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Abstract

Increases in lung vascular permeability is a cardinal feature of inflammatory disease and represents an imbalance in vascular

contractile forces and barrier-restorative forces, with both forces highly dependent upon the actin cytoskeleton. The current

study investigates the role of Ena-VASP-like (EVL), a member of the Ena-VASP family known to regulate the actin cytoskeleton, in

regulating vascular permeability responses and lung endothelial cell barrier integrity. Utilizing changes in transendothelial electricial

resistance (TEER) to measure endothelial cell barrier responses, we demonstrate that EVL expression regulates endothelial cell

responses to both sphingosine-1-phospate (S1P), a vascular barrier-enhancing agonist, and to thrombin, a barrier-disrupting

stimulus. Total internal reflection fluorescence demonstrates that EVL is present in endothelial cell focal adhesions and impacts

focal adhesion size, distribution, and the number of focal adhesions generated in response to S1P and thrombin challenge, with the

focal adhesion kinase (FAK) a key contributor in S1P-stimulated EVL-transduced endothelial cell but a limited role in thrombin-

induced focal adhesion rearrangements. In summary, these data indicate that EVL is a focal adhesion protein intimately involved in

regulation of cytoskeletal responses to endothelial cell barrier-altering stimuli.
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Introduction

Acute inflammatory diseases are characterized by inflam-

matory cell- and cytokine-mediated disruption in the integ-

rity of the endothelial cell (EC) barrier resulting in

prominent vascular leak, interstitial edema and organ dys-

function.1 The vascular barrier is regulated by the actin

cytoskeleton that maintains a balance between barrier-

disrupting contractile forces2,3 and barrier-protective

forces that include cell–cell and cell matrix interactions.4

We have earlier5–8 demonstrated that sphingosine-

1-phosphate (S1P), a vascular barrier-enhancing agonist,

promotes EC myosin light chain kinase (MLCK)-mediated

myosin light chain (MLC) phosphorylation, and cytoskele-

tal remodeling in peripheral regions, including lamellipodia,

processes critical for closure of intercellular gaps and

restoration of vascular barrier integrity.8,9 In contrast,

thrombin, a vascular barrier-disrupting agent, causes

centrally-distributed MLC phosphorylation and actin
stress fiber formation that results in cell contraction and
loss of vascular barrier integrity.10 The process of vascular
barrier regulation is highly dynamic involving actin poly-
merization via multiple cytoskeletal effector proteins that
include cortactin, nmMLCK, Arp2/3, p21-activated kinase
and a number of other effectors.5–8

The Ena/VASP family of proteins are involved in pro-
cesses regulating the actin cytoskeleton,11 sharing a
common C-terminal EVH2 domain involved in G- and
F-actin binding and tetramerization via the oligomerization
domain located at the terminal end of the protein.
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Ena/VASP proteins contain a central proline-rich region,

while the N-terminus comprises an EVH1 domain that

mediates interaction with other proteins and promotes

localization to focal adhesions (FA).12 The localization of

Ena-VASP members at lamellipodia protrusions, filopodia,

FA and cell–cell contacts enables its involvement in dynam-

ic actin rearrangements that occur at these sites.12–14 The

critical role of these proteins in maintaining a functional

endothelium is highlighted by mice lacking all three family

members (Ena-VASP-like (EVL), Mena and VASP15) that

exhibit defects in acto-myosin contractility and structural

integrity of the vasculature resulting in edema, hemorrhage

and lethality.16 Recent studies using CRISPR/Cas9 have

highlighted the role of Ena/VASP proteins in maintenance

of the lamellipodia architecture and actin network through

effects on the capping protein and the Arp2/3 complex.17

The actin cytoskeleton is connected to the cell exterior

through FAs that are sites of protein complexes including

integrins, paxillin, vinculin, focal adhesion kinase (FAK)

