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Social interaction is a dynamic and variable process. However, most hyperscanning
studies implicitly assume that inter-brain synchrony (IBS) is constant and rarely
investigate the temporal variability of the multi-brain networks. In this study, we used
sliding windows and k-mean clustering to obtain a set of representative inter-brain
network states during different group communication tasks. By calculating the network
parameters and temporal occurrence of the inter-brain states, we found that dense
efficient interbrain states and sparse inefficient interbrain states appeared alternately and
periodically, and the occurrence of efficient interbrain states was positively correlated
with collaborative behaviors and group performance. Moreover, compared to common
communication, the occurrence of efficient interbrain states and state transitions
were significantly higher during creative communication, indicating a more active
and intertwined neural network. These findings may indicate that there is a close
correspondence between inter-brain network states and social behaviors, contributing
to the flourishing literature on group communication.

Keywords: inter-brain synchrony, dynamic inter-brain networks, creative communication, hyperscanning, fNIRS
(functional near-infrared spectroscopy)

INTRODUCTION

Humans are inherently social animals with a natural desire to communicate. Therefore, many
researchers in the field of human neuroscience have been making every effort to understand
the multi-brain neural mechanisms of social communication. In recent years, hyperscanning
technology has attracted lots of attention and has been acclaimed as a “game changer” in social
interaction studies (Gvirts and Perlmutter, 2020). Hyperscanning is a measurement that records
brain activity of two or more individuals at the same time (Montague et al., 2002; Li et al., 2009). By
using hyperscanning, researchers can measure the strength of inter-brain neural coupling (termed
inter-brain synchrony, IBS), which provides a tool for revealing the basis of multi-brain neural
mechanisms behind complex social activities.
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Previous hyperscanning studies showed that inter-brain
synchrony (IBS) arises when individuals communicate with each
other, inferring others’ intentions, and cooperate to achieve
common goals (Cui et al., 2012; Jiang et al., 2012; Nozawa et al.,
2016). For instance, Cui et al. (2012) measured brain activity
of paired participants when they were performing two different
tasks: a cooperation task where the participants try to press
the button at the same time, and a competition task where the
participants try to press the button as fast as possible. Results
showed significantly higher IBS in the superior frontal cortex
under the cooperation task than in the competition task. Lu and
Hao (2019) measured brain activity of three-person groups where
two of the members are real participants and one is a confederate,
and found that IBS between the real participant pairings is
significantly higher than the pairs between real participants and
confederates. In addition, researchers also found that IBS emerges
during natural social communication (Nozawa et al., 2016). Based
on these results, IBS has been seen as an effective neural mark
of inter-brain information transmission and shared intentionality
(Fishburn et al., 2018).

Social communication is a complex and dynamic system.
During social interaction, people constantly update information
and adjust communication strategies, and their inter-brain neural
networks change accordingly. However, most hyperscanning
studies implicitly assume that IBS is steady throughout the
entire recording procedure and rarely investigate the temporal
variability of the multi-brain networks. Recently, Li et al.
(2021) presented a novel approach based on sliding windows
and k-mean clustering to capture the dynamic modulation
of IBS patterns during cooperation tasks and found different
IBS states occurred at different stages of the task. Here we
followed their methods using sliding windows and k-mean
clustering to characterize dynamic IBS (dIBS) states during
group communication and applied multiple behavioral indices to
explore the connection between different dIBS states and social
behaviors. By calculating the graph-based network parameters
and temporal occurrence of the dIBS states, as well as associating
them with behavioral indices, we analyzed the variability and
flexibility of the dynamic inter-brain networks during different
social communication tasks.

Creative communication (i.e., communication and
brainstorming in creative collaborations) is a special type
of communication. It involves a distinct constellation of
communication challenges, such as sharing generated ideas,
understanding and evaluating others’ ideas, and integrating
personal novelty into collaborative work (Jordan and Babrow,
2013); all in order to produce novel and applicable products
(Vera and Crossan, 2005; Paulus and Brown, 2007; Runco
and Jaeger, 2012). It is an indispensable driving force for the
development of modern society. Therefore, in this study, we
implemented two different tasks to explore the similarities and
differences of the dIBS states between creative and non-creative
group communication tasks.

