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ABSTRACT
Background To gain maximum insight from large 
administrative healthcare datasets it is important to 
understand their data quality. Although a gold standard 
against which to assess criterion validity rarely exists for 
such datasets, internal consistency can be evaluated. 
We aimed to identify inconsistencies in the recording 
of mandatory International Statistical Classification of 
Diseases and Related Health Problems, tenth revision (ICD- 
10) codes within the Hospital Episodes Statistics dataset 
in England.
Methods Three exemplar medical conditions where 
recording is mandatory once diagnosed were chosen: 
autism, type II diabetes mellitus and Parkinson’s disease 
dementia. We identified the first occurrence of the 
condition ICD- 10 code for a patient during the period 
April 2013 to March 2021 and in subsequent hospital 
spells. We designed and trained random forest classifiers 
to identify variables strongly associated with recording 
inconsistencies.
Results For autism, diabetes and Parkinson’s disease 
dementia respectively, 43.7%, 8.6% and 31.2% 
of subsequent spells had inconsistencies. Coding 
inconsistencies were highly correlated with non- coding 
of an underlying condition, a change in hospital trust 
and greater time between the spell with the first coded 
diagnosis and the subsequent spell. For patients with 
diabetes or Parkinson’s disease dementia, the code 
recording for spells without an overnight stay were found 
to have a higher rate of inconsistencies.
Conclusions Data inconsistencies are relatively 
common for the three conditions considered. Where these 
mandatory diagnoses are not recorded in administrative 
datasets, and where clinical decisions are made based on 
such data, there is potential for this to impact patient care.

INTRODUCTION
Decision- making by clinicians and health-
care service managers is increasingly being 
informed by large- scale administrative health-
care data.1 Although such data are observa-
tional and often lack clinical details, they 
can support decision- making, particularly 
in cases where other research methods (eg, 
randomised controlled trial) may be consid-
ered unethical or impractical. Where such 
data cover an entire population of interest, 
they can also help minimise the risk of 

bias due to unrepresentative patient selec-
tion criteria (collider bias).2 However, it is 
important to have a clear understanding of 
data quality and the strengths and limitations 
of any dataset prior to analysis.3 4

In England, the Getting It Right First Time 
(GIRFT) programme is an National Health 
Service (NHS) England and NHS Improve-
ment initiative with a remit to reduce unwar-
ranted variation in clinical practice that 
negatively impacts on patient outcomes. The 
GIRFT programme is one of the largest users 
of administrative healthcare data for clinical 
outcome measurement in the UK and has a 
particular interest in data quality. A key data 
resource for the GIRFT programme is the 
Hospital Episodes Statistics (HES) dataset, 
which contains data for all hospital admis-
sions of NHS patients in England.

The aim of this exploratory study was to 
identify the extent of, and data features asso-
ciated with, data inconsistencies within the 
HES administrative dataset for England.5

WHAT IS ALREADY KNOWN ON THIS TOPIC
 ⇒ Large- scale administrative healthcare datasets are 
increasingly being used to support decision- making, 
but very little work has been done to assess the 
quality and consistency of the data.

WHAT THIS STUDY ADDS
 ⇒ The study offers a novel assessment and analysis 
of the data quality of the Hospital Episode Statistics 
dataset in the recording of mandatory diagnoses for 
patients with autism, type II diabetes mellitus with 
peripheral complications and Parkinson’s disease 
dementia.

