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Purpose of review

Despite the tremendous individual suffering and socioeconomic burden caused by osteoarthritis, there are
currently no effective disease-modifying treatment options. This is in part because of our incomplete
understanding of osteoarthritis disease mechanism. This review summarizes recent developments in
therapeutic targets identified from surgical animal models of osteoarthritis that provide novel insight into
osteoarthritis pathology and possess potential for progression into preclinical studies.

Recent findings

Several candidate pathways and processes that have been identified include chondrocyte autophagy,
growth factor signaling, inflammation, and nociceptive signaling. Major strategies that possess therapeutic
potential at the cellular level include inhibiting autophagy suppression and decreasing reactive oxygen
species (ROS) production. Cartilage anabolism and prevention of cartilage degradation has been shown to
result from growth factor signaling modulation, such as TGF-b, TGF-a, and FGF; however, the results are
context-dependent and require further investigation. Pain assessment studies in rodent surgical models have
demonstrated potential in employing anti-NGF strategies for minimizing osteoarthritis-associated pain.

Summary

Studies of potential therapeutic targets in osteoarthritis using animal surgical models are helping to
elucidate osteoarthritis pathology and propel therapeutics development. Further studies should continue to
elucidate pathological mechanisms and therapeutic targets in various joint tissues to improve overall joint
health.
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INTRODUCTION

Osteoarthritis is the most common type of arthri-
tis and the primary cause of disability in elderly
populations [1]. In fact, it has been estimated that
10% of men and 18% of women above 60 years of
age report symptomatic osteoarthritis worldwide
[2]. Although ageing is an important risk factor,
osteoarthritis is multifactorial in nature and
contributing sources to the pathophysiology of
osteoarthritis include genetics, sex, weight, meta-
bolism, and prior joint injury [3]. The most
notable feature of osteoarthritis is articular carti-
lage degradation, however pathological changes
can occur in all joint tissues including the under-
lying subchondral bone, as well as the supporting
synovial membrane, ligaments, and menisci in the
knee joint [3]. As articular cartilage is both aneural
and avascular, changes in these tissues act as
potential causes of symptomatic pain, which
necessitates further research into the interplay of
joint tissues as a whole in the pathology of
osteoarthritis.

Despite major individual and socioeconomic
burden inflicted by osteoarthritis, there are cur-
rently no effective disease-modifying therapies,
and existing symptomatic treatment options are
limited with unwanted side effects [4]. Our inability
to diagnose osteoarthritis prior to irreversible joint
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KEY POINTS

� Lack of osteoarthritis disease-modifying treatments stem
from incomplete understanding of osteoarthritis
pathology. Destabilization-induced osteoarthritis models
in animals are an invaluable tool for better
understanding of disease onset and progression, as
well as identifying novel therapeutic targets.

� Recent studies in autophagy in osteoarthritis have
identified PPARg to be an important mediator of mTOR
signaling, and that suppression of mTOR signaling may
have beneficial implications in metabolic osteoarthritis.
However, mTOR and autophagy may also in part
modulate osteoarthritis pathology independent of each
other, rendering further investigation necessary.

� Recent studies examining the suppression of TGF-b and
TGF-a/EGFR signaling in osteoarthritis have
demonstrated beneficial roles in preventing cartilage
degradation and pathological changes in subchondral
bone; however, these effects seem to be context-
dependent and require careful manipulation. FGFR3
signaling also exert protective effects, however due to
its pleiotropic role requires further understanding to
eliminate unwanted side-effects. Inhibitors of the Wnt/
b-catenin signaling pathway demonstrate therapeutic
potential, however their effects on the joint as a whole
require further elucidation.

� Targeting inflammatory mediators, such as DAMPs,
reactive oxygen species (ROS) as well as contributing
sources of oxidative stress, such as dyslipidemia,
possess protective effects against
osteoarthritis pathology.

� Anti-NGF strategies have demonstrated promising
results for minimizing osteoarthritis associated pain-like
behaviors in rodent surgical models, however further
research is needed to validate these effects and rule out
rare adverse events as observed in human
clinical trials.
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damage hinders favorable management of the
disease [5]. Better understanding of osteoarthritis
pathogenesis is therefore crucial for identifying
novel therapeutic targets. To date, the most
commonly used animal models for the study of
osteoarthritis pathophysiology are age-associated
(spontaneous) and instability-induced through joint
surgery. Among the most widely used surgical tech-
niques include anterior cruciate ligament transection
(ACLT) and destabilization of the medial meniscus
(DMM) in rodents, which models human posttrau-
matic osteoarthritis (PTOA), and structural similarity
[6]. In these modes, disease onset and progression
occur with high reproducibility, which allows for the
evaluation of specific genetic manipulations or
pharmacological interventions on osteoarthritis pro-
gression. This review will focus on recent work on
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therapeutic targets identified from animal surgical
models that provide novel insight into osteoarthritis
pathology with potential for further progression into
preclinical studies.
CHONDROCYTE SURVIVAL AND
AUTOPHAGY