Previous studies have found that IBS can occur in multiple
brain regions, such as the prefrontal cortex (PFC), right
temporal-parietal junction (r-TPJ), superior temporal gyrus
(STG), and medial temporal gyrus (MTG). These areas are deeply

involved in production and comprehension of conversation,
“reading” other minds, and anticipating their future actions, all
of which contributed to social communication (Rizzolatti and
Craighero, 2004; Frith and Frith, 2007). For instance, the PFC are
important to tasks involving cooperation and social interactions
(Decety et al., 2004; Cui et al., 2012; Baker et al., 2016). IBS in
this area may be related to inferring others’ goals and intentions
(Stephens et al., 2010; Silbert et al., 2014). Previous studies also
found that the r-TPJ is associated with understanding meanings
of the conversation, and the increased IBS in this area was
observed during group collaborations and storytelling (Jung-
Beeman, 2005; Redcay et al., 2010; Hari et al., 2015). Besides, in
some sensory or motor-related areas, IBS can also be induced by
shared external stimulus (Hasson and Frith, 2016). Accordingly,
these areas were selected as regions of interest in the present study
(see details in Figure 1D) to explore the dynamic inter-brain
networks during group communication.

Compared to functional magnetic resonance imaging
(fMRI) and electroencephalography (EEG), functional near-
infrared spectroscopy (fNIRS) has its unique advantages.
During the recording procedure, fNIRS allows participants to
perform small movements and has great adaptability to various
environments, which benefits to recording brain activities in
natural social scenes. Therefore, many researchers applied
fNIRS-based hyperscanning technology to explore multi-brain
neural interactions during real-life social communication
(Jiang et al., 2012; Lu et al., 2019). In the present study, we
also used fNIRS-based hyperscanning to track brain activity
in pairs of participants during group communication tasks.
Fifty-four individuals were randomly assigned as 27 dyads
and were required to complete a creative communication task
(alternative uses task; AUT) and a common communication
task (object characteristic task; OCT). We adopted wavelet
transform coherence, sliding windows, and k-mean clustering to
describe participants’ dIBS states. By calculating the graph-based
network parameters and temporal occurrence of the dIBS
states, as well as associating them with behavioral indicators,
we analyzed the variability of the inter-brain networks during
different group communication. We hypothesized that in
both communication tasks, different dIBS states will appear
alternately and periodically, and the occurrence of dense
efficient dIBS states will be associated with better group
communication performance. Moreover, considering that
creative communication has its distinct social challenges, we
hypothesized that compared to the non-creative communication,
the inter-brain network will be more flexible during the
creative communication.

MATERIALS AND METHODS

Participants
Fifty-four participants (all female, age: 21.2 ± 2.0 years) were
randomly assigned as 27 dyads. Participants were recruited
through online advertising and were each paid U40 for their
participation. Before the experiment, informed consent was
provided. The study procedure was approved by the University
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FIGURE 1 | The experimental settings of the current study. (A) Two participants were communicating with each other during the tasks. “AU task” means alternative
uses task; “OC task” means object characteristic task. (B) The experiment procedure. (C) The optode probe sets. (D) Regions of interest.

Committee on Human Research Protection of East China
Normal University.

Procedures
This study consisted of a one factorial design (Task: AUT vs.
OCT), with Task as the within-subject factor. The sequence
of the AUT and OCT was counterbalanced. The experimental
procedure consisted of a 2-min rest session, two 5-min task
sessions, and another 1-min rest session (see details in Figure 1).
Before each task session, the rules of communication and
task instructions were presented. During the AUT session,
participants were asked to report as many unusual and original
uses as possible for an ordinary item. During the OCT
session, participants were asked to generate as many relevant
characteristics as possible of a common item. During both
communication tasks, participants were asked to take turns to
report, one idea at a time. If a participant cannot think of any
idea during their turn, they can say “pass” and present the idea
in the next turn.

Pre- and Post-experimental Tests
Prior to the experiment, participants were asked to complete the
self-assessment manikin scale to rate the valence and arousal of
their emotional states (Bradley and Lang, 1994; Kirsch et al.,
2005; Coan et al., 2006). Immediately after the experiment,
participants were asked to rate their emotional state again. They
then rated feelings of difficulty, depletion, and enjoyment when
performing each task on scales ranging from 1 (“not at all”) to 5
(“very much”).