HOW THIS STUDY MIGHT AFFECT RESEARCH, 
PRACTICE OR POLICY

 ⇒ Data inconsistencies are relatively common for the 
conditions considered. Where these mandatory di-
agnoses are not recorded, there is potential for this 
to impact on the care provided. This study should 
motivate the improvement of clinical coding for all 
conditions with mandatory diagnosis recording.
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METHODS
Study design and data collection
This was a retrospective exploratory analysis of HES data. 
HES data are collected by NHS Digital for all NHS- funded 
patients admitted to hospitals in England. Hospital trusts 
run all NHS hospitals in England. A hospital trust is an 
administrative unit of, typically, one to four hospitals 
which provides secondary and/or tertiary care for all 
people living in a geographically defined catchment 
area. HES includes data for patients funded by the NHS 
but receiving treatment in a non- NHS hospital. Data 
collection and reporting is mandatory for NHS funded 
patients. Data are taken from clinical notes and discharge 
summarises and data are entered by trained clinical 
coders at each trust working to a national data standard.6 
Extracts from HES data are audited against clinical audit 
in a small number of truss each year.

Data regarding pre- existing diagnoses would only be 
recorded by a coder if detailed in the medical notes or 
discharge summary, and all clinicians receive training in 
the importance of accurately recording data. Although 
autocoding of data is becoming more common in the 
NHS, its use in the period covered by our study was very 
limited.

HES data are primarily collected for the purposes 
of reimbursement. However, their value as a research 
resource and to inform policy decisions is being increasing 
recognised.7

In HES, a hospital spell is defined as a continuous 
period in hospital from admission to discharge. A spell 
can include multiple smaller episodes of care in various 
hospital settings and under different consultants. As an 
example, following an emergency department atten-
dance, a patient may initially be under the care of acute 
medicine (episode one), then transferred to a critical care 
setting (episode two) and then to a care of the elderly 
ward (episode three) prior to discharge. Spells involving 
transfers to other trusts were analysed as separate spells.

Timing, case ascertainment, inclusion and exclusion criteria
Data were taken from HES for all patient discharges during 
the period 1 April 2013 to 31 March 2021. Using Inter-
national Statistical Classification of Diseases and Related 
Health Problems, tenth revision (ICD- 10) codes three 
separate exemplar datasets were extracted for patients 
with a diagnosis of: childhood autism (F84.0), atypical 
autism (F84.1) and Asperger’s syndrome (F84.5); type II 
diabetes mellitus with peripheral circulatory complica-
tions (DMPC; E11.5) and Parkinson’s disease dementia 
(PDD; F02.3). ICD- 10 codes allow data to be captured and 
defined consistently over time and across settings. There 
have been no major changes in ICD- 10 coding guidance 
for these conditions over the study period.

DMPC and PDD were selected as representative of 
patients within the broader disease categories of diabetes 
mellitus and dementia, respectively.

These conditions were chosen for several reasons:

1. Recording of these conditions is mandated by NHS 
Digital and NHS England for all subsequent hospital 
episodes once a diagnosis has been made.8

2. The conditions have typical onset in childhood (au-
tism), midlife (DMPC) and late- life (PDD) and so cov-
er a range of demographic groups.

3. All tend to be lifelong once present, accepting that 
DMPC and PDD are representatives of broader condi-
tions and that the details of the diagnosis may change 
within these broad definitions.

The first use of the specified code in the diagnostic 
record for a hospital spell during the study period was 
identified (index spell) and data for all subsequent spells 
for the same person extracted.

Spells were removed from the datasets if:
1. The only ICD- 10 code present in the record was R69 

(unknown and unspecified causes of morbidity) or 
there was no valid entry in the diagnostic code field.

2. The spell was a regular attendance for renal or liver 
dialysis (Office of Population Censuses and Surveys 
Classification of Interventions and Procedures ver-
sion 4 code X40 or X43; or other regular attendance 
with ICD- 10 code N185 (chronic renal failure) pres-
ent. Regular day- attendances are usually for a specific 
procedure, and in most cases only that procedure and 
the related diagnosis is coded. Inclusion of these spells 
would unduly bias the dataset.

3. Patients were in age bands where the initial coding 
diagnoses were most likely miscoded: we removed pa-
tients with PDD younger than 40 years, and patients 
with DMPC younger than 18 years. The data extraction 
and cleaning procedure for each dataset is summarised 
in online supplemental figures S1–S3.