Macroautophagy (referred to simply as ‘autophagy’)
is a highly conserved eukaryotic process whereby
damaged or harmful cytoplasmic materials are
translocated to the lysosome for degradation [7].
It is most notably known for its roles in protecting
cells from conditions of cellular stress, such as oxi-
dative stress, endoplasmic reticulum stress, hypoxia,
and nutrient and growth factor withdrawal, through
maintenance of nutrient and energy homeostasis
[8]. Alterations in autophagy occur in a variety of
disease states, thus understanding these dysregula-
tions in the disease context may bear therapeutic
implications.

Much research has been done demonstrating an
extensive link between autophagy and osteoar-
thritis, in which a compensatory increase in key
autophagy markers appears in early osteoarthritis
pathogenesis but is reduced in late osteoarthritis in
parallel with increased chondrocyte apoptosis
[9,10]. This link was further supported when mice
with cartilage-specific deletion of mammalian target
of rapamycin (mTOR), a serine/threonine protein
kinase that functions as a key suppressor of autoph-
agy, exhibited protection from DMM-induced
osteoarthritis [11

&&

]. Vasheghani et al. [12
&&

] went
onto identify peroxisome proliferator-activated
receptor gamma (PPARg) to be an important player
in maintaining mTOR signaling in cartilage homeo-
stasis, where they showed cartilage-specific PPARg

deficiency to cause an accelerated osteoarthritis
phenotype that was subsequently rescued in
PPARg/mTOR double knock-out mice. On the basis
of PPARgs known roles in regulating metabolic
homeostasis, inflammation and adipogenesis, its
involvement in mTOR signaling reinforces the
crosstalk between cellular metabolism, autophagy,
and cell survival [13]. Indeed, intraperitoneal
administration of rapamycin, an mTOR inhibitor,
markedly reduced surgically induced osteoarthritis
severity in wild-type as well as db/db (leptin receptor
mutation) mice, suggesting therapies that suppress
mTOR and upregulate autophagy to also be
beneficial in metabolic osteoarthritis [14,15

&&

].
Interestingly, Alvarez-Garcia et al. [16

&

] recently
demonstrated REDD1, an endogenous inhibitor of
mTOR whose expression is markedly reduced in
aged and surgically induced osteoarthritis cartilage,
to modulate autophagy in complex with
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thioredoxin-interacting protein TXNIP in an mTOR-
independent manner. Likewise, cartilage-specific
deletion of Atg5, a protein essential for autophago-
some formation, led to the development of ageing-
associated osteoarthritis but exerted no effect on
surgically induced osteoarthritis [17

&

]. These studies
suggest autophagy and mTOR signaling to poten-
tially modulate osteoarthritis pathology independ-
ent of each other (at least in part), rendering further
elucidation of the regulatory mechanisms of
autophagy necessary for developing therapeutic
strategies targeting this process.
GROWTH FACTORS, CARTILAGE
ANABOLISM AND SUBCHONDRAL BONE
CHANGES

The transforming growth factor-beta (TGF-b) signal-
ing pathway has been identified to play an import-
ant role in osteoarthritis development. Despite its
anabolic functions in articular cartilage homeostasis
through prevention of terminal chondrocyte matu-
ration, TGF-b is also involved in pathological
changes in the subchondral bone leading to osteo-
arthritic cartilage degeneration [18,19]. Modulation
of TGF-b signaling as a therapeutic strategy there-
fore needs to be conducted in an optimized manner
to balance the risks and benefits of TGF-b signaling
modulation in different joint tissues.

Recent research advances are allowing further
clarification into this predicament whereby Xie
et al. [20

&&

] showed systemic administration of a
TGF-b neutralizing antibody to ACLT-treated mice
prevented articular cartilage degeneration, normal-
ized subchondral bone structure, and prevented
uncoupled subchondral bone remodeling and
angiogenesis. Additionally, articular cartilage-
specific deletion of Tgfbr-2 in adult mice subjected
to DMM surgery protected from cartilage degener-
ation [21

&&

], suggesting inhibition of TGF-b signal-
ing to be optimal in mature cartilage in order
to avoid the harmful effects of TGF-b signaling
ablation during cartilage development and homeo-
stasis.