Behavioral Assessments
Participants’ performance on the AUT was measured from three
dimensions: fluency, originality, and flexibility (Guilford, 1967).
The fluency score was the total number of non-redundant
responses. The originality score was accessed using an objective

method. If a response was statistically infrequent (i.e., 5%
or fewer participants in the sample presented the response),
it scored 1, and all the other frequent responses (i.e., 95%
or more participants in the sample presented the response)
scored zero. The originality score was the total number of
statistically infrequent responses. The flexibility score was coded
according to the number of categories of generated responses
(e.g., decorations, weapons, toys, etc.). To compensate for the
effect of fluency, the final flexibility score was defined as the
number of categories divided by the fluency. Two trained
raters independently assessed the originality and flexibility scores
for each participant. The inter-rater agreements of originality
[internal consistency coefficient (ICC) = 0.89, calculated as
Cronbach’s α] and flexibility (ICC = 0.82) were satisfactory. The
ratings of the two raters were averaged. The score for each dyad
was the sum of the two members.

Participants’ performance on the OCT was scored by fluency,
and the scoring procedure was the same as the AUT.

The index of cooperation (IOC) was calculated based on the
number of combined ideas, which reflects the perspective-taking
behaviors (Larey and Paulus, 1999). First, the responses of the
two participants were listed in chronological order. From the
first idea to the last, when a response pertained to the same
category as the previous response, it scored “1.” The total number
of responses scored “1” was defined as the “converge.” The
IOC value for each dyad was then obtained using the following
equation: IOC = converge/(group fluency—converge). Therefore,
this index could demonstrate the extent to which the group
members combined their ideas with others, and reveal the level
of cooperation between group members (Lu et al., 2019, 2022).

Functional Near-Infrared Spectroscopy
Data Acquisition and Pre-processing
The concentrations of oxyhemoglobin (HbO) and
deoxyhemoglobin (HbR) were recorded continuously using
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an ETG-7100 NIRS system (Hitachi Medical Corporation) for
each dyad. Based on the abovementioned studies showing the
important contributions of the PFC and right temporal-parietal-
occipital regions (r-TPO) to social communication, we placed
two optode probe sets on each participant’s PFC (3∗5 optode
probe set; 22 measurement channels) and r-TPO areas (4∗4
optode probe set; 24 measurement channels). The registration of
the probe sets was based on the 10–20 system of EEG. The MNI
coordinates of the CHs in a typical participant are presented in
Supplementary Table 1.

Considering that the HbO signal is more sensitive to changes
in cerebral blood flow than the HbR signal, we focused on the
HbO signal (Hoshi, 2007; Jiang et al., 2012). The data were pre-
processed using a principal component spatial filter algorithm
to eliminate the effects of systemic components such as blood
pressure, respiratory variation, and blood flow variation on the
fNIRS data (Zhang et al., 2016). We also used a correlation-
based signal improvement method to remove motion artifacts
(Cui et al., 2010). Besides, the initial and last 30-s periods of
each task session were removed to obtain data within the steady
period, leaving a total of the 480-s period for two task sessions.

Functional Near-Infrared Spectroscopy
Data Analysis
The dynamic IBS analysis was conducted by three processes:
(1) IBS computation using wavelet transform coherence,
(2) temporal segmentation using sliding windows, and (3)
characterization of dIBS states using k-means clustering
(Li et al., 2021).

Inter-Brain Synchrony Computation
We used wavelet transform coherence (WTC) to assess the cross-
correlation (i.e., IBS) between two HbO time series (Grinsted
et al., 2004). Fisher’s r-to-z transformation was applied to
IBS values before further analysis (Cui et al., 2012; Simony
et al., 2016). In each dyad, we calculated the IBS of all ROI
combinations between two participants. The IBS between the
same ROI pairings was then averaged. For example, the IBS
between IFG-1 (participant 1’s IFG) and AG-2 (participant 2’ AG)
was averaged with the IBS between AG-1 (participant 1’AG) and
IFG-2 (participant 2’ IFG) (Li et al., 2021), which led to a total of
91 ROI combinations per dyad.