Identification of data inconsistencies
All data inconsistencies are reported at the spell level. A 
subsequent spell was considered consistent with the first 
spell if at least one of its constituent episodes mentioned 
the ICD- 10 codes listed below for that condition:

Autism: F84.0, F84.1 or F84.5.
DMPC (representing the broader disease category of 

diabetes mellitus): E10-, E11-, E14-.
PDD (representing the broader disease category of 

dementia): F00-, F01-, F02-, F03-, F05.1, G30.1, G30.8, 
G309.

Further details on the definitions of these codes are 
summarised in online supplemental table S1. In the case 
of DMPC and PDD, a broader definition of the condition 
was used for subsequent spells than for the first spell. 
This was in recognition of the fact that details may not be 
recorded regarding the diabetes subtype or its presenta-
tion or the exact role of Parkinson’s disease in the devel-
opment of dementia.

Covariates and data features/characteristics
Patient characteristics: sex, age in years, ethnicity (white, 
black or black British, Asian or Asian British, mixed, other 
and not stated), comorbidities (Charlson Comorbidity 
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Index,9 frailty (Hospital Frailty Risk Score (HFRS)10 and 
the Global Frailty Score,11 and deprivation (Index of 
Multiple Deprivation scores).12

Features of hospital stay: Spell length of stay, admission 
method (emergency or elective), main specialty, number 
of days since the first spell with the diagnosis recorded 
(reported as the difference between the discharge date 
of the first spell and the admission date of the subsequent 
spell), change of trust between the first and subsequent 
spell, change of clinical specialty between the first and 
subsequent spell.

Coding of underlying conditions: We identified spells 
where a related condition would be expected to also be 
diagnosed. For PDD this was Parkinson’s disease (ICD- 10 
code G20), and for autism, whether learning disability 
(ICD- 10 codes F70-, F71-, F72-, F73-, F78-, F79-, F80-, F81-, 
F82- or F83-) was also mentioned in the diagnostic record. 
The Parkinson’s disease code is not mandatory, although 
the learning disability codes are mandatory.

Outcome (target) variable
For each condition, the target was described by a binary 
flag indicating whether a code was recorded in the subse-
quent spell.

Data analysis
Data were extracted onto a secure encrypted server 
controlled by NHS England and NHS Improvement. 
Analysis within this secure environment took place 
using Alteryx 2019.3 (Alteryx, Irvine, California, USA), 
Python V.3.9.6 and the scikit- learn machine learning 
library V.1.0.1 (Python Software Foundation, Beaverton, 
Oregon, USA).13

Important predictors associated with data inconsis-
tencies were identified using a random forest classifier 
algorithm (briefly described in online supplemental 
figure S4). Missing data values were handled by imputa-
tion with the mean or mode in each class. The datasets 
were separated into a training, validation and test sets 
with 70%, 15% and 15% of data respectively. Machine 
learning algorithms require the data to be randomly 
split so that the algorithm can learn the relationships 
between the data points and then apply this learning to 
an unseen part of the data set. The algorithm parameters 
were determined using the validation set by performing a 
randomised search on a grid of values and choosing the 
ones that led to the highest value for the area under the 
precision recall curve. The classifiers were then trained 
on the training set and evaluated on the withheld test set. 
The final parameters of each classifier are summarised in 
online supplemental table S2.

The models’ most important predictors were identified 
using the SHapley Additive exPlanation (SHAP) feature 
importance14 to minimise bias towards high- cardinality 
variables. Positive or negative correlations of predictors 
with coding inconsistencies were estimated by calculating 
the Kendall Tau- b correlation coefficients between the 
values of the variables, and their estimated Shapley values. 