and several other proteins.18,19 FAK is a non-receptor

kinase that is involved in lamellipodia dynamics and assem-

bly and disassembly of FAs. These effects are highlighted in

FAK-deleted ECs that show reduced tubulogenesis, prolif-

eration and migration.20 Work from our laboratory has

demonstrated important differential roles for FAK mediat-

ed protein phosphorylation in both S1P-induced EC barrier

enhancement and thrombin-mediated barrier disrup-

tion.21,22 Therefore, we hypothesized that EVL, an FA pro-

tein, regulates vascular barrier permeability through

participation of FAK.
In the current study, we investigated the role of EVL in

vascular barrier regulation with a focus on cytoskeletal

interactions and FA function. We demonstrate the impor-

tant participation of EVL in regulating EC barrier integrity

utilizing biochemical assays, as well as measurements of

trans-endothelial electrical resistance (TEER) and total

internal reflection fluorescence (TIRF) microscopy. TIRF

microscopy allowed quantification of the cellular changes

occurring in FAs and lamellipodia in response to S1P and

thrombin challenge. Finally, we characterized FAK phos-

phorylation in cells over-expressing EVL in response to S1P

and thrombin. Taken together, these data indicate that EVL

is a novel regulator of vascular barrier integrity via inter-

actions with FAK and cytoskeletal regulatory proteins.

Materials and methods

EC culture

Human pulmonary artery ECs (Lonza, Walkersville, MD)

were cultured in Endothelial Basal Medium supplemented

with bullet kit (Lonza, Walkersville, MD). Cells were pas-

saged using trypsin-EDTA (ThermoFisher Scientific,

Waltham, MA) and used between passages 6 and 8.23

siRNA transfection

Non-targeting and EVL siRNAs were obtained from IDT

(Coralville, IA). HPAEC cells were transfected using

Siportamine (ThermoFisher Scientific, Waltham, MA) as

described previously.24 Media was replaced 6–8 h after

transfection.

Lentivirus and overexpression of EVL

Human EVL was cloned into the pGIPZ vector as a myc tag

fusion to generate pGIPZ-myc-EVL. Lentiviral particles

were generated by co-transfecting pGIPZ-myc-EVL,

pMD2G (Addgene, Watertown, MA, USA), and psPAX2

(Addgene, Watertown, MA, USA) using XFect (Takara

Bio, Mountain View, CA). Supernatant containing virus

particles were concentrated using Lenti-X Concentrator

(Takara Bio, Mountain View, CA) and used to infect

HPAEC cells.25

Transendothelial electrical resistance

Transendothelial electrical resistance (TEER) measure-

ments of HPAEC cells plated in 96-well TEER plates

(Applied Biophysics, Troy, NY) were performed using an

electrical cell–substrate impedance sensing system (ECIS)

(Applied Biophysics, Troy, NY). Thrombin (Sigma, St

Louis, MO) and S1P (Sigma, St Louis, MO) were used in

these experiments to simulate vascular disruption and vas-

cular protection respectively.23 Resistance values obtained

were normalized to the initial resistance. Differences

between treated vs. control were plotted as increase or

decrease in normalized resistance upon S1P and thrombin

treatment at the peak (S1P) or the nadir (thrombin) effects.

Western blotting

Following transduction, ECs were washed twice with PBS

and cells were lysed in 1� LDS sample buffer (Thermo

Fisher Scientific, Waltham, USA). Cell lysates were centri-

fuged at 12,000 r/min and protein was estimated in super-

natants. Equal amount of protein was loaded onto 4–12%

Bis Tris gels (Thermo Fisher Scientific, Waltham, USA),

transferred to PVDF membranes, blocked for 1 h using

blotting grade blocker non-fat dry milk (Bio-Rad,

Hercules, USA). Primary antibodies used were EVL

(Santa Cruz Biotechnology, Dallas, USA), FAK (CST,

Danvers, MA, USA), FAK-Y397 (CST, Danvers, MA,

USA), MLC2 (CST, Danvers, MA, USA), pMLC2-T18/

S19 (CST, Danvers, MA, USA), FAK-Y576 (Abcam,

Cambridge, MA, USA) and vinculin (MilliporeSigma,

St. Louis, MO, USA) and imaging was carried out using a

ChemiDoc MP imaging system (Bio-Rad, Hercules, USA).

b-actin was visualized using HRP-conjugated antibodies

(MilliporeSigma, St. Louis, MO, USA).26
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Immunohistochemistry