To identify the frequency band of interest (FOI) in this study,
we conducted paired sample t-tests to compare IBS between
the task period and rest period of each ROI combination along
the full frequency range (0.01–0.7 Hz). The IBS was averaged
across the different task periods prior to the aforementioned
t-test to prevent bias (Lu et al., 2019; Pan et al., 2020). Data
over 0.7 Hz were not taken into account to exclude higher
frequency noise, such as cardiac activity (0.8–2.5 Hz). Data
below 0.01 Hz were also excluded to avoid fluctuations at very
low frequencies (Barrett et al., 2010). The t-test results were
thresholded at P < 0.000005. No further corrections were applied
since this analysis was only used to identify the FOI rather
than to obtain the final results (Dai et al., 2018; Zheng et al.,
2018). Significant P-values which survived the thresholding were
observed at frequencies between 0.10 and 0.19 Hz (corresponding

to the period between 5.2 and 10.5 s), which means in this
frequency band, the IBS of the task period was significantly higher
than that of the rest period. Therefore, this band was selected
as the FOI, and the IBS of each ROI combination was averaged
across the selected FOI.

Clustering Analysis (Sliding Windows and k-Means
Clustering)
To quantitively compare the dIBS states between different group
communication, the dynamic IBS network of the AUT and
OCT were clustered together. First, we used a sliding window
approach to obtain a series of windowed IBS matrices along the
480 s task period (see details in Figure 2). The window size
was set to 10 s and moved in an increment of 1 s throughout
the task. The IBS values were then averaged between the same
ROI combinations within each time window to obtain the
corresponding IBS matrix. The 480 s task duration was then split
into a series of windowed IBS matrices (13 ROIs × 13 ROIs × 471
windows) for each dyad.

Next, we averaged these chained IBS matrices across groups
and applied a k-means clustering method in MATLAB to assess
the similarity between the windowed IBS matrices and obtain the
representative dIBS states (i.e., clusters). We chose the number
of clusters using the elbow criterion of the cluster validity index,
which is the ratio between within-cluster distance to between-
cluster distance (Allen et al., 2014; Fang et al., 2020; Li et al.,
2021). Specifically, the validity index for different k values were
computed and plotted as a function of cluster number, then the
number of clusters is chosen at the elbow of the curve to best
balance the cost of clustering (i.e., minimize the within-cluster
distance and maximize the between-cluster distance) and the
number of clusters. In addition, previous research found that
the Manhattan distance is a more effective similarity measure
than the Euclidean distance for high-dimensional neuroimaging
data (Aggarwal et al., 2001), therefore we used the Manhattan
distance to calculate the similarity between the windowed IBS
matrices. Finally, after iterated 1,000 times to decrease the
chances of escaping local minima, the cluster centroids (i.e., the
representative dIBS states in Figure 3A) were obtained. These
cluster centroids derived from the group-averaged IBS matrices
were then used as the initial centroids for the cluster analysis of
individual dyad to obtain the final dIBS states of each dyad.

Statistical Analysis
The dIBS states were characterized by the following metrics: the
occurrence rate of each state, number of transitions between
states, and network parameters of each state (Allen et al., 2014;
Li et al., 2021). The occurrence rate of each state means the
percentage of total windows each dIBS states account for. The
number of transitions stands for the total number of switches
between any two states. Moreover, we also implemented network
analyses in MATLAB using GRETNA to calculated graph-based
metrics, such as global efficiency (globE) and shortest path
length (Lp), of each dIBS state (Achard and Bullmore, 2007;
He et al., 2009; Wang et al., 2015). globE is an important
network parameter that measures the global efficiency of parallel
information transfer in the network. It is the inverse of the
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FIGURE 2 | The procedure of clustering analysis.

harmonic mean of the characteristic path length between each
pair of nodes within the network. As for Lp, it quantifies the
ability for information propagation in parallel over the whole
network, computed as a harmonic mean length between all pairs
of nodes. Repeated measure ANOVA was used to assess whether
there were significant differences between the characteristics of
these dIBS states. Repeated measure ANOVA was also used to
assess whether there were significant differences between AUT
and OCT in terms of the occurrence rate of three dIBS states and
the number of state transitions. In addition, we also examined the

Pearson correlation between the properties of each dIBS state and
the behavioral group communication performance.