These were calculated using TreeSHAP, an efficient esti-
mation approach for tree- based models.15 Model perfor-
mance was evaluated using the area under the receiver 
operating characteristics (AUROC) curve, precision- 
recall curves and precision gain—recall gain curves.16 CIs 
for the areas under the curves were computed using a 
python implementation of the DeLong method.17 18

In subanalyses, we evaluated the impact of time from 
the first spell on the proportion of inconsistencies. Time 
from admission for the first spell where the diagnostic 
code was used to admission for a subsequent spell was 
calculated in days for the subset of patients where the 
first spell was prior to 1 April 2018. The follow- up period 
was set at 3 years for all patients. This was done to avoid a 
potential bias due to varying maximum follow- up periods 
for each patient.

RESULTS
Data were available for 172 324 unique patients with 
autism, 106 943 unique patients with DMPC and 27 794 
unique patients with PDD. The characteristics of these 
patients on their first spell during the study period are 
summarised in table 1 together with the number of 
patients without data recorded for each feature. Autism 
patients had the youngest and patients with PDD the 
oldest age structure. The autism and DMPC dataset had 
a high proportion of patients from more deprived areas.

The number of subsequent spells for each patient 
within a 3- year follow- up period are shown in online 
supplemental figure S5 for each condition. High numbers 
of patients (more than 50% for patients with autism) had 
no subsequent spells within 3 years of their first spell. 
Patients with DMPC had the highest numbers of subse-
quent spells. Figure 1 summarises the number of data 
inconsistencies in these subsequent spells up to 3 years 
from the first spell where the diagnostic code was used. 
The number of data inconsistencies increased with time 
from the first spell, although the trend was less obvious 
after approximately 20 weeks. Figure 2 illustrate the 
percentage of subsequent spells with missing mandatory 
codes in the 3 years after the first spell. The consistency 
of the coding for PDD appeared to broadly improve over 
the study period, while for autism patients, consistency 
appears to have decreased slightly over time.

The number of subsequent spells with data inconsis-
tencies were 170 447 (43.7%) for patients with autism, 
46 679 (8.6%) for DMPC patients and 18 975 (31.2%) 
for patients with PDD. The number of subsequent spells 
with inconsistencies according to patient characteristics 
is summarised in table 2. For people with autism, data 
inconsistencies became more common with greater age. 
However, for PDD inconsistencies became less common 
with greater age. Females with autism and PDD had a 
noticeably higher proportion of inconsistencies than 
males. There was a modest trend towards a higher 
proportion of data inconsistencies in autism patients with 

https://dx.doi.org/10.1136/bmjhci-2022-100633
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increasing deprivation. White patients had the highest 
rate of inconsistencies for autism.

The variation in data inconsistencies across trusts in 
England is summarised in online supplemental figure S6. 

There was substantial spread in terms of data inconsisten-
cies across trusts.

Three random forest classifiers were optimised and 
trained to identify coding inconsistencies for each 

Table 1 Table of patient characteristics on first spell within the study period

Autism
Diabetes mellitus with peripheral 
complications Parkinson’s disease dementia

No of patients 172 324 106 943 27 794

Age band

  0–17 98 591 (57.2 %) 8 (0.01 %) 0 (0.0 %)

  18–39 50 682 (29.4 %) 1085 (1.0 %) 12 (0.04 %)

  40–59 16 060 (9.3 %) 21 745 (20.3 %) 279 (1.0%)

  60–79 6171 (3.6 %) 55 050 (51.5 %) 12 375 (44.5 %)

  80 years and over 820 (0.5 %) 28 938 (27.1 %) 15 111 (54.4 %)

  Not recorded 0 117 17

Sex

  Female 49 414 (28.7 %) 32 854 (30.7 %) 9828 (35.4 %)

  Male 122 616 (71.2 %) 74 089 (69.3 %) 17 961 (64.6 %)

  Not recorded 294 0 5

Deprivation quintile

  1 (most deprived) 48 539 (29.1 %) 27 136 (25.4 %) 4475 (16.1 %)

  2 38 254 (22.9 %) 23 419 (21.9 %) 5248 (18.9 %)

  3 31 311 (18.28%) 20 714 (19.4 %) 5815 (20.9 %)