HPAEC transduced with GFP or GFP-EVL lentivirus were
plated on collagen coated coverslips and fixed in 4% para-
formaldehyde/PBS at various time points (0, 5, 10, 20) after
treatment with thrombin (0.5 U/ml) or S1P (1lg/ml) at
37�C. Fixed HPAEC were stained for paxillin using
mouse IgG1 anti-paxillin (610619) (1.25mg/ml) (BD
Biosciences, San Jose, USA) followed by secondary anti-
body Alexa Fluor 594-conjugated goat anti-mouse IgG
(Jackson ImmunoResearch, Westgrove, USA); for filamen-
tous actin using Alexa Fluor 647 phalloidin (A22287)
(5 units/ml) (Thermo Fisher Scientific, Waltham, USA);
Hoechst 33258 (5 mg/ml) (23491-45-4) (MilliporeSigma, St.
Louis, MO, USA). Slides were mounted using Aqua Poly/
Mount (Polysciences Inc., Warrington, USA).
Immunofluorescence images were obtained using Ti-E
inverted microscope (Nikon), with a 100� Apo TIRF 1.49
NA objective (Nikon, Melville, NY) using TIRF illumina-
tion, an ORCA-Flash 4.0 V2 complementary metal-oxide
semiconductor (CMOS) camera (Hamamatsu,
Bridgewater, NJ), and a motorized stage. FA area was ana-
lyzed based on paxillin immunofluorescence representing
FAs. Total FA area per cell was quantified by measuring
paxillin area of non-clustered cells using Elements software
(Nikon, Melville, NY). Area measurements were performed
by equally thresholding all images within an experiment
using an average background fluorescence intensity and
generating a binary mask. Individual FA area was measured
utilizing 8–15 cells per timepoint and biological replicate,
with a total of three biological replicates for each experimental
condition. Automated area measurements of binary masks for
both cell size and FA size were obtained, and the paxillin-
positive area of each cell as well as the number of FA per
cell was plotted. A two-way ANOVA followed by Sidak’s
multiple comparison test was used to analyze the effect of
GFP and GFP-EVL in Thrombin or S1P treated cells.

FAK analysis

Western blotting images were quantified using Image Lab
(Bio-Rad, Hercules, USA). Individual blots were run for
total and FAK phosphorylation analysis to overcome prob-
lems with stripping and re-probing. The ratio between FAK
phosphorylation levels to total FAK levels was obtained
with normalization being carried out using b-actin. FAK
phosphorylation levels were compared to controls at 0
time. Results were evaluated using Student’s t-test
(unpaired) as previously described 27 and P< 0.05 was con-
sidered statistically significant.

Results

EVL regulates EC barrier responses to S1P

Via the ligation of G-protein coupled receptors, S1P is a
vascular barrier-enhancing agonist that reduces existing

permeability and results in restoration of EC barrier integ-
rity.9 To investigate the role of EVL in vascular barrier
processes, we overexpressed EVL by transducing human
lung EC with lentivirus vectors pGIPZ-Myc-EVL or
pGIPZ-GFP to generate myc-EVL or GFP cells, respective-
ly. EVL and GFP overexpression was verified using western
blotting against the MYC tag and GFP, and equal loading
was confirmed using vinculin as a loading control (Fig. 1c).
Transduced EC cells were plated and changes in TEER were
recorded. Untreated myc-EVL and GFP control cells main-
tained a steady baseline (Fig. 1a). We stimulated both
groups of cells with either 1 or 2 lM of S1P, which rapidly
increased TEER indicating enhanced EC barrier integrity
(Fig. 1a and b). The magnitude of 1 and 2 lM S1P-
induced TEER was further increased in EC overexpressing
EVL (myc-EVL) when compared to GFP-expressing EC.

To validate these findings, we performed the converse
TEER experiment in which EVL-specific siRNAs were uti-
lized to reduce EVL expression. EVL silencing was verified
using Western blotting against EVL and vinculin was used
as a loading control (Fig. 1f). EC transfected with a non-
targeting siRNA served as a control. Baseline TEER values
were comparable between EVL siRNA- and non-targeting-
siRNA-transfected cells (Fig. 1d). Upon S1P stimulation
(1 and 2lM) both groups of cells showed an increase in
electrical resistance (Fig. 1d and e). However, non-
targeting siRNA-transfected cells exhibited higher TEER
when compared to EVL-silenced cells upon S1P stimula-
tion. Together, these data highlight the involvement of
EVL in S1P-mediated vascular barrier responses.