TGF-a is a member of the epidermal growth
factor (EGF) family which binds to epidermal
growth factor receptor and has been recently ident-
ified to be involved in osteoarthritis pathology,
where its expression was found to be upregulated
in osteoarthritic chondrocytes in a rat model of
ACLT-induced osteoarthritis [22]. In line with
previous in-vitro data showing that TGF-a induces
catabolic activity in articular chondrocytes, TGF-a
null mice experienced protection from DMM-
induced osteoarthritis with significantly reduced
cartilage damage, MMP13 expression, and type II
98 www.co-rheumatology.com
collagen fragmentation [23
&&

]. However, this protec-
tive effect was not mirrored during ageing-associ-
ated osteoarthritis or DMM-induced osteoarthritis
in older mice, suggesting therapeutic effects of
TGF-a signaling to be context-dependent, such as
in posttraumatic osteoarthritis of young individuals
[23

&&

].
Additionally, another EGFR ligand-heparin-

binding EGF (HB-EGF) – has also recently been
shown to be increased in the knee joints of DMM
operated mice, and elicits similar catabolic activities
in cartilage whereas suppressing anabolic activity
[24

&&

]. Cartilage-specific deletion of mitogen- indu-
cible gene 6 (MIG6), an inhibitor of the EGFR path-
way, resulted in induction of some osteoarthritis-like
features in the knee joint including chondrocyte
proliferation, osteophyte formation, articular carti-
lage degradation, and subchondral bone cyst for-
mation [25–27]. However, marked anabolic
increase of the articular cartilage thickness was also
observed in these mice at an early age, and some
models have shown that EGFR suppression exacer-
bates cartilage destruction, further supporting the
context-dependent nature of the EGFR signaling
pathway [26–28]. Using rodent models of PTOA,
recent studies have suggested C-C motif chemokine
ligand 2 (CCL2) and integrin a1b1 to be downstream
and upstream mediators of EGFR signaling, respect-
ively, further elucidating this complex pathway for
better development of therapeutic targets [29

&

,30
&&

].
The fibroblast growth factor (FGF) family con-

sists of 22 pleiotropic growth factors that exert their
effect by binding to one of four FGF receptors
(FGFRs) [31]. Of the four FGFRs, FGFR1 and FGFR3
are most abundantly expressed in articular cartilage,
and FGFR3 activation through FGF2 and FGF18
signaling has been proposed to result in anabolic
activities in cartilage [32,33]. This is supported by
Tang et al. [34

&&

], whose work examining con-
ditional Fgfr3 deletion in adult chondrocytes
showed accelerated DMM-induced osteoarthritis
development, with increased proteoglycan loss
and chondrocyte hypertrophy. Tang et al. [34

&&

]
further showed conditional Fgfr3 activation to cause
a chondroprotective effect by delaying osteo-
arthritis development, suggesting FGFR3 to play
an important protective role in osteoarthritis. Devel-
opment of therapeutic strategies targeting FGFR3
activation, however, requires careful optimization
due to the pleiotropic nature of the FGF-signaling
pathway. This is seen with intra-articular adminis-
tration of FGF9 to DMM-induced osteoarthritis in
mice. Despite FGF9 being another specific inducer of
FGFR3 signaling in chondrocytes, exogenous FGF9
administration aggravated osteophyte formation
in addition to attenuating cartilage degradation,
Volume 29 � Number 1 � January 2017
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cautioning against potential adverse side effects that
may arise with FGF signaling modulation [35

&&

].
The Wnt/b-catenin signaling pathway has been

shown to play major roles in joint development as
well as maintenance of skeletal tissues [36,37].
Balanced Wnt-signaling is essential in cartilage
health as both activation and inhibition of b-cate-
nin in cartilage results in cartilage degradation and
osteoarthritis [38,39]. Antagonists of Wnt, includ-
ing frizzled-related protein (FRZB/sFRP3) and dick-
kopf-related protein 1 (DKK-1), have been shown to
possess protective effects against articular cartilage
degradation and osteoarthritis [40,41]. However,
Wnt-antagonists also play important roles in bone
biology, and modulations have been shown to affect
subchondral bone changes observed in osteo-
arthritis pathology [41–43], suggesting further
elucidation of Wnt-signaling in different joint tis-
sues to be necessary for optimal targeting of this
pathway.