RESULTS

Dynamic Interbrain Synchrony States in
Group Communication
To quantitively compare the dynamic inter-brain networks
between different group communication tasks, the dIBS of the
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FIGURE 3 | The properties of dynamic inter-brain synchrony (dIBS) states. (A) The 13 × 13 matrix of dIBS states. The horizontal and vertical coordinates are ROIs.
Color represents the IBS value. (B) The global efficiency (globE) and shortest path (Lp) of each dIBS state. Error bars indicate standard errors of the mean.
***P < 0.001. (C) The temporal occurrence of each dIBS state during the AUT and OCT. (D) Pearson correlations between the occurrence rate of State 1 and the
index of cooperation as well as AUT originality. S1 means State 1; S2 means State 2; S3 means State 3.

AUT and OCT were clustered together. During the entire group
communication, three distinct dIBS states were obtained using
the k-means clustering analysis (see details in Figure 3A).

Then we calculated graph-based network parameters such as
globE and Lp of each state in MATLAB using GRETNA
(Achard and Bullmore, 2007; He et al., 2009; Wang et al., 2015).
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Repeated measure ANOVA was used to assess whether there were
significant differences between these dIBS states. Results showed
that State 1 had significantly higher globE and significantly
lower Lp than State 2 and State 3, and State 2 had significantly
higher globE and significantly lower Lp than State 3 [see
details in Figure 3B; globE: F(2, 26) = 328.47, P < 0.001,
ηp

2 = 0.96, Ms1 = 0.13, Ms2 = 0.08, Ms3 = 0.06; Lp: F(2,
26) = 588.16, P < 0.001, ηp

2 = 0.98, Ms1 = 0.72, Ms2 = 1.16,
Ms3 = 1.50; post hoc Bonferroni correction was used to account
for multiple comparisons].

Repeated measure ANOVA was also used to assess whether
there were significant differences between the occurrence rate
of these dIBS states. Results showed that in both AUT and
OCT, State 1 occurs significantly less than States 2 and 3,
and State 2 occurs significantly less than State 3 [AUT: F(2,
26) = 261.64, P < 0.001, ηp

2 = 0.95, Ms1 = 0.08, Ms2 = 0.33,
Ms3 = 0.59; OCT: F(2, 26) = 482.66, P < 0.001, ηp

2 = 0.97,
Ms1 = 0.06, Ms2 = 0.19, Ms3 = 0.75; post hoc Bonferroni
corrected]. It may indicate the difficulty of entering into a
state where group members experiencing efficient interbrain
information transmission during both creative and non-creative
social communication.

Moreover, in Figure 3C, we displayed the temporal occurrence
of each dIBS state. Intuitively, it can be seen that different states
appeared periodically and alternately during both creative and
non-creative communication. We also examined the Pearson
correlation between the occurrence rate of each dIBS state and
the collaborative behaviors as well as the group performance.
Results showed that the occurrence rate of State 1 was positively
correlated with group originality and index of cooperation (see
details in Figure 3D; AUT originality: r = 0.39, P = 0.044; IOC:
r = 0.46, P = 0.016).

Differences Between the Creative
Communication and Non-creative
Communication
Repeated measure ANOVA was used to assess whether there were
significant differences between the occurrence rate of three dIBS
states in the AUT and OCT. Results showed that during the AUT,

FIGURE 4 | Differences between the alternative uses task (AUT, creative
communication) and object characteristic task (OCT, non-creative
communication). (A) Differences between the occurrence rate of three dIBS
states in the AUT and OCT. (B) Differences between the state transitions in
the AUT and OCT. Error bars indicate standard errors of the mean. *P < 0.05,
**P < 0.01, and ***P < 0.001.

the occurrence rate of States 1 and 2 was significantly higher
than during the OCT [see details in Figure 4A; State 1: F(1,
26) = 4.90, P = 0.036, ηp

2 = 0.16, MAUT = 0.08, MOCT = 0.06;
State 2: F(1, 26) = 15.71, P = 0.001, ηp

2 = 0.38, MAUT = 0.33,
MOCT = 0.19), and the occurrence rate of State 3 was significantly
lower than during the OCT [State 3: F(1, 26) = 19.45, P < 0.001,
ηp

2 = 0.43, MAUT = 0.59, MOCT = 0.75]. In addition, we also
measured the number of state transitions during each group
communication task and found that the state transitions were
significantly higher in the creative communication than in the
non-creative communication [see details in Figure 4B; F(1,
26) = 13.64, P = 0.001, ηp

2 = 0.34, MAUT = 9.59, MOCT = 5.93].
These findings suggest that compared to the non-creative
communication task, participants exhibited a more efficient and
flexible interbrain neural network when performing the creative
communication task.