EVL protects against thrombin-induced loss of vascular
barrier integrity

We next sought to investigate the role of EVL in vascular
permeability induced by thrombin, a potent vascular
barrier-disrupting agent.28 For these studies we again uti-
lized the lentiviral myc-EVL or GFP constructs for EC
transduction plated in 96 well TEER plates. Protein over-
expression was verified by western blotting against the
MYC tag and GFP with vinculin as the loading control
(Fig. 2c). Both untreated myc-EVL and GFP cells main-
tained a steady electrical resistance values at baseline,
while thrombin (0.25 or 0.5 U/ml) caused an immediate
decline in TEER (Fig. 2a and b), indicating disruption of
the cell-cell junctions and loss of EC barrier integrity.
Thrombin-mediated TEER declines were more pronounced
in the GFP-expressing cells when compared to EVL-over
expressing EC.

We next performed experiments in EC transfected with
EVL-specific siRNA to reduce EVL protein expression
levels using a non-targeting siRNA as a control, with effects
on EVL protein expression again biochemically verified
(Fig. 2f). As in Fig. 1, transfection with neither EVL- nor
control-siRNA altered baseline TEER values. However, in
EVL siRNA-treated cells, thrombin (0.25 and 0.5U/ml)
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produced an enhanced barrier-reducing EC response as

compared to non-targeting siRNA cells (Fig. 2d and e).

Thus, these data indicate that similar to S1P-induced barrier

responses, EVL is critical to maintaining EC barrier integ-

rity in face of potent vascular disruption produced by

thrombin, highlighting the role of EVL in vascular barrier

regulation.

EVL overexpression alters S1P-induced FA remodeling

To further investigate the role of EVL in vascular barrier

regulation, ECs were transduced with GFP or GFP-EVL

using a lentivirus and treated with S1P for 5, 10 and 20

minutes. Cells were fixed, stained as described above, and

TIRF images were obtained. The FA marker paxillin was

used to analyze alterations in FA area and the number of

FAs per cell. FAs were prominent in both GFP and GFP-

EVL transduced cells, however, cells transduced with GFP-

EVL displayed an increase in FA size at all time points

analyzed (Fig. 3a and b) when compared to GFP-

transduced cells and remained persistent upon S1P addition.

However, the number of FAs per cell was similar in both

treatments at all time points analyzed (Fig. 3c).

Thrombin challenge promotes FA coalescence

ECs transduced with GFP and GFP-EVL as described were
treated with thrombin and imaged for 5, 10 and 20 min. The
size and number of paxillin-derived FAs were analyzed in
these images. Consistent with our observation in Fig. 3,
EVL transduced cells maintained larger FAs than
GFP-transduced cells (Fig. 4a and b). Upon thrombin treat-
ment, EVL transduced cells displayed further increases in
FA size 5 min post thrombin (Fig. 4b) and remained elevat-
ed 20 minutes after thrombin treatment. This increase in FA
size was accompanied by a decrease in FA number in EVL-
transduced cells upon thrombin treatment, suggesting FA
coalescence (Fig. 4c) due to cell contraction.

S1P enhances FAK phosphorylation in EVL-transduced
cells

The increase in FA size suggests a role for FAK in the
processes occurring in response to vascular barrier effectors
such as S1P and thrombin. To analyze the role of FAK in
these processes, we over-expressed EVL in ECs and stimu-
lated cells with S1P or thrombin and analyzed total FAK
levels and FAK phosphorylation status on Y397 and Y576,
sites we previously identified to be involved in vascular

