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Objective: This study aimed to update the genetic diversity of Rotavirus (RV) infections in children 
under five years old in Beijing, China. 
Methods: A 5-year active hospital-based surveillance for sporadic acute gastroenteritis (AGE) from 
January 2018 to December 2022 in the capital of China was performed. A total of 748 fecal 
samples from AGE patients were collected for followed by RV antigen detection by ELSIA, RNA 
detection by reverse transcription PCR, G/P genotyping and phylogenetic analyzing. 
Results: RV antigen was detected in 11.0% of the collected samples, with 54 samples confirmed to 
be RV RNA positive. G9 and G8 genotypes were identified in 43 (79.6%) and 7 (13.0%) samples, 
respectively, all of which were allocated to P[8]. The predominant G/P combination was G9P[8] 
(79.6%), following by G8P[8] (13.0%), G4P[8] (5.6%) and G3P[8] (1.9%). A significant change 
in G/P-type distribution was observed, with the G9P[8] being predominant from 2018 to 2021, 
followed by the emergence of an uncommon G8P[8] genotype, which was first reported in 2021 
and became predominant in 2022. Blast analysis showed that one G1 isolate had a high similarity 
of 99.66% on nucleotide acid with RotaTeq vaccine strain with only one amino acid difference 
L150V. Additionally, one P[8] isolate was clustered into a branch together with RotaTeq vaccine 
strain G6P[8]. 
Conclusions: The study reveals that G8P[8] has become the predominant genotype in pediatric 
outpatients in China for the first time, indicating a significant change in the composition of RV 
genetic diversity. The importance of RVA genotyping in surveillance is emphasized, as it provides 
the basis for new vaccine application and future vaccine efficacy evaluation.   

1. Introduction 

Group A rotaviruses (RVAs) are a significant cause of severe acute diarrhea among children under 5 years of age worldwide [1]. The 
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WHO prequalification and introduction of oral RVA vaccines (ORV) in many countries over the last decade have significantly reduced 
the global burden of the disease [2]. However, the effectiveness of RVA vaccines has been higher in high-income countries (80%–90%) 
than in low-to-middle income countries (40%–70%) [3], and there is still much work to be done in reducing the disease’s global 
impact. Furthermore, a long-term impact of RVA vaccines on genetic diversity of circulating RVAs has been observed in many 
neighboring countries of China, including Korea, Japan, Thailand, and Russia [4–8]. 

In 2001, the Lanzhou Lamb RV vaccine (LLR) became the only domestic RV vaccine licensed in China [9,10] with more than 83 
million doses of LLR lot-released as of October 2019 [11]. At the end of 2018, the MSD RotaTeq vaccine (G1-G4, G9, P [5]) was also 
licensed in China. In addition, two novel RVA vaccines, LLR3 (G2-G4) and pentavalent (G1-G4, G8-G9), finished phase III clinical trials 
in China [11–13]. Coincidently, in the past two decades, the predominant G genotype of RVAs have undergone two major changes in 
China, including G1 to G3 around 2001 and G3 to G9 after 2012 [14,15], while the P genotype remains unchanged as P [8,16]. Unusual 
G8 genotype have emerged and rapidly spread in several countries [17], but it has been reported only in a limited number of cities in 
the south of China, including Kunming, Shanghai, Suzhou, Guangzhou and Fuzhou [18–21]. As of our study, there were no reports of 
G8P [8] RVs in northern cities of China. 

In Beijing, the capital of China, we established a hospital-based surveillance network for sporadic AGE since 2011. The common 
diarrhea-related viral pathogens including RV, Sapovirus (SaV), Norovirus (NoV), Astrovirus (AstV) and Enteric Adenovirus (AdV) 
were routinely monitored. The previous surveillance data in our lab from 2011 to 2017 showed that RVA was the main pathogen 
causing viral diarrhea in infants and young children in Beijing (25.8%, 374/1451) [22], but unfortunately there was no details about 
genetic diversity. The other recent surveillance demonstrated that G9P[8] was still most predominant till to 2019, followed by G3P[8], 
G2P[4], G1P[8], G2P[4], and G4P[6] [23–25]. 

With the emergence of uncommon genotypes found around the world post the vaccination era, we continued the active surveillance 
along with genotyping analysis in Beijing from 2018 to 2022, in order to update the genetic diversity of RVA infections in children 
under five years old in Beijing, China, and provide the basis for measuring vaccine efficacy in the near future. 