Validation Analysis
We conducted a validation test using pseudogroups (i.e.,
randomly rearranging the participants to form sham dyads).
All analyses were applied to the pseudodata in the same
manner as for the empirical data. Specifically, we calculated
the dIBS matrices of the 27 pseudodyads (the sample size
was the same as that of real participants) and obtained 3
representative dIBS states using k-means clustering. Then we
calculated graph-based network parameters such as globE of
each state in MATLAB using GRETNA (Achard and Bullmore,
2007). Repeated-measures ANOVA was used to assess whether
there were significant differences between the globE of these
dIBS states. This permutation process was repeated 300 times.
Different from real condition, over 95% pseudogroups showed
no significant difference between the globE of three dIBS states,
and also no significant difference between the occurrence rate
of State 1, State 2, and State 3. Moreover, we also examined the
observed positive correlation between communication behaviors
and the occurrence rate of dIBS states. Considering it was difficult
to calculated the IOC scores of pseudodyads, we only examined
the correlation between AUT originality and the occurrence rate
of dIBS states. The originality score of the pseudodyads were the
sum of the two members. Different from real condition, over
95% of pseudogroups showed no significant correlations between
AUT originality and the occurrence rate of any dIBS states. This
may indicate that our findings are not accidental, but reveal some
inherent nature of interpersonal communication.

DISCUSSION

In the present study, we used a fNIRS-based hyperscanning
technic and analysis including WTC, sliding windows and
k-mean clustering to obtain a set of representative dIBS states
during different group communication. By calculating the
parameters and temporal occurrence of the inter-brain states, we
found that dense efficient interbrain states and sparse inefficient
interbrain states appeared alternately and periodically, and the
occurrence of efficient interbrain states was positively correlated
with collaborative behaviors and group performance. Moreover,
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compared to the common communication, the occurrence of
efficient interbrain states and state transitions were significantly
higher during the creative communication, indicating a more
active and intertwined neural network. These findings captured
the variability and flexibility of inter-brain networks during group
communication, and revealed the relationship between distinct
dynamic IBS states and specific social behaviors, all of which
contributing to our understanding of the multi-brain neural
mechanisms involved in social communication.

Specifically, we clustered the dIBS of the AU and OC tasks
and found three representative dIBS states. Results showed
that State 1 had significantly higher globE and lower Lp than
State 2 and State 3, and State 2 had significantly higher
globE and lower Lp than State 3 (Figure 3B), which means
that compared to State 3, State 1 and State 2 may be more
beneficial for our interpersonal communication, especially State
1. During State 1, our brains are more aligned, more intertwined,
and form a more efficient inter-brain network. The observed
positive correlations between the occurrence rate of State 1
and group originality, as well as index of cooperation also
support our explanation. Moreover, we found that during
both creative and non-creative communication, dense efficient
interbrain states and sparse inefficient interbrain states appeared
periodically and alternately (Figure 3C). This may be related
to spontaneous attentional fluctuations. Previous studies found
that the electrophysiological activity of antagonistic, attention-
relevant brain networks changes at the millisecond level and
coordinates with moment-to-moment behavioral variability,
which indicates that human attention is inherently dynamic
and continuously shifting between external stimuli and internal
thoughts (Kucyi et al., 2017, 2020). Therefore, it is difficult
to maintain a longish state where we are highly focused
and concentrated on the perspectives of others and efficiently
absorb others’ ideas. In addition, results showed that in both
AUT and OCT, State 1 occurs significantly less than State
2 and 3, and State 2 occurs significantly less than State 3.
It may indicate the difficulty of entering into a state where
group members experience productive interbrain information
transmission during both creative and non-creative social
communication. These findings uncovered the connections
between dIBS states and social behaviors and revealed the
dynamic nature of social communication.

