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A B S T R A C T   

The human experience is significantly impacted by timing as it structures how information is 
processed. Nevertheless, the neurological foundation of time perception remains largely unre-
solved. Understanding cortical microstructure related to timing is crucial for gaining insight into 
healthy aging and recognizing structural alterations that are typical of neurodegenerative dis-
eases associated with age. Given the importance, this study aimed to determine the brain regions 
that are accountable for predicting time perception in older adults using microstructural measures 
of the brain. In this study, elderly healthy adults performed the Time-Wall Estimation task to 
measure time perception through average error time. We used support vector regression (SVR) 
analyses to predict the average error time using cortical neurite microstructures derived from 
orientation dispersion and density imaging based on multi-shell diffusion magnetic resonance 
imaging (dMRI). We found significant correlations between observed and predicted average error 
times for neurite arborization (ODI) and free water (FISO). Neurite arborization and free water 
properties in specific regions in the medial and lateral prefrontal, superior parietal, and medial 
and lateral temporal lobes were among the most significant predictors of timing ability in older 
adults. Further, our results revealed that greater branching along with lower free water in cortical 
structures result in shorter average error times. Future studies should assess whether these same 
networks are contributing to time perception in older adults with mild cognitive impairment 
(MCI) and whether degeneration of these networks contribute to early diagnosis or detection of 
dementia.   

1. Introduction 

Timing is a crucial characteristic of human behavior as it structures how sequential information is perceived, experienced, and 
remembered [1], consequently guiding many aspects of social behavior. That is why human interaction with the environment, which is 
vital for survival, normally occurs in a dynamic context [2]. 

Timing depends on various factors including perception, learning, memory and voluntary motor action and control [3]. Studies 
have demonstrated that human perception and action are understood in terms of synergetic concepts of a dynamical system [4,5]. 
Action improves our timing perception via dynamic interaction between sensory and motor systems [6]. Particularly, timing-based 
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action depends on the interaction of a dynamic network of brain structure, which associates temporal sensory information and memory 
traces of time, to generate behavior based on perceptual decisions [7]. Integration of time with sensory input is necessary to recognize 
and interpret temporal aspects of the sensory information that guide action. Thus, the ability to adjust behavior dynamically in 
different contexts is a critical component of the execution of voluntary movements with strict temporal control. Multiple frameworks 
exist for the neural mechanisms of timing, and the existence of these general frameworks highlights the key question that concerns 
whether the representation of temporal information is dependent on a specialized system, distributed across a network of neural 
regions, or is computed in a local task-dependent manner [8]. Moreover, context dependent perception and action of timing planning 
underpin the same internal mechanism [8]. 

It has been theorized that shorter range timing is automatic, reflecting engagement of processes associated with the production of 
skilled movements while longer range timing is cognitive, being dependent on systems associated with attention and working memory 
[8]. More particularly, the timing scale of multi-seconds is identified to characterize human timing mechanisms which participate in 
the conscious perception of time. In our study, we observed dynamic timing behavior including both reactive and anticipatory 
coordinative patterns between self and environment which is essential for survival in the real world [4]. This behavior could be 
understood as two complementary modes of a dynamic system, not differential brain processes. Frontal and prefrontal areas were 
associated with anticipatory behavior whereas reactive processes were mediated by classical sensory and motor areas [4]. In this 
attentional demanding and ruled-based behavior, the brain must constantly monitor external stimuli and attempt to link relevant 
sensory information with action-based behavior [9]. This is a mechanism by which multiple behavioral demands are combined and 
applied to perceptual as well as action processes [9]. 

While timing is an inherent characteristic of human behavior and is gradually developed as a sense of duration over normal 
development, no explicit biological systems exist, such as for sight, hearing, and taste. As such, there has been an explosion of research 
into the neural underpinnings of timing [10–12]. Recent meta-analyses have emphasized the complex network of brain regions 
involved in timing, including but not limited to the supplementary motor area, cerebellum, and basal ganglia, highlighting the 
multi-modal nature of temporal processing [13–15]. Some studies also reported the involvement of the prefrontal/parietal lobes and 
thalamus in the perception of time [16,17]. 