Fig 1. EVL enhances EC barrier-promoting response to sphingosine-1-phosphate. Human pulmonary artery cells were transduced with either
GFP or with myc-EVL (a–c) or transfected with siRNA against EVL or a non-targeting sequence (d–f). Cells were plated on ECIS dishes and
treated with S1P (1 and 2 lM) and vascular barrier regulation was assessed by changes in resistance. (a). myc-EVL overexpressing EC showed an
elevated resistance in response to S1P when compared to GFP transduced cells. Over-expression of myc-EVL and GFP was verified using
Western blotting against Myc and GFP (b). Quantification of TEER increases upon S1P treatments (n¼ 4, *¼p< 0.05 and **¼p< 0.01). (c) Lane
1. GFP and Lane 2. Myc-EVL-transduced cells. The loading control was vinculin to verify loading. (d) Upon treatment with S1P, HPAEC trans-
fected with EVL siRNA showed a lower resistance when compared to non-targeting siRNA transduced cells. The responses to S1P are also dose
dependent. (e) TEER responses increases over control upon S1P treatment are shown (n¼ 4, **¼p< 0.01). The efficiency of knockdown was
verified using Western blotting against EVL and vinculin was used as the loading control (f). Lane 1. Non-targeting siRNA and Lane 2. EVL siRNA
transfected cells. Band intensity is indicated in (c) and (f).
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barrier regulation.21,22 S1P treatment caused an increase in
FAK phosphorylation in both GFP- and EVL-transduced
cells (Fig. 5a). However, the levels of FAK phosphorylation
was greater at Y397 and Y576 in EVL-transduced cells
compared to GFP-transduced cells (Fig. 5b and c).
Similar to S1P treatments, thrombin altered FAK phos-
phorylation at both Y397 and Y576 sites (data not
shown), however, levels of phosphorylation were similar
in both GFP- and EVL- transduced cells. Taken together
the data indicate a potential role for EVL in determining
FAK phosphorylation status in response to S1P.

Discussion

We have demonstrated a role of EVL in promoting vascular
barrier integrity as EVL over-expression promotes vascular
barrier enhancement in response to S1P and protects ECs
from the barrier-disruptive effects of thrombin. These find-
ings were solidified in EVL knockdown experiments where
reduced EVL expression resulted in attenuation of S1P-
induced vascular barrier enhancement and increased the
sensitivity of ECs to thrombin, further highlighting the
role of EVL in vascular barrier regulation. These results

are consistent with other members of the EVL family of
proteins, such as VASP, with reduction of its expression
by siRNA previously reported to increase thrombin-
induced vascular disruption.29 Consequently, microvascular
permeability is increased when VASP is absent, resulting
from direct effects on EC junctions and defects on the endo-
thelial cytoskeleton through disruption of VE-cadherins.
These results suggest that these family members have closely
related functions and are important in regulating endothe-
lial barrier integrity.

Previously, we have characterized the role of S1P and
thrombin in regulating vascular barrier permeability via
the actin cytoskeleton and active participation of several
key participants such as nmMLCK and cortactin in these
processes.8,9,30 The observation that EVL regulates throm-
bin- and S1P-mediated barrier responses is consistent with
its known role in regulating actin polymerization.14,31–33

EVL facilitates these processes through actin elongation
and actin nucleation.34,35 EVL is characterized by EVH1
and EVH2 domains that are linked together via a proline
rich region. Functionally these domains are distinct, with
EVH1 being implicated in targeting of the protein to
FA,36 while the EVH2 domain is involved in regulation