Recent studies are shedding light on novel Wnt-
inhibitors that demonstrate potential as therapeutic
targets of osteoarthritis. Specifically, hypoxia-indu-
cible factor 1a (HIF1a) has been shown to lower
transcription factor 4 (TCF4)/b-catenin transcrip-
tional activity and inhibit MMP13 levels. Intra-artic-
ular injection of PKF118–310, an inhibitor of TCF4/
b-catenin interaction, resulted in decreased cartilage
degradation in surgically induced osteoarthritis of
cartilage-specific inducible HIF1a-null mice [44

&&

].
Similarly, intra-articular injections of an inhibitor of
histone methyltransferase enhancer of zeste homo-
log 2 (EZH2), a chromatin modifier that activates
Wnt/b-catenin signaling by suppressing sFRP1, also
decreased articular cartilage degradation in surgic-
ally induced osteoarthritis [45

&&

]. Furthermore,
recent preclinical and clinical trials have demon-
strated that intra-articular administration of
SM04690, a small-molecule inhibitor of the Wnt
pathway, prevents cartilage degradation and pro-
motes cartilage health [46

&&

,47
&&

]. This suggests
Wnt-inhibitors to possess potential as disease-modi-
fying therapies for osteoarthritis, however further
studies examining potential toxicities of these inhibi-
tors as well as their effects on other joint tissues is
necessary to optimize its development and use.
INFLAMMATION, OXIDATIVE STRESS,
AND DYSLIPIDEMIA

In addition to traditional proinflammatory media-
tors such as interleukin 1b (IL-1b), tumor necrosis
factor-a (TNF-a), and other chemokines, recent
studies have implicated damage-associated molecu-
larpatterns (DAMPs), or alarmins, in activating osteo-
arthritis inflammation pathophysiology [48,49].
1040-8711 Copyright � 2016 Wolters Kluwer Health, Inc. All rights rese
DAMPsactivatevarious pattern recognition receptors
(PRRs) found on osteoarthritis chondrocytes and
synovium, such as toll-like receptor 2, 4 (TLR2,
TLR4) and receptor for advanced glycation end-
products (RAGE), to induce cytokine production that
cause further release of DAMPs and perpetuation of
inflammatory responses and catabolic activity in the
joint [49,50].

TLR signaling has been heavily studied in osteo-
arthritis pathology, with TLR expression found in
various joint tissues including articular chondro-
cytes, synovium, subchondral bone, and infrapatel-
lar fat pad [51,52]. Therapeutic strategies targeting
TLR signaling has largely centered on agonist block-
ade and inhibition of TLR activation and signaling
[52,53]. Proteoglycan 4 (PRG4/lubricin) has recently
been identified as a novel regulator of TLR2, 4 and 5,
where intra-articular PRG4 injections in a rat model
of DMM-induced osteoarthritis showed decreased
expression of inflammatory cytokines and NF-kB,
as well as decreased pain response [54

&&

]. Further-
more, PRG4 has been shown to bind to both TLR2
and TLR4 in human osteoarthritis synovial fluid to
significantly reduce subsequent TLR2 and TLR4 acti-
vation, suggesting PRG4 to possess a novel anti-
inflammatory role and act as a potential therapeutic
target for osteoarthritis [55

&&

].
Reactive oxygen species (ROS) present another

type of inflammatory mediators found in osteo-
arthritis joints, whereby advanced glycation end
products (AGEs) can activate RAGE to induce upre-
gulation of inflammatory cytokines [56]. Superoxide
dismutase 2 (SOD2) is an enzyme that metabolizes
superoxides in the mitochondria and its downregu-
lation has recently been implicated in osteoarthritis
pathology [57

&&

]. Specific deletion of Sod2 in chon-
drocytes resulted in both accelerated cartilage
degeneration during ageing and after DMM-induced
osteoarthritis, further confirming the detrimental
effect of mitochondrial superoxide production in
osteoarthritis [57

&&

]. Alternatively, ablation of
nuclear factor (erythroid-derived 2)-like 2 (Nrf2), a
transcription factor that regulates the expression of
antioxidant proteins to defend against oxidative
damage, resulted in increased cartilage damage
after DMM surgery in mice, suggesting that Nrf2
may possess protective functions in osteoarthritis
[58

&&

]. Collectively, these studies highlight the
importance of fine-tuning ROS levels in chondro-
cytes, and suggest regulators of cellular redox states
to be potential therapeutic targets in osteoarthritis.