2. Methods 

2.1. Subjects enrollments 

Briefly, from January 2018 to December 2022, outpatient children younger than 5 years, who met the case definition of diarrhea 
according to the National Surveillance Protocol for Viral Diarrhea (2007 version), were enrolled in Beijing Pediatric Research Institute. 
The inclusion criteria for the study subjects are as follows: patients with gastrointestinal symptoms such as diarrhea and vomiting as 
their primary complaint, diagnosed within 5 days of onset, without considering clinical diagnosis. Patients who have had ≥3 episodes 
of diarrhea within 24 h and abnormal stool consistency (such as watery stool, mucous stool, or bloody stool, etc.) are included, while 
cases of diarrhea caused by the use of antibiotics or inappropriate intake of chemicals, etc. are excluded. The study is part of the 
hospital-based surveillance network for sporadic AGE in Beijing since 2011. It complies with the Declaration of Helsinki and was 
performed in accordance with Good Laboratory Practice (GLP). Prior to study initiation, the protocol, informed consent form from the 
guardians of the enrolled outpatient children and other study-related documents were approved by the ethics committee of Chaoyang 
District Center for Disease Control and Prevention, Beijing. 

2.2. Sample collection, preparation and viral pathogen detection 

About 15 specimens were collected every month, except for 2020 owing to lack of outpatients in the circumvent of COVID-19 

Table 1 
Molecular weight of amplification products and primer sequences for rotavirus VP4 (P) and VP7 (G) genotyping by semi-nested RT-PCR.  

Genotype Primer Squence (5’→3′) Molecular weight (bp) 

VP7 (G) 1st round VP7F ATGAATGTATTGAATATCCAC  
VP7 (G) 1st round VP7R AACATGGCACCATTTTTCC  
VP7(G) VP7R AACATGGCACCATTTTTCC  
G1 aBT1 CAAAGTACTCAATCAATATGG 618 
G2 aCT2 CATGATATTAACCATTTACTGTG 521 
G3 G3 ACCAACTCACACTAGAGG 682 
G4 aDT4 CGATTCTGGTGACGAGTTG 452 
G8 aAT8 GTCCCACCATATGTAATTCG 754 
G9 G9 CTTATGTGCTATAATTTAC 179 
VP4 (G) 1st round VP4F TATGCTCCAGTAAATTGG  
VP4 (G) 1st round VP4R ATTGCAATTCTTTGCATATG  
VP4(G) VP4F TATGCTCCAGTAAATTGG  
P[4] 2T-1 CTTTGTTAGAAGGTAGAGTC 362 
P[6] 3T-1 TGTGGATTAGTTGGCTCAA 146 
P[8] 1T-1D TCCACTGGRTAAACCTGC 224 
P[9] 4T-1 TGACACATGCAATAGGAC 270 
P[10] 5T-1 ATCAAAGTTAGTCGTCGG 462 
P[11] P[11] GTAACATCCCAGACTGTG 191  
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pandemic. Stool samples were collected three days after the onset of diarrhea. The samples were suspended with 10% phosphate salt 
buffer (Hyclone), and centrifuged at 5000 g for 5 min. Viral RNA was extracted from 200 μl of the supernatant by a QIAamp Viral RNA 
Mini Kit (Qiagen), in accordance with the manufacturer’s instructions. All samples were tested for RV by using ProSpecT Rotavirus Kit 
(OXOID, UK), for NoV, SaV, Enteric AdV, AstV by commercial real-time RT-PCR kits (DAAN GENE, China) in accordance with the 
manufacturers’ instructions respectively. 

2.3. RV G/P genotyping and genetic analysis 

For RV-positive samples, partial G and P genes were amplified by multiplex semi-nested reverse transcription PCR (RT-PCR) (the 
primers listed in Table 1) according to the previous report [15]. The complete coding genes of VP7 were amplified by using the primer 
pair VP7-F: GGCTTTAAAAGAGAGAATTTCCGTCTGG and VP7-R: GGTCACATCATACAATTCTAATCTAAG. The sequences obtained 
were assembled by Vector NTI Advance 11.0. Edited sequences were analyzed and genotyped via the online tool - Rotavirus A Ge-
notype Determination (https://www.viprbrc.org/brc/rvaGenotyper.spg). The similarity analysis was performed by nucleotide and 
protein BLAST (Basic Local Alignment Search Tool) which provided by the National Center for Biotechnology Information (National 
Institutes of Health, USA). Phylogenetic trees of the viral genome were constructed by using the neighbor-joining method with 
bootstrap analysis of 1000 replicates in MEGA 6.0. Bootstrap values estimated with 1000 replicate data sets were indicated at each 
node. The scale bar indicates the number of nucleotide substitutions per site. The reference sequences was downloaded from GenBank 
(National Institutes of Health, USA) and listed in Supplementary Table 1. 