Timing is an integral feature of human behavior that matures into a nuanced sense of duration, with numerous reviews and meta- 
analyses shedding light on the ways in which aging and neurodegenerative conditions affect time perception [18–22]. A task 
frequently employed to study this is the ’time-to-contact’ task, which assesses an individual’s ability to predict the moment an 
approaching object will arrive at a target location, thus engaging cognitive and perceptual timing mechanisms. Findings from this task 
reveal that aging can influence these timing faculties, with older adults often displaying variations in performance, indicating sig-
nificant insights into the cognitive and perceptual dynamics of timing as it relates to age [22,23]. These insights are particularly 
revealing, as they underscore the differential effects of aging on time perception not just broadly but also in the specific context of tasks 
like ’’time-to-contact” [23,24]. 

A few studies have investigated the neuroanatomical correlates of time perception in aging adults. Recent findings have shown that 
time estimation and time judgment are different between younger and older adults, having older adults demonstrate shorter time 
estimation intervals [25] and lower sensitivity to time regardless of the duration range tested [26]. However, there are contradicting 
studies that have also claimed that time perception is not altered as a result of age [27], further emphasizing that more research on the 
neural underpinnings of how humans perceive time is needed to confirm such findings. 

Neuroimaging discloses imperative information and implications for understanding healthy aging and identifying structural 
changes that characterize age-related neurodegenerative diseases [28]. One of the major risk factors for neurodegenerative diseases is 
aging, which can impact the neurite layouts throughout the brain as gray matter microstructure have the capacity to rapidly remodel 
[29]. As such, studying brain microstructure is crucial in understanding the physiological changes associated with aging, along with 
potential diseases that may accompany age. However, previous neuroimaging studies mainly analyzed crude measures of brain 
structure such as regional brain volume and cortical thickness associated with performance in timing tasks [13]. Recent studies on 
brain microstructural correlates of time perception have been primarily limited to investigating white matter microstructure utilizing 
diffusion tension imaging (DTI) [30,31]. While DTI measures can be relatively sensitive, these measures have inherent limitations 
when it comes to measuring microstructural properties in cortical regions, as conventional DTI measures are affected by partial volume 
and biased in cortical brain regions [32–35]. 

Recently, neurite orientation dispersion and density imaging (NODDI) has shown great promise for measuring cortical micro-
structural changes in health and disease [36,37]. The NODDI model provides biologically interpretable indices that derive three 
parameters: 1) the neurite density index (NDI), describing the density of packed neurites by compiling volume fraction in a given voxel; 
2) the orientation dispersion index (ODI), which measures orientational configuration of neurites in a given voxel; and 3) the 
free-water isotropic volume fraction (FISO), which represents the free water content within neural tissue [38]. Various studies have 
successfully utilized NODDI to characterize alterations in gray matter microstructure in clinical population such as Alzheimer’s disease 
and Schizophrenia [29,38]. 

In relation to the aging brain, NODDI studies have demonstrated mixed results, either showing a widespread decrease in ODI with 
age with no significant changes in NDI throughout the cortex or a decrease in NDI with no significant changes in ODI [39,40]. Other 
studies have also shown an increase in ODI with age in the hippocampus and thalamus, regions with highly myelinated subcortical 
structures [38]. However, it has been generally accepted that ODI and NDI decrease with age [38]. In terms of FISO, aging is associated 
with gray and white matter tissue loss, and the resulting enlargement of interstitial space could lead to increase in free water content 
[41]. Therefore, higher FISO indicates greater pathology and/or atrophy. 

Neuroimaging studies that analyzed crude measures of brain microstructure during timing tasks identified the contribution of the 
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intraparietal and cingulate areas in the distributed neural network-based model for time perception [13]. Additionally, a prior study 
that conducted ROI analyses to investigate microstructural properties within cortical regions in the healthy aging brain revealed 
dorsolateral prefrontal, inferior frontal, inferior parietal, lateral and superior temporal, and sensory regions demonstrating change 
with age [38]. ROIs identified in this study reflect what was found in the previous literature, confirming the identified neural networks 
that are impacted by age [1,42]. Previous studies also demonstrated mixed results for age-related changes to free water content and 
orientation dispersion indices in the brain [38–41]. This study further supports prior findings that demonstrated an increase in cortical 
free water content and a decrease in cortical neurite orientation dispersion with age [39,41], signifying their potential role as pre-
dictors of time perception accuracy. 