Fig 2. EVL involvement in regulation of thrombin-induced endothelial cell barrier dysfunction. HPAEC were transduced with either myc-EVL or
GFP (a–c) or transfected with a siRNA against EVL or a non-targeting sequence (d–f). EC were treated with the vascular barrier-disrupting agent
thrombin and TEER followed over time. (a). HPAEC cells over-expressing myc-EVL showed a lower electrical resistance in response to thrombin
(0.25 and 0.50 units/ml) in comparison to GFP-transduced cells indicating that that EVL stabilized the vascular barrier upon thrombin treatment.
(b) Stabilization is indicated by the reduction in thrombin-induced barrier disruption in EVL-transduced cells. Responses to thrombin was dose-
dependent (n¼ 4, **¼p< 0.01). Over-expression of the EVL-myc and GFP was confirmed using Western blotting against myc and GFP (c). Lane
1. GFP and Lane 2. myc-EVL-transduced cells. Vinculin was used as the loading control. (d) HPAEC transfected with EVL siRNA showed a greater
drop in electrical resistance in response to thrombin indicating increased vascular leak and underscoring the role of EVL in vascular barrier
stabilization. (e) The increased leakage is highlighted by the greater decrease in resistance of EVL siRNA treated cells (n¼ 4, **¼p< 0.01). The
efficiency of knockdown was verified using Western blotting against EVL and vinculin was used as the loading control (f). Lane 1 Non-targeting
and Lane 2. EVL siRNA transfected cells. Quantification of band density is shown in (c) and (f).
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of actin polymerization through its binding to both F- and
G-actin and thereby facilitating actin chain growth at the
barbed ends of filamentous actin.37 Recent studies using
CRISP/Cas9-mediated deletion of Ena/VASP proteins
revealed that the lamellipodia architecture was altered and
was accompanied by abnormalities in the Arp2/3 com-
plex.17 The binding of EVL to WAVE localizes the Arp2/
3 complex38 and inhibition of this complex reduced S1P-
induced barrier enhancement and delayed recovery after
thrombin.39 It is known that p21-activated kinases regulate
the vascular cytoskeleton and deletion of Pak2 in ECs leads
to increased vascular barrier permeability 40 suggesting that
similar pathways might be involved in EVL-induced vascu-
lar barrier regulation. Our results suggest that EVL over-
expression may enhance EC barrier function by facilitating
increased actin polymerization and causing lamellipodia
protrusion to stabilize the cell-cell junctions and close inter-
cellular gaps.

To evaluate the role of FAs in EVL-mediated vascular
barrier changes, we utilized TIRF microscopy and eval-
uated changes in FA size and number by staining for

paxillin, a key FA protein. Upon EVL transduction, we
observed a significant increase in the size of paxillin-
stained FA suggesting that paxillin, EVL and/or integrins
are increasingly present in these FAs. These integrins can
serve as attachment points to the extracellular matrix
and serve as linkage to the actin stress fibers.41 FA
maturity is indicated by size and based on previous
classification the large FA can be classified as mature
(1–3 lm2) and super-mature (>3lm2).42 Based on this
classification system, EVL-overexpressing cells showed a
greater number of both mature and super-mature FAs
that promotes adhesion and stabilization required for
vascular barrier regulation. Reduction in FA size partic-
ularly of large mature FA in ECs treated with oxLDL
caused FA dysfunction and detachment from the
matrix.42 Functionally, FA size determines cell migra-
tion43 and in ECs wherein neuropilin 2 depletion
causes reduction in FA size and maturity effecting
migration.44 Therefore, it is also possible that the stabi-
lized FA upon EVL transduction are important during
vascular barrier regulation.

Fig 3. EVL overexpression promotes larger focal adhesion formation in S1P-challenged EC. ECs transduced with GFP or GFP-EVL were treated
with S1P for 5, 10 or 20 minutes. HPAEC were then fixed and stained for paxillin, actin (Phalloidin 647) and Hoechst (nucleus). (a) TIRF images
showing GFP (left panels) and GFP-EVL (right panels) upon treatment with S1P for 5, 10 and 20 minutes. Each set of images show an overlay of all
channels, GFP, paxillin (FA marker) and paxillin using a threshold mask to highlight paxillin rich focal adhesions. (b) Quantification of FA size shows
an increase in EVL transduced cells. (c) Quantification of number of FA per cell. The number of FA did not vary significantly among the different
treatments or between GFP vs GFP-EVL. Data were analyzed using a two-way ANOVA followed by Sidak’s multiple comparison test. n¼ 25–30
cells, *p< 0.05, **p< 0.01, ***p< 0.001, ****p< 0.0001. Mean and standard deviation are shown. Scale bar¼ 10 lm.

6 | EVL regulates endothelial barrier function Mascarenhas et al.