3. Results 

3.1. AGE-related viral pathogens detected among children under 5 years in the capital of China (2018–2022) 

A total of 748 fecal samples from AGE patients were collected. RVA antigen was detected in 11.0% of the collected samples, while 
NoV, Enteric AdV, AstV and SaV RNAs were detected in 15.6%, 10.4%, 3.3%, and 2.8%, respectively. Furthermore, 54 samples 
confirmed to be RV RNA positive. Overall, forty-three (79.6%) and 7 (13.0%) allocated to G9 and G8 genotypes respectively, all of 
which allocated to P [8] genotype. The predominant G/P combination was G9P[8] (79.6%), following byG8P[8] (13.0%), G1P [8] 
(3.7%), G4P [8] (1.9%) and G3P [8] (1.9%). From the view of time, G9P[8] was still the predominant genotype from 2018 to 2021, but 
the uncommonG8P[8] was first reported with a detection rate of 11.1% (1/10) in 2021 and increased rapidly to be the predominant 
genotype in 2022 with a detection rate of 54.5% (6/11) (Fig. 1). 

3.2. Genetic diversity of RV among children under 5 years in the capital of China (2018–2022) 

In generally, several RVA isolates showed the highest homology with the current used RotaTeq vaccine, while the others were 
highly similar to domestic isolates or isolates from neighboring countries in the same period. The detail information of referenced 
sequences was supplied in the Supplementary Table 1. 

3.2.1. G1 genotype 
One strain of G1 RVA isolated in 2022 (in-house No.: 22051027) had a 99.66% nucleotide similarity with RotaTeq-WI79-9/1992/ 

Fig. 1. Annual distribution of RVAs with different genotypes among children under five years old in Beijing, China from 2018 to 2022.  
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G1P7[5] VP7 gene (GenBank Accession No.: GU565057) on VP7 gene through Blast, with only one amino acid difference (L150V) 
between them. The other G1 RVA isolated in 2018 (in-house No.: 18051012) had the highest similarity 99.66% with VP7 gene of JL18- 
1009 G1P [8] (GenBank Accession No.: OM920777) which was also isolated in 2018 in China from human stool sample. 

3.2.2 G3 genotype 
The only G3 RVA isolated in 2019 (in-house No.: 19051030) had the 100% similarity with VP7 gene of G3P8 (GenBank Accession 

No.: MW331238) which was isolated in 2018 in Thailand, while it had a similarity of 93.19% with RotaTeq-WI78-8/1992/G3P7 [5] 
VP7 gene (GenBank Accession No.: GU565079). 

3.2.3. G4 genotype 
The only G4 RVA isolated in 2020 (in-house No.: 20051063) had the highest similarity (91.49%) with RotaTeq-BrB-9/1996/G4P7 

[5] VP7 gene (GenBank Accession No.: GU565090), and no more than 90% similarity with the other isolates recorded in GenBank. 

3.2.4. G8 genotype 
The seven G8 RVA isolated in this study showed a wide nucleotide similarity range from 67.6% to 99.8%, which can be classified 

into three groups. Group 1 contains five isolates (in-house No.: G22051026, G22051033, G22051019, G22051036, G21051162), and 
their homology is between 93.1% and 99.8%. The groups 2 and 3 contain only one virus respectively (in-house No.: G22051032 for 
group 2 and G22051003 for group 3). The homology between group 2 and group 1 comes from 80.5% to 86.5%, while the homology 
between group 3 and 1 was as low as 76.0%–82.9%. To be noted, the homology of group 2 and group 3 was only 67.6%. Seven G8 
isolates from Beijing has only 46.9%–79.9% homology with isolates from southern China during 2020 and 2021 (Guangzhou, Fuzhou 
and Shanghai) (GenBank Accession Nos.: OK349183, MZ407481, OM777170). Among Beijing isolates, group 1 has 94.3%–98.8% 
homology with Thailand isolate in 2018 (GenBank Accession No.: MN207885), group 2 has 94.9% homology with Russia isolate in 
2020 (GenBank Accession No.: MW132534), and group 3 has 81.7% homology with Thailand isolate in 2018 (GenBank Accession No.: 
MN207885). Phylogenetically, all the G8 isolates clustered to a branch together with domestic Guangzhou isolates, rather than Fuzhou 
and Shanghai isolates (Fig. 2). 