The critical brain structures engaged in time perception include the prefrontal and parietal lobes, thalamus, basal ganglia and 
cerebellum [17,25]. More particularly, the parietal area plays a critical role as a bridge between perception, action and cognition in the 
dynamic timing system [9]. Time perception and motor timing rely on very similar structures, including the premotor cortex (PMC), 
primary motor cortex (MI), primary somatosensory cortex (SI) [43,44], and medial wall motor areas in the cingulate cortex, as well as 
parts of the basal ganglia and the thalamus [45]. This overlap can be explained mostly by the nature of the context-dependent timing 
behavior, but it can be generalized that one’s sense of time is generated by the simultaneous engagement of networks involved with 
motor sequence learning and timing that requires the precise representation of temporal information [13]. 

Here, we have addressed limitations of previous studies and examined for the first time the extent to which cortical microstructural 
properties predicted time perception in older adults. In this study, we utilized a multivariate analysis, rather than a univariate analysis, 
to analyze the distributed pattern of neural networks predicting multi-second range of timing durations. Measures of time perception 
were taken through average error times during performance in a nonverbal time estimation task [46,47]. We hypothesize micro-
structure properties of the frontal, parietal and temporal regions, along with the basal ganglia and thalamus regions to be the highest 
predictors of time perception. We expect those with higher FISO and lower ODI and NDI to show poorer performance in time 
estimation. 

2. Materials and methods 

2.1. Participants 

Forty-two healthy controls (HC) (age 65–85 years old, mean (SD): 71.97(5.02)) were recruited from the local community at 
Stanford for this study. The details of the demographics and cognition have been provided in Table 1. All participants were required to 
meet certain criteria to be eligible for this study. These criteria included being right-handed and not exhibiting any signs of suicidality 
or significant psychiatric disease. Additionally, participants could not be currently using psychotropic medications, opiates, or thyroid 
medications (with some exceptions for permitted medications including cholinesterase inhibitors and hypertension medications if 
stable for at least two months). They could not have claustrophobia, be using non-MRI-compatible materials, or have a history of post- 
traumatic or psychotic disorders, bipolar disorder or any other significant neurologic disease. This included conditions like potential 
and likely dementia, vascular dementia, Parkinson’s or Huntington’s disease, brain tumor, progressive supranuclear palsy, epilepsy, 
subdural hematoma, and multiple sclerosis. Participants were required not to have untreated high blood pressure, a history of major 
head injury, or present or past alcohol or substance misuse (addiction within the last two years). Furthermore, they must not have any 
substantial systemic or unsteady medical conditions. 

The study involved a comprehensive series of neuropsychological evaluations for qualified participants. The Mini International 
Neuropsychiatric Interview (M.I.N.I.), a structured clinical assessment, was used as the initial step to identify primary psychiatric 
disorders. Further, eligible participants were required to achieve a score of 7 or less on the geriatric depression scale (G.D.S.), indi-
cating a low level of depression, a score of 24 or higher on the Mini-Mental State Examination (MMSE), a measure of overall cognition, 
and a satisfactory score on the Instrumental Activities of Daily Living (I.A.D.L.) scale, which assesses functional capability in eight 
separate activities of daily living, ensuring their ability to perform daily tasks independently. The Clinical Dementia Rating (C.D.R.) 
was used as an additional tool to rule out memory problems (CDR = 0), thereby ensuring the participants’ cognition was accurately 
assessed. Informed consent was obtained from each participant, and the study was approved by Institutional Review Board at Stanford 
University. 

2.2. Time-Wall Estimation task 

The Time-Wall Estimation task is a nonverbal time estimation test modeled after a task originally included in the Unified Tri- 

Table 1 
Participant characteristics.   