To further explore the difference between the creative
and non-creative group communication, we compared the
occurrence rate of three dIBS states and the number of state
transitions between AUT and OCT. AUT requires participants
to report as many unusual and original uses as possible for
an ordinary item. It is a classical divergent thinking task that
is widely used in behavioral and neuroscience studies (Runco
and Mraz, 1992; Fink et al., 2009). As for OCT, it requires
participants to generate as many relevant characteristics as
possible of a common item. In this regard, OCT often serves
as a memory-retrieval task and is used as a control task for
AUT (Fink et al., 2009; Chen et al., 2020). In the current
study, results showed that during the AUT, the occurrence rate
of States 1 and 2 was significantly higher than that during
the OCT, and the occurrence rate of State 3 was significantly

lower than that during the OCT. As mentioned above, States
1 and 2 contributed more to interpersonal communication and
were associated with a higher level of mutual understanding as
well as collaborative behaviors. Therefore, the higher occurrence
rate of State 1 and State 2 during AUT may indicate that
compared to the non-creative communication, participants paid
more attention to each other, deeply evaluated and incorporated
others’ ideas, and built more efficient inter-brain networks
during the creative communication. Besides, the state transitions
were significantly higher in the AUT than in the OCT, which
suggests that participants’ dynamic inter-brain networks were
more flexible, more active during creative communication. In
a recent study, Li et al. (2021) clustered participants’ dIBS
states during a product design task and a common model
building task separately, and qualitatively compared these two
tasks. They found that compared to the model building task,
participants exhibited more complex and stronger IBS during
the product design task. Here we expanded their findings
into verbal communication tasks and quantitatively compared
the properties of the dIBS states between creative and non-
creative communication. With more detailed behavioral indices,
we also observed a correspondence relationship between dIBS
states and specific communication behaviors. During AUT, the
group originality and cooperation behaviors were significantly
positively correlated with the occurrence of State 1, which
suggests that our social behaviors and dynamic inter-brain
networks are harmoniously connected. Previous studies which
focused on the static IBS networks also found stronger IBS during
creative group collaborations (Lu et al., 2019; Mayseless et al.,
2019). For instance, researchers found higher IBS in the r-DLPFC
and r-TPJ during the creative cooperation tasks than the common
cooperation tasks, and the increased IBS in these areas was
positively correlated with behavioral indices of cooperation (Lu
et al., 2019). Our findings are consistent with previous studies and
provide a dynamic perspective to explore the unique inter-brain
mechanisms of creative communication.

The sliding window approach is a common and useful method
for dynamic FC analysis. It has been used to monitor temporal
changes of the brain activity and even to classify and predict brain
disorders (Du et al., 2018; Vidaurre et al., 2018). However, there
is still a lack of a “gold standard” for determining the optimal
window length (Shakil et al., 2016). Therefore, to examine the
impact of different window lengths on the dIBS states, we used
5, 8, and 10 s as the length of sliding windows, separately.
These window lengths were chosen based on our FOI (0.10–
0.19 Hz, corresponding to the period between 5.2 and 10.5 s).
As shown in Supplementary Figure 1, the dIBS patterns were
generally consistent across different window lengths, which
validates our findings.

In the present study, we analyzed the temporal variability
and flexibility of the dynamic inter-brain networks during
both creative communication and non-creative communication
and found distinct dIBS states appeared periodically, and
the increased efficient dIBS states were positively correlated
with group performance, all of which suggest that there is a
sophisticated correspondence between dIBS states and social
behaviors. Moreover, creative communication has its unique
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characteristics. During creative communication, participants
showed more efficient dIBS states and state transitions,
which may indicate a higher level of comprehending and
evaluating others’ ideas, building shared conceptional model, and
collaboratively producing novel products.

There were still several limitations in this study. First, although
AUT and OCT are classical cognitive tasks that are widely used in
behavioral and neuroscience studies (Guilford, 1967; Fink et al.,
2009; Hao et al., 2017), they are not natural social interactions. It
should be cautious when generalizing these findings into actual
social communication. Future research could use more varied
and natural tasks to explore the variability of dynamic inter-
brain networks during social communication. Moreover, since
we set a time limit for the communication tasks (5 min for
each task), participants may not be able to fully express their
views during the communication. Future research could use more
lenient time settings and explore the elaboration index of creative
communication. Besides, we only recorded the activity of several
brain areas such as the PFC and r-TPJ in this study. Future
research could expand the coverage of the fNIRS optode probe
sets so that the underlying inter-brain neural interactions can
be fully explored.
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