3.2.5. G9 genotype 
The forty-three G9 RVA isolated in this study also showed a wide nucleotide similarity range from 65.1% to 100%, which can be 

classified into four groups. Thirty-eight isolates located in group 1 and their homology is between 88.5% and 100%. The group 2 
contains only one isolate (G18051015). The group 3 contains two isolates (G22051010 and G22051029), and the group 4 also contains 
two isolates (G22051018 and G22051007). The similarities between the two are 83.2%–88.9% (group 1 and 2), 64.7%–71.9% (group 

Fig. 2. Phylogenetic analysis based on partial VP7 genes. The tree was constructed by using the neighbor-joining method with bootstrap analysis of 
1000 replicates in MEGA 6.0. Bootstrap values estimated with 1000 replicate data sets were indicated at each node. The scale bar indicates the 
number of nucleotide substitutions per site. The sequences displayed in red, blue, yellow and black fonts are from this study, RotaTeq vaccine (G1P 
[5], G2P[5], G3P[5], G4P[5] and G6P[8]), LLR vaccine (G10P[15]), and other reference sequences downloaded from GenBank, respectively. (For 
interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.) 
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1 and 3), 70.4%–77.2% (group 1 and 4), 58.7% (group 2 and 3), 65.6% (group 2 and 4), and 73.0% (group 3 and 4). Through blast, 
isolates in group 1, 2, 3, and 4 showed nearly 100%, ~90%, ~95% and ~98% homology respectively with those isolated in Japan and 
different cities of China. The above similarity analysis was further confirmed by the phylogenetic tree based on partial VP7 (Fig. 2). 
Although G9 isolates can be divided into three groups based on genetic similarity which also supported by the phylogenetic tree, all G9 
isolates located in the large branch together with domestic isolates or isolates from neighboring countries including Russia, Japan, 
Malaysia, Thailand, Singapore, and India, instead of the USA isolates. 

3.2.6. P genotype 
The VP4 gene sequences of 54 P [8] RVA isolated in this study were very conservative, with more than 95% homology between 

each other. In addition, they all showed more than 99% homology with isolates in domestic and neighbor countries through blast. To 
be noted, one isolate (in-house No.: P22051027) showed 99.47% similarity with RotaTeq-WI79-4/1992/G6P1A[8] VP4 gene (Gen-
Bank Accession No.: GU565044). Phylogenetically, all the other VP4 sequences of P[8] strains were clustered into lineage III refer-
enced to the genetic analysis of Ghanaian G1P[8] and G9P[8] RVA strains [26], except for one isolate was clustered into a branch 
together with RotaTeq vaccine G6P[8] (Fig. 3). 

4. Discussion 

This is the first report of G8 RVA in northern China, which has been reported in southern China since 2015 [18]. This is also the first 
time that the G/P combination G8P[8] has taken the lead in China, indicating that the composition of RVA genetic diversity is un-
dergoing a significant change, following G1 to G3 around 2001 and G3 to G9 after 2012 [14,25]. Therefore, in order to investigate the 
changes of RVAs genetic diversity and to provide the basis for new vaccine application as well as a baseline for future vaccine efficacy 
evaluation, it is very necessary to carry out extensive surveillance in other regions of China. 

Our findings are consistent with other domestic reports. In China, the most common RVA strains in children under 5-years old were 
G1P [8] and G2P [4] during the period of 2000–2011 [27]. In the neighbor countries, the most prevalent G-P combination was G9P[8] 
from 2011 to 2018 [28,29], exceptG8P[8] in Korea [6]. Other studies also showed that the proportion of G9P[8] was reported to 
increase remarkably from 3.4% in 2009 to 60.9% in 2015 [30], even to up to 76.61%in Shandong province, China from July 2017 to 
June 2018 [31]. The limitation of our studies is that it is not yet clear whether this change occurred in the vaccinated, unvaccinated or 
mixed populations. Therefore, the clinical information and vaccination status of infected patients should be collected and further 
analyzed to evaluate the efficacy of RVA vaccines and their effects on the changes of RVA genotype as previous studies [6,29]. In 
addition, although the COVID-19 pandemic led to hesitation in routine infant vaccination uptake [32,33], the cases of RVGE have 
sharply decreased since early 2020 attributed to the physical distancing and mask wearing measures compared to our study performed 

Fig. 3. Phylogenetic analysis based on partial VP4 genes. The tree was constructed by using the neighbor-joining method with bootstrap analysis of 
1000 replicates in MEGA 6.0. Bootstrap values estimated with 1000 replicate data sets were indicated at each node. The scale bar indicates the 
number of nucleotide substitutions per site. The sequences displayed in red, blue, yellow and black fonts are from this study, RotaTeq vaccine (G1P 
[5], G2P[5], G3P[5], G4P[5] and G6P[8]), LLR vaccine (G10P[15]), and other reference sequences downloaded from GenBank, respectively. (For 
interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.) 
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in the pre-COVID-19 era [34]. Similarly, a nation-wide observational study also showed a profound change of the activity of enteric 
pathogens and a great reduction of the positive rates for almost all enteric viruses among acute diarrhea patients [35]. Therefore, how 
the RV genotype changes in the post-COVID-19 era is still an unknown event, which needs continuous monitoring. 