N = 42 Range 

Age (SD) 72.0 (5.0) 65–84 
Sex, Female (%) 69.0 %  
Years of Education (SD) 22.1 (1.6) 18–27 
MMSE (SD) 28.4 (1.7) 24–30 
CDR (SD) 0 0  
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Services Cognitive Performance Assessment Battery (https://psychologydictionary.org/unified-tri-service-cognitive-performance- 
assessment-battery-utcpab/) [46]. The overall objective of the task is to assess one’s ability to estimate the time at which a target, 
moving vertically at a fixed rate, will have traveled a specified distance. After the target is two-thirds of the way down, it will pass 
behind a wall and become invisible. The task is to press the space bar at the exact moment the target would pass through the notch 
marked at the bottom of the display (Fig. 1). Thus, it draws on processes relating to both motion perception [48] and prediction. By 
default, the task runs for 20 trials, each lasting between 2 and 10 s. Average error time across trials was used to measure individual’s 
accuracy in time perception. The average error time was calculated for each individual by dividing the difference between the response 
time and target time by the target time (TResponse − TTarget

TTarget
) 

2.3. MRI acquisition and preprocessing 

The multi-shell dMRI data were acquired using a 3T GE system (General Electric Healthcare, Milwaukee, WI, USA) with a 32-chan-
nel head coil (Nova Medical, Wilmington, MA, USA). The image acquisition was performed using the advanced multiband echo-planar 
imaging (EPI) method (multiband factor of 3), which included a 2.0 mm3 isotropic spatial resolution in 80 diffusion directions with a 
diffusion gradient strength b = 2855 s/mm2 and 30 diffusion directions with a diffusion gradient strength b = 710 s/mm2 at CNI 
(Center for Cognitive and Neurobiological Imaging, https://cni.stanford.edu). Each dMRI image also contained nine images without 
diffusion weighting (b = 0 s

mm2). Another dMRI scan was conducted using the inverse phase encoding direction. This scan included 6 
diffusion directions (b = 2855 s/mm2) and two non-diffusion-weighted images to correct the EPI distortion. The other dMRI pa-
rameters are TR/TE = 2800/78 ms, matrix size = 112 × 112, and 63 axial slices. In addition, structural MRI data were collected using 
MPRAGE pulse sequence using 0.45 inversion time, 12◦ flip angle and 1 mm slice thickness. 

The dMRI data preprocessed using FSL (fsl.fmrib.ox.ac.uk/fsl/fslwiki/) and MRTrix3 (mrtrix.org) toolboxes. This included 
denoising, addressing geometric EPI distortion using FSL’s TOPUP function, correcting eddy current distortion, performing slice-by- 
slice motion correction and outlier detection, as well as bias field correction using ANTs N4BiasField Correction, and two participants 
were removed from the study due to the excessive motion. The T2-weighted fluid-attenuated inversion recovery (FLAIR) sequences 
were collected to identify white matter hyperintensities (WMHs). The study included only healthy older adults, and thus, we didn’t 
have to exclude any subjects due to high WMHs. The NODDI toolbox (available at https://www.nitrc.org/projects/noddi_toolbox), 
which employs a multicompartment model offering unique biophysical insights into tissue beyond what other diffusion measures 
provide, was utilized to compute NODDI metrics. These metrics include neurite density (intracellular volume fraction, ICVF), neurite 
arborization (orientation dispersion index, ODI), and extracellular volume fraction (FISO). NODDI plays a crucial role in the field by 
enabling the estimation of microstructural properties of gray matter, which leads to the quantification of neurite morphological 
changes associated with different neurological and psychiatric disorders in vivo [49]. Therefore, NODDI may provide a novel insight 
into aging of gray matter microstructure. 