  4 26 332 (15.8 %) 17 008 (15.9 %) 6084 (21.9 %)

  5 (least deprived) 22 275 (13.4 %) 13 757 (12.9 %) 5790 (20.8 %)

  Not recorded 5613 4909 382

Ethnicity

  White 113 146 (77.9 %) 89 084 (84.8 %) 21 402 (93.6 %)

  Asian 6916 (4.8 %) 4778 (4.5 %) 730 (3.2 %)

  Black 4964 (3.4 %) 3371 (3.2 %) 426 (1.9 %)

  Mixed 3695 (2.5 %) 435 (0.4 %) 61 (0.3 %)

  Other ethnic groups 16 537 (11.4%) 7325 (7.0 %) 240 (1.1 %)

  Not recorded 27 066 1950 4935

Most common specialties Paediatrics (23.5 %) General medicine (33.4 %) General medicine (33.1%)

  General surgery (7.3 %) General surgery (31.9 %) Geriatrics medicine (20.7 %)

Where data are not recorded for deprivation, this is due to the lower super output area of residence not being recorded. In most cases this is due to the patient not having a permanent 
residence in England (typically they be residents of other parts of the UK). Percentages for each recorded category are calculated excluding any unrecorded data.

Figure 1 Proportion of subsequent spells with inconsistencies over time up to three years after the index spell

https://dx.doi.org/10.1136/bmjhci-2022-100633
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condition. The relative importance of each feature is 
shown in figure 3. Across all three conditions, features 
strongly associated with data inconsistencies included a 
change in specialty, a change in provider, shorter spell 
length of stay and female sex. Data inconsistencies were 
also associated with older patient age for autism and 
DMPC and younger patients age for PDD. Although 
deprivation score was an important predictor for all 
three conditions, the directionality of the relationship 
was unclear. For patients with PDD, emergency admis-
sions and the absence of the diagnostic code for Parkin-
son’s disease were the most important features. AUROC 
curve values were 0.80 (95% CI 0.80 to 0.81) for autism, 
0.76 (95% CI 0.76 to 0.77) for DMPC and 0.75 (95% CI 
0.73 to 0.76) for PDD. online supplemental figure S7 
reports the areas under the precision- recall curves and 
precision gain—recall gain curves, also suggesting the 
classifiers to have good performance. The performance 
of each model in Black, Asian, male and female patient 
subgroups is summarised in Online supplemental table 
S3o and indicates no significant drop in performance for 
these groups.

DISCUSSION
We used machine learning algorithms to analyse three 
large datasets to investigate the consistency of clinical 
coding of three mandatory health conditions within a 
large administrative healthcare dataset. Clinical coding of 
DMPC as a mandatory condition was relatively consistent. 
However, over two- fifths of subsequent spells for autism 
patients and almost a quarter of subsequent spells for 
patients with PDD had data inconsistencies. There was a 
high level of variation in the proportion of data incon-
sistencies between trusts, and there was no evidence that 
trusts are consistently poor at reporting mandatory codes 
across the three conditions studied.

In the HES dataset, inconsistencies related to manda-
tory clinical codes can arise from two main sources. A 
failure of the clinician to record the diagnosis in the 
medical notes or a failure of the clinical coder to code 
a diagnosis recorded in medical notes. In our analysis, 

data inconsistencies could also be due to misuse of the 
code of interest on the first spell (ie, a false positive in the 
index spell), although the numbers involved are likely to 
be small.

From the random forest classifier algorithms, age was 
strongly associated with data inconsistencies. A greater 
proportion of data inconsistencies were associated with 
increasing age for autism and DMPC, and with decreasing 
age for PDD. This confirms the pattern seen in the 
descriptive data and is likely to be due to expectations 
around the likelihood that a patient has the condition. 
This may also explain the relative importance of the asso-
ciation between female sex and more inconsistencies in 
the autism dataset. Although we identified a relationship 
between deprivation score and data inconsistencies in all 
three datasets, the nature of the relationship was unclear. 
This may suggest a bias towards continuous variables in 
the algorithms used.19 20

Change in provider, change in main specialty and 
time from first spell to the subsequent admission were 
also associated with a higher proportion of data incon-
sistencies across all datasets. Initiatives to allow easier 
cross- referencing of information across providers and 
settings and over an extended period of time should be 
encouraged.

