finished
with a 3-min extension at 72°C. The PCR products were purified
using a DNA Clean & Concentrator column (Zymo Research)
and eluted in 20 μL of water. This library was amplified by a second
round of PCR using a set of outer primers. Purified PCR1 products
were combined with 25 μL of 2× Ultra II Q5 master mix (New
England Biolabs) and 0.5 μM second-primers. We performed an
initial 3-min denaturation at 98°C, followed by four cycles of 20-
sec denaturation at 98°C, 20-sec annealing at 67°C, and 30-sec ex-
tension at 72°C, and finished with a 3-min extension at 72°C. The
final DNA library was separated and visualized in a 4% agarose gel.
DNA fragments with 15- to 35-bp insert bands were excised and re-
covered using the DNA gel recover kit (Zymo Research). We de-
signed two DNA sequences with 15-nt- and 35-nt-length inserts
as markers to guide the library size selection. The primers used
for the library preparation are shown in Supplemental Table S8.

For the library construction of ultra-low-input conditions
(i.e., 1000 cultured cells and immune cells), we increased the poly-
adenylation tailing incubation time to 4 h to achieve >80% poly-
adenylation of footprints. We also increased the PCR cycles (six
cycles for the first round and five cycles for the second) to generate
the sequencing library.

RNase footprinting data analyses

Weperformed paired-end sequencing (2 ×151 nt) of the footprint-
ing libraries. Because the RNase footprint lengths are short (<35 nt
for ribosome footprints), we used the first ends of reads to perform
mapping and gene expression calculation. We first trimmed the 3′

sequencing adapters from the reads (AAAAAAAAAA for the A-tail-
ing methods, and AGATCGGAAG for the data sets generated by
linker ligation methods). For the libraries using SMARTer oligo-
based template switching, we trimmed the first 7 nt, including
the random4nt and three lockedGs in the 5′ sequencing adapters.
The trimmed reads were first mapped to the rRNA sequences (5S,
5.8S, 18S, and 28S) using Bowtie 2 (version 2.2.6) (Langmead
and Salzberg 2012). Approximately 78% of reads were mapped to
rRNAs. The unmappable reads were thenmapped to a reference ge-
nome (hg38 for humanormm10 formouse) and transcriptomeus-
ing TopHat (version 2.1.0) (Kim et al. 2013). The transcriptome
annotation was based onGENCODE (release 28 for human and re-
lease 20 for mouse) (Frankish et al. 2019), and wemodified the an-
notation by incorporating the mitochondrial transcripts as
annotated by the UCSC Genome Browser.

We used the uniquely mappable reads with lengths of 18–35
nt for the calculations of ribosome occupancy because actively
translating ribosomes show footprints of these defined lengths.
To obtain read counts in RefSeq-defined protein-coding regions,
we excluded the regions overlapping with uORFs (Ji et al. 2015)
and used HTSeq (version 0.9.1) (Anders et al. 2015) to generate
gene-level read counts. The ribosome occupancy levels were then
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measured as TPM values. To examine the read distribution across
codons, we used the RibORF software (Ji et al. 2015; Ji 2018b) to
plot the read distribution around the start and stop codons of
mRNAs, adjust the reads’ genomic locations based on the offset
distance between the 5′-end of fragments and ribosomal A-site,
and examine 3-nt periodicity. We selected the reads showing
strong 3-nt periodicity to identify translated noncanonical ORFs
using RibORF. For more details, see Supplemental Methods.

Data access

All raw and processed sequencing data generated in this study
have been submitted to the NCBI Gene Expression Omnibus
(GEO; https://www.ncbi.nlm.nih.gov/geo/) under SuperSeries
accession number (GSE151989, GSE151986, GSE151987,
GSE151988, and GSE153411). The source codes for the data anal-
yses are provided as a Supplemental Code file as well as in GitHub
(https://github.com/zhejilab/RNaseFootprinting).
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