Fig. 1. Time-Wall Estimation task (A) and paradigm (B).  
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2.4. Surface mapping analysis 

The FreeSurfer (Version 6.0.0 available at http://surfer.nmr.mgh.harvard.edu) pipeline was performed for cortical reconstruction 
of the T1-weighted image, including skull stripping, gray and white matter segmentation, as well as reconstruction and inflation of the 
cortical surface. If necessary, the pipeline also involved brain segmentation slice-by-slice quality control produced by the automated 
steps. The cortical thickness, surface area, gray and white matter volumes were estimated through automatic procedure based on the 
Freesurfer atlas. Further, the Human Connectome Project’s multi-modal parcellation (HCPMMP) [50] was utilized, which includes 180 
cortical brain regions per hemisphere and is based on the cortical architecture, function, connectivity, and topography of healthy 
individuals. The HCP provided the original annotation files, and they were converted to the standard cortical surface in FreeSurfer 
using fsaverage. This average parcellation was then transformed into each participant’s cortical surface and converted to volumetric 
masks. Finally, the 360 masks representing single cortical brain regions yielded by the HCPMMP were linearly transformed into each 
subject’s diffusion native space. The transformation was manually checked in ITK-SNAP, and manual orientation was applied if 
necessary. The transformed regions served as anatomical landmarks from which ICVF, ODI, and FISO were extracted across the cortex. 
Also, each subject’s cortical metrics were resampled based on the cortical regions defined in the HCPMMP atlas. 

2.5. Support vector regression (SVR) analyses 

The SVR analyses were performed using the Multi-Voxel Pattern Analysis (MVPA) toolbox on MATLAB [51] to identify cortical 
neurite microstructural measures that are predictive of individual’s average error time in the Time-Wall Estimation task. Regional gray 
matter neurite microstructural measures were used as input to the SVR model after adjusting for age and intracranial volume. Separate 
linear SVR models were fit for each of set of neurite measures (i.e., ODI, FISO, NDI). A leave-one-subject-out cross-validation was used 
to obtain an unbiased estimation of the average error times. In each iteration, data from one subject were left out as a test case and the 
remaining subjects’ data were used to train the SVR model. This procedure was repeated such that data from each and every subject 
were left out once as test case and the accuracy of the model was then quantified as the correlation between the predicted and actual 
average error times across test cases. This process confirms the independence of training and test cases, providing an estimate of 
generalizability of the model to independent datasets. Finally, the statistical significance of the SVR models were tested against null 
models using nonparametric permutation testing with 2000 iterations. 

For each SVR model, the weights of brain regions’ contribution to SVR model were examined and regions with SVR weights more 
than 2SD from the mean were identified as regions that contributed the most to predicting average error time. Particularly, in each 
iteration of cross-validation, the SVR model used the training data to search for a weight vector that maximized the prediction accuracy 
of the error time. This weight vector represents the importance of a particular brain region’s NODDI properties in predicting error time. 
These weight vectors were averaged across different iterations and the average weight vector was used to represent the contribution of 
each brain region in predicting error time. 

For the purpose of comparison, we also fit separate SVR models using conventional measures of gray matter structure including 
regional gray matter thickness, volume and surface area. 

Fig. 2. Correlations between predicted and observed average error time for ODI (a) and FISO (b) cortical microstructures. FISO: free-water isotropic 
volume fraction; ODI: orientation dispersion index (ODI). 
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3. Results 

SVR analyses showed that the cortical ODI and FISO measures were significant predictors of average error-time in healthy older 
adults. Particularly, leave-one-subject-out results revealed that the SVR model based on cortical ODI and FISO measures predicted 
average error time with a correlation accuracy of r = 0.44 (p = 0.016) and r = 0.35 (p = 0.033), respectively (Fig. 2). The model based 
on cortical NDI measures was not significant (p > 0.05). The conventional cortical metrics including cortical thickness, surface area 
and gray matter volume were not significant predictors of average error time (p’s > 0.34, r < 0.014). We further examined which brain 
regions contributed the most to predicting average error time. ODI measures in the dorsolateral prefrontal cortex, ventral stream visual 
pathway, auditory association regions, medial and lateral temporal lobe, the MT + Complex, superior parietal lobe, putamen, posterior 
cingulate and posterior opercular regions were the most significant predictors of average error time (Table 2, Fig. 3a). For FISO, the 
lateral temporal, ventral stream visual pathway, medial temporal lobe, nucleus accumbens, anterior cingulate cortex, medial and 
prefrontal cortex, inferior frontal gyrus, and orbital and polar frontal lobes were the top contributing ROIs (Table 2, Fig. 3b). Finally, 
we found a significant negative correlation between the majority of cortical ODI values and the average error time. Simultaneously, we 
noted a positive correlation between cortical FISO and the average error time. Table 3 presents the top ten regions of interest (ROIs) 
showcasing these correlations-. 