For the PDD dataset, coding of Parkinson’s disease and 
emergency admission were associated with lower rates of 
inconsistencies. Elective admissions are generally of short 
duration and the case notes are likely to focus on the 
elective procedure being conducted, with limited coding 
depth.

Large scale, administrative datasets, such as HES, are 
being increasingly used to inform decision- making in 
healthcare.21 22 Such data have helped inform the response 
to the COVID- 19 pandemic23 24 and are being used to 
inform service structure postpandemic.25–27 Having data 
which is as reliable as possible will be invaluable. Under-
standing the source and structure of coding inconsis-
tencies may also help the development of new quality 
improvement programmes, as well as inform the work of 
researchers, clinical coders and policy analysts.22 28 The 

Figure 2 Percentage of spells with missing mandatory codes within 3 years of the first diagnosis, for the discharge date of the 
first spell ranging from Q2- 2013 to Q1- 2018.
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impact of the data inconsistencies identified in this paper 
will vary in importance depending on the nature and 
aims of the data analysis being undertaken. However, we 
recommend that researchers using HES and interested in 
long- term comorbidities should not rely on the coding of 
the index spell alone, but should look at prior spells for 
the same patient. Frailty/comorbidity indices, such as the 
Charlson Comorbidity Index and HFRS, if constructed 
from HES data, perform this function (to an extent) by 
looking back over 1 and 2 years of prior hospital spells, 
respectively.

The performance of the algorithms used to identify 
key features of data inconsistencies was similar in smaller 
subgroups of ethnicity and sex. There are concerns that 
artificial intelligence (AI) techniques can accentuate 
known biases against representation of smaller subpopu-
lations of a dataset.29 30 Although the problem of fair data 
analysis is not unique to AI techniques, and can occur 
with more traditional forms of data processing and anal-
ysis, the ‘black- box’ element of AI methodology leads 
naturally to concerns over ‘fair AI’ and data equity. We 
used random forest classifiers in our analysis, allowing us 

Table 2 Characteristics of subsequent spells with data inconsistencies

Autism
Diabetes mellitus with peripheral 
complications

Parkinson’s disease 
dementia

Total no of spells 583 873 651 458 91 328

No of subsequent spells 390 220 544 341 60 822

No of subsequent spells with missing mandatory 
codes

170 447 (43.7 %) 46 679 (8.6 %) 18 975 (31.2 %)

Data inconsistencies by overnight stays

  Overnight stay 66 251 (38.9 %) 16 792 (5.0 %) 11 134 (25.2 %)

  Day case 104 196 (47.3 %) 29 887 (14.2 %) 7841 (46.8 %)

Data inconsistencies by method of admission

  Elective 84 845 (44.4 %) 19 393 (5.6 %) 6214 (57.8 %)

  Emergency 85 380 (43.0 %) 27 247 (13.9 %) 12 752 (25.5 %)

  Not recorded 222 (42.4 %) 39 (24.7 %) 9 (32.1 %)

Data inconsistencies by age band

  0–17 57 317 (35.2 %) 0 0

  18–39 71 936 (47.3 %) 594 (9.9 %) 0

  40–59 27 441 (54.4 %) 9065 (7.3 %) 502 (60.5 %)

  60–79 12 025 (53.7 %) 25 409 (8.6 %) 9514 (34.0 %)

  80 years and over 1728 (65.2 %) 11 597 (9.7 %) 8955 (28.0 %)

  Not recorded 0 14 (6.6 %) 7 (23.5 %)