The change of RVA genotypes may be part of the reason for the lack cross-protection against G9P[8] andG8P[8], which prompts 
development of novel RVA vaccines which cover newly emerged RVA genotypes. RVA vaccine was introduced into the second- 
category list of the national immunization program in China, which is not compulsory. Currently two RVA vaccines are available. 
The first one is the live monovalent oral Lanzhou lamb RVA vaccine (LLR) (G10P [12]) manufactured by the Lanzhou Institute of 
Biological Products and licensed early in 2000 in China [36]. The second is pentavalent RotaTeq (RV5; MSD) containing five reas-
sortant RVAs (G1, G2, G3, G4, and P [8]) derived from human and bovine parent strains, which completed phase III clinical trial in 
Guangxi province, China [37] and has been approved in April 2018. Therefore, in the RVA vaccine development pipeline candidate 
vaccines including additional G9 strain or providing cross-protection against G9 strain should be developed to ensure protection 
coverage on circulating G9 strains. These candidate vaccines were a combination of the US National Institutes of Health (NIH) 
UK-Compton bovine RV vaccine (UK-BRV) and reassortants including components for G8 (strain 1290) and/or G9 (strain AU32). The 
former UK-BRV is a multivalent bovine-human RV reassortant vaccine comprised of the G6P [5] bovine rotavirus backbone with the 
VP7 genes from the common human RV strains incorporated as reassortants into the vaccine strains [38]. In China, non-exclusive 
licenses for the development and production of the UK-BRV vaccine were granted to Chengdu Institute of Biological Products and 
Wuhan Institute of Biological Products [39]. Searched from Chinese Clinical Trial Registry website, the hexavalent RVA vaccine 
manufactured by Wuhan Institute of Biological Products started the phase I clinical trial from July 2016, and the phase III clinical trial 
was expected to be finished in December 2021. The results in phase I clinical trial showed that the novel oral hexavalent RVA vaccine 
was generally well-tolerated in all adults, toddlers and infants, and the vaccine was immunogenic in infants, with higher anti-RV IgA 
antibody geometric mean concentrations (GMC) and seroconversion rate in the vaccine group than in the placebo group post-3rd dose 
immunization [12]. In addition, another novel human-lamb trivalent live vaccine LLR3 (containing G2, G3 and G3 strains) also showed 
dramatic cross-protection against severe RVGE induced by genotype G9 with a 70.3% (95%CI, 59.9–77.9%) vaccine efficacy at the end 
of the second epidemic season, in a randomized, double-blind, placebo-controlled multicenter phase III clinical trial among healthy 
children aged 6–13 weeks [11]. Besides, several inactivated and recombinant VP8 candidate vaccines have also been under developing 
[40–42] and should further verify the efficacy in human beings. In addition, the emergence of uncommonG8P[8] genotype will be 
another challenge to the broad and cross protection of vaccines. 

Moreover, the shedding of vaccine strains was recorded. Vaccine virus shedding is a double-edged sword [43]. On the positive side, 
the occurrence of vaccine virus shedding not only indicates the effective replication of live RV in the intestine which is the basis for 
inducing effective immune response against the infection, but also realizes the potential herd immunity through the transmission of 
vaccine strains from vaccinated individuals to susceptible person. But the downside is the risk of vaccine derived infection in 
immunocompromised contacts. Here, we reported the first detection of RotaTeq vaccine strain from RVGE patients after it was im-
ported to China. As reported, for live RV vaccines, vaccine-virus shedding occurs in approximately 5%–10% of the recipients after the 
first dose and very rarely thereafter [12,44,45]. With the rapid increasing lot-release of RotaTeq vaccine imported to China, the 
shedding of vaccine virus strains should be continuously monitored. 

5. Conclusions 

In summary, our study indicates that the third genotype shift of the predominant RV strains from G9P[8] toG8P[8] was occurred 
after 2021 among children younger than 5 years in the capital of China. It gives an early warning of RVA strains that could escape 
immune protection, which needs a continuous long-term monitoring of RVA genotype diversity around of China. Moreover, it also 
proposes a demand for the development of novel RV vaccines that are highly effective against newly emerged genotypes. 
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