4. Discussion 

This study aimed to identify the cortical microstructural measures associated with time perception in healthy older adults. Our 
work highlighted for the first time the cortical microstructural properties in specific brain regions that predict time perception in older 
adults utilizing SVR and microstructural NODDI. We found that neural networks associated with attention and cognitive control, 
episodic and spatial memory, autonomic motor function, and the processing of visual input for cognitive operations were the most 
significant predictors of time perception abilities in healthy older adults. Specific networks included prefrontal, medial frontal, 
temporal, parietal, and anterior cingulate networks. We specifically demonstrated that lower FISO and higher ODI in these regions are 

Table 2 
Top contributing ROIs for predicting the average error time using the cortical ODI and FISO.  

ODI WM Cortical and Subcortical 
Microstructure 

FISO WM Cortical and Subcortical 
Microstructure 

Region of Interest 
(ROI) 

Network Square of Weight 
(WSF) 

Region of Interest 
(ROI) 

Network Square of Weight 
(WSF) 

L_a9-46v Dorsolateral Prefrontal 8.75 × 10− 6 L_TE1p Lateral Temporal 1.72 × 10− 5 

L_VVC Ventral Stream Visual 8.00 × 10− 6 L_VVC Ventral Stream Visual 1.37 × 10− 5 

R_STGa Auditory Association 7.48 × 10− 6 R_PeEc Medial Temporal 1.29 × 10− 5 

R_PreS Medial Temporal 6.69 × 10− 6 L_PHA3 Medial Temporal 1.18 × 10− 5 

R_TE2a Lateral Temporal 6.39 × 10− 6 L_VMV1 Ventral Stream Visual 1.11 × 10− 5 

R_PH MT + Complex and Neighboring 
Visual Areas 

6.06 × 10− 6 R_Accumbens Subcortical 1.00 × 10− 5 

R_VIP Superior Parietal 5.94 × 10− 6 L_a32pr Anterior Cingulate and Medial 
Prefrontal 

9.52 × 10− 6 

L_putamen Subcortical 5.61 × 10− 6 L_p47r Inferior Frontal 9.00 × 10− 6 

R_7 m Posterior Cingulate 5.41 × 10− 6 R_p10p Orbital and Polar Frontal 7.79 × 10− 6 

R_OP4 Posterior Opercular 5.39 × 10− 6 L_10v Anterior Cingulate and Medial 
Prefrontal 

7.74 × 10− 6 

L_7 PC Superior Parietal 5.36 × 10− 6 R_s32 Anterior Cingulate and Medial 
Prefrontal 

7.60 × 10− 6 

L_p32pr Anterior Cingulate and Medial 
Prefrontal 

5.31 × 10− 6 L_SCEF Paracentral Lobular and Mid 
Cingulate 

6.98 × 10− 6 

R_DVT Posterior Cingulate 4.70 × 10− 6 R_IP2 Inferior Parietal 6.97 × 10− 6 

L_VMV2 Ventral Stream Visual 4.61 × 10− 6 R_FOP1 Posterior Opercular 6.91 × 10− 6 

L_VentralDC Subcortical 4.51 × 10− 6 L_7Am Superior Parietal 6.68 × 10− 6 

L_Thalamus Subcortical 4.51 × 10− 6 R_23d Posterior Cingulate 5.99 × 10− 6 

R_VMV3 Ventral Stream Visual 4.50 × 10− 6    

R_a10p Orbital and Polar Frontal 4.45 × 10− 6    

L_V4t MT + Complex and Neighboring 
Visual Areas 

4.38 × 10− 6    

L_IFSp Inferior Frontal 4.31 × 10− 6    

R_V6 Dorsal Stream Visual 4.27 × 10− 6    

R_TE1a Lateral Temporal 3.96 × 10− 6    

a9-46v: Area anterior 9-46v; VVC: Ventral Visual Complex; STGa: Superior Temporal Gyrus region a; PreS: PreSubiculum; TE2a: Area TE2 anterior; 
PH: Area PH; VIP: Ventral IntraParietal Complex; 7 m: Area 7 m; OP4: Area OP4/PV; 7 PC: Area 7 PC; p32pr: Area p32 prime; DVT: Dorsal 
Translational Visual Area; VMV2: VentroMedial Visual Area 2; VMV3: VentroMedial Visual Area 3; a10p: Area anterior 10p; V4t: Area V4t; IFSp: 
Inferior Frontal Sulcus posterior; V6: Sixth Visual Area; TE1a: Area TE1 anterior; PeEc: Perirhinal Ectorhinal Cortex; PHA3: Parahippocampal Area 3; 
a32pr: Area p32 prime; p47r: Area anterior 47r; SCEF: Supplementary and Cingulate Eye Field; IP2: Area IntraParietal 2; FOP1: Frontal Opercular 
Area 1. 
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associated with better performance in the time estimation task. 
In this study, we specifically targeted the microstructural properties of the frontal, parietal, and temporal lobes, as well as the basal 

ganglia and thalamus, due to their established roles in the neurocognitive networks involved in time perception. The frontal lobes, 
particularly the prefrontal cortex, are central to planning complex cognitive behavior and making decisions about when actions should 
be initiated, thus playing a pivotal role in timing tasks that require cognitive processing and temporal integration [52]. The parietal 
cortex, on the other hand, contributes significantly to processing sensory information and integrating it with temporal cues, crucial for 
tasks that demand spatial-temporal reasoning [53]. The temporal lobes facilitate the encoding and retrieval of temporal information 
and are involved in perceptual tasks that integrate sequences of events over time, which is essential for understanding patterns in 
timing tasks [54]. 

Furthermore, the basal ganglia and thalamus have been implicated in the modulation of timing processes through their extensive 
connections with the cortical areas. The basal ganglia are particularly integral to the regulation of motor timing and the development 
of habitual timing patterns, critical for tasks requiring consistent temporal intervals [55]. The thalamus supports these processes by 

Fig. 3. Top contributing ROIs are overlayed on the brain’s cortical and subcortical surfaces for predicting the average error time using the cortical 
ODI (a) and FISO (b). FISO: free-water isotropic volume fraction, ODI: orientation dispersion index (ODI). The darker color represents higher 
prediction weights. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.) 

Table 3 
Top ROI regions showed significant correlations between the average error time and cortical ODI and FISO.  

Region of Interest (ROI) Network r value p value 

odi_L_PCV Ventral_Stream_Visual − 0.5380929 0.000237429 
odi_L_VMV2 Ventral_Stream_Visual − 0.52231637 0.000388048 
odi_L_VVC Ventral_Stream_Visual − 0.50359711 0.000674397 
odi_L_7 PC Superior_Parietal − 0.48338094 0.001183614 
odi_R_VIP Superior_Parietal − 0.48127921 0.001252452 
odi_L_TE2a Lateral_Temporal − 0.478153 0.001361425 
odi_R_OP4 Posterior_Opercular − 0.47725872 0.001394106 
odi_R_7PI Superior_Parietal − 0.46424828 0.001954752 
fiso_L_3b Somatosensory_and_Motor 0.643836776 4.23E-06 
fiso_L_MIP Superior_Parietal 0.605286668 2.17E-05 
fiso_L_7Am Superior_Parietal 0.593914575 3.38E-05 
fiso_L_23d Posterior_Cingulate 0.584292866 4.85E-05 
fiso_L_p32 Anterior_Cingulate_and_Medial_Prefrontal 0.571317037 7.76E-05 
fiso_L_SFL Dorsolateral_Prefrontal 0.571153167 7.81E-05 
fiso_L_PEF Premotor 0.566140776 9.31E-05 
fiso_L_24dv Paracentral_Lobular_and_Mid_Cingulate 0.