Data inconsistencies by sex

  Female 64 650 (46.7 %) 14 150 (8.8 %) 6554 (32.9 %)

  Male 105 797 (42.0 %) 32 529 (8.5 %) 12 421 (30.4 %)

  Not recorded/other 0 0 0

Data inconsistencies by deprivation quintile

  1 (most deprived) 50 739 (45.1 %) 11 298 (7.3 %) 3466 (29.2 %)

  2 40 305 (44.8 %) 10 383 (8.1 %) 3622 (30.0 %)

  3 30 392 (41.5 %) 9493 (8.8 %) 5000 (36.1 %)

  4 26 390 (43.0 %) 8428 (9.9 %) 3587 (30.0 %)

  5 (least deprived) 20 478 (41.8 %) 6811 (10.1 %) 3213 (29.9 %)

  Not recorded 2143 (50.1 %) 266 (9.7 %) 87 (30.5 %)

Data inconsistencies by ethnicity

  White 114 938 (42.9 %) 39 129 (8.5 %) 14 301 (31.4 %)

  Asian 4733 (36.3 %) 1811 (7.0 %) 720 (35.1 %)

  Black 4195 (41.3 %) 1301 (7.5 %) 295 (25.5 %)

  Mixed 2362 (36.3 %) 385 (14.8 %) 48 (34.0 %)

  Other ethnic groups 10 155 (41.8 %) 2968 (9.8 %) 183 (32.6 %)

  Not recorded/stated 34 064 (42.9 %) 1086 (12.8 %) 3428 (30.0 %)

Where data are not recorded for deprivation, this is due to the lower super output area of residence not being recorded. In most cases this is due to the patient not 
having a permanent residence in England (typically they would be residents of other parts of the UK).
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to understand the key features represented in our algo-
rithms and allowing a degree of transparency.

Our study has a number of strengths and limitations. 
We had access to one of the most extensive and complete 
healthcare datasets anywhere in the world. However, this 
meant that there was no ‘gold standard’ against which to 
externally validate the dataset. Difference in coding prac-
tice across trusts will have affected our assessment of data 
quality on the national scale, and we highlight the varia-
tion across trusts. We were not able to identify whether 
an inconsistency was related to a mandatory code being 
misused in a first spell or being missing in all subse-
quent spells. We recognise that patients with diabetes 
mellitus can go into remission, but the number involved 

across the time period investigated are likely to be very 
small indeed. We also acknowledge that some forms of 
dementia and autism may be mild and not impact on the 
clinical care. Nevertheless, all the conditions studied are 
mandatory and should still be recorded once diagnosed. 
Given the potential variability in the source and propor-
tions of coding inconsistencies across all three condi-
tions, the performance of the three classifiers should not 
be assessed by one single metric alone. For that reason, 
we opted to also use the precision- recall curves and the 
recall- aware precision gain—recall gain curves, particu-
larly relevant for the coding of diabetes where the number 
of inconsistencies is much lower (ie, higher class imbal-
ance). Our analysis highlights that the characteristics of 
coding inconsistencies can be particular to the condition 
under investigation. Although we selected conditions 
that tend to be present across the lifetime, extrapolation 
to other disease groups should be done with caution. 
More broadly, although we investigated inconsistent use 
of mandatory diagnostic codes in this study, it would be 
possible to investigate other types of inconsistences using 
similar methods.

CONCLUSIONS
We have identified the extent of, and features associated 
with, data inconsistencies in the HES database for the 
three conditions studied, with autism having the highest 
rate of data inconsistencies. With the likely increased 
use of administrative data to inform healthcare decision- 
making, data quality will be of central importance if 
outcomes for patients are to be optimised. As such, 
improving data quality should be a priority.

Machine learning techniques, as well as providing 
insight into the characteristics associated with data incon-
sistencies, may also be of value in identifying potential 
data inconsistencies during data input, allowing inconsis-
tencies to be corrected prior to finalisation of the data 
submission.
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