Features of metabolic syndrome, such as obesity
and dyslipidemia, have been linked to osteoarthritis
pathology in part through proinflammatory con-
ditions and oxidative stress [59]. Alterations in lipid
metabolism have been shown to compromise
rved. www.co-rheumatology.com 99
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cartilage homeostasis through ectopic lipid accumu-
lation in chondrocytes [59,60]. Indeed, attenuation
of intracellular cholesterol accumulation in chondro-
cytes using pharmacologic cholesterol inhibition
showed reduced severity in surgically induced osteo-
arthritis [61

&&

]. Additionally, cartilage-specific
deletion of PPARd, a nuclear receptor activated upon
fatty acid binding to regulate downstream target
genes, resulted in a marked chondroprotective effect
against DMM-induced osteoarthritis [62

&&

]. This pro-
tective effect could be in part due to ablation of
PPARds induction of fatty acid oxidation, which
may lead to greater production of ROS that is detri-
mental to cartilage health [63,64].
PAIN ASSESSMENT AND NERVE GROWTH
FACTOR

The studies previously highlighted focus largely on
the structural pathology associated with osteoar-
thritis; however, one of the most frequently cited
reasons for osteoarthritis patients to seek medical
attention is joint pain [65]. The mechanisms defin-
ing the sustained generation of joint pain in osteo-
arthritis are currently poorly understood. Indeed,
radiographically visible signs of osteoarthritis such
as joint space narrowing in humans may not be
accompanied by symptoms of pain and vice versa
[66]. Furthermore, assessment of pain-like behaviors
in animal models is made more complicated as the
rodents frequently used in osteoarthritis models
appear to mask many outward signs of discomfort
and disability [66].

Recent work in a rat ACLT/partial meniscectomy
model of osteoarthritis has validated that measure-
ments of joint sparing (e.g., asymmetry in hind limb
weight bearing) and animal rearing behaviors prog-
ress in parallel to histological signs of cartilage
degeneration [67

&&

]. Similar assessments have been
frequently made in chemical models of osteo-
arthritis such as those induced by intra-articular
monoiodoacetate (MIA) injection; however, the dis-
ease progression in these models develops far more
rapidly than surgical models [68

&&

]. A recent study
examining pain-related behaviors in rats with bilat-
eral intra-articular injection of MIA demonstrated
that decreased spontaneous animal burrowing is
correlated with spontaneous animal activity and
rearing indicative of pain [69

&&

]. These indications
of pain were reversible with various analgesics
including the controversial novel anti-nerve growth
factor (NGF) therapies [69

&&

]. These techniques may
also be valuable in assessing osteoarthritis related
pain-like behaviors in comparable surgical models.

NGF binds to the tropomyosin receptor kinase A
(TrkA) and is important during development for the
100 www.co-rheumatology.com
formation of nociceptive sensory neurons [70
&&

].
NGF and TrkA are expressed by both chondrocytes
and fibroblast-like synoviocytes, and appear to
have a role in pain sensitization in osteoarthritis
[69

&&

–72
&&

]. Recent clinical trials with anti-NGF
monoclonal antibodies have produced results sup-
porting the use of these therapies as antinociceptive
in osteoarthritis patients; however, a small number
of serious adverse events related to osteonecrosis
have raised concern over these treatments [73].
Upregulation of NGF mRNA in articular chondro-
cytes has been shown to follow surgical induction of
osteoarthritis by partial meniscectomy in mice, indi-
cating a dynamic role for NGF in pain generation
and sensitization following insult to articular carti-
lage [71

&&

]. Similarly, decreased pain-like behaviors
(gait analysis) have been shown following treatment
with the anti-NGF antibody tanezumab in a rat
meniscal tear model [72

&&

]. Although the tanezumab
treated animals in this study appeared to develop
worsening cartilage degeneration, unloading of the
joint by mid-tibial amputation largely prevented
cartilage destruction [72

&&

]. This study may indicate
that excessive loading due to loss of protective
nociceptive signaling with anti-NGF treatment fol-
lowing surgical osteoarthritis induction may exacer-
bate disease progression. However, a comprehensive
study using both the MIA and meniscal transection
mouse osteoarthritis models in concert with oral
delivery of a small molecule inhibitor of TrkA
demonstrated antinociceptive effects in animal
behaviors without increased cartilage damage
[70

&&

]. It is important to note that the power of these
studies may not be high enough to examine rare
adverse events as seen in the human clinical trials
[73], although continuing studies are promising for
the use of these treatments for addressing pain in
osteoarthritis patients.
CONCLUSION

Pathology in surgical animal models of osteoar-
thritis is similar to the disease progression seen in
humans, and gives us great insight into the mech-
anisms involved. This review focuses on only a few
candidate pathways and molecules that have shown
recent promise for further understanding of osteo-
arthritis pathophysiology and development of
therapeutics. However, it is clear that the various
joint tissues each play a distinct and important role
in disease progression, and symptom generation.
With this in mind it is important that future
studies continue to address the joint as a whole in
a physiological context, and for these reasons
animal models will continue to be essential in
ongoing osteoarthritis research.
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