Consequent to S1P treatment, we observed larger FA size

suggesting a role for FAK in regulating EVL-mediated vas-

cular regulation. FAK is a non-receptor tyrosine kinase that

is phosphorylated on a number of tyrosine residues through

integrin engagement and several other signaling path-

ways.45,46 FAK activation results from autophosphorylation

atY397, a site important for Src recruitment, followingwhich

the activation loop is exposed resulting in phosphorylation on

Y576.47 Upon S1P treatment, we observed rapid FAK phos-

phorylation on Y397 and Y576 consistent with FAK activa-

tion, which was significantly increased in EVL-transduced

cells. Our findings of FAK activation and S1P stimulation

are consistent with previous findings fromour laboratory21,22

and others 48,49 that favored formation of protective cortical

actin rings critical to vascular barrier regulation.
In response to thrombin, EC transduced with EVL

exhibit a protective TEER-defined response and exhibited

larger size FA. As outlined for S1P-induced changes, throm-

bin regulates cellular tensile forces through conformational

changes in FAK and its activation through phosphoryla-

tion50 thereby initiating a signaling cascade at the FA.51

We observed enhanced FAK phosphorylation on Y397

and Y576 after thrombin at similar levels in both GFP

and EVL transduced EC. These phosphorylation sites

were shown to influence the interaction between FAK, pax-

illin and G-protein-coupled receptor kinase interacting pro-

teins21 and rearrangements of proteins such as vinculin.52

Surprisingly, increases in FA size were accompanied by

decreases in the number of FAs after thrombin challenge of

EVL-transduced cells. We performed western blots in

thrombin-stimulated cell lysates to determine levels of

MLC phosphorylation, a read out of nmMLCK

activation6,50,53 and observed robust phosphorylation of

MLC (Figure S1), indicating that the contractile apparatus

within these cells was highly activated. Therefore, the

observed reduction in FA numbers could be a result of coa-

lescence of the larger FAs observed with EVL transduction.

It was also observed that FAK phosphorylation was only

partially attenuated by PP2, a src kinase inhibitor while it

completely blocked S1P induced phosphorylation21 suggest-

ing that differential activation of the src kinase might be

involved in FAK activation/interaction.

Fig 4. EVL overexpression increases focal adhesion size and thrombin reduces the number of focal adhesions.
ECs transduced with GFP or GFP-EVL were stained for paxillin, actin (Phalloidin 647) and Hoechst (nucleus) following treatment with thrombin
for 5, 10 or 20 minutes. (a) The left side panel shows GFP-transduced cells while the right panel shows GFP-EVL transduced cells. The FA marker
paxillin was used to analyze FA changes and a threshold mask was used to highlight paxillin rich FAs. Thrombin treatment caused FAs to increase
in size (b). FA size was increased in EVL-overexpressing cells compared to GFP-transduced cells. (c) Analysis of the FA number revealed a
reduction in EVL-transduced cells upon thrombin treatment. Data were analyzed using a two-way ANOVA followed by Sidak’s multiple
comparison test. n¼ 35–44 cells, *p< 0.05, **p< 0.01, ***p< 0.001, ****p< 0.0001. Mean and standard deviation are shown. Scale bar¼ 10 lm.
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Vascular permeability is a tightly regulated process and
our findings regarding EVL regulation of permeability sup-

port the notion that similar mechanisms regulate other

pathological conditions. Metastatic growth is promoted

due to vascular endothelial growth factor overexpression
(VEGF) resulting from hypoxic conditions in the tumor

microenvironment.54 In other conditions such as hemor-

rhagic stroke alterations of vascular permeability cause neu-

ronal damage and prolong the recovery.55 Finally in ocular
diseases perturbations in the endothelial barrier cause

edema and disruption of the retinal surface that produces

loss of central vision.56

Contrasting our findings upon estrogen stimulation in

breast cancer cells induction of EVL transcription produces

suppressive cortical actin bundles of these cells,57 occurring

as a result of changes on global transcription within these
cells. Recent findings have also indicated a role for EVL in

hematopoiesis and overexpression in murine primary cells

driving lymphopoiesis58 and indicate that effects vary

depending on cell type.
In summary, these data support the hypothesis that EVL

promotes vascular barrier regulation by direct effects on FA

dynamics including FA size and FAK phosphorylation.

These findings contribute to the understanding of processes
governing vascular barrier integrity and permeability that

are critical to the severity of a diverse array of acute inflam-

matory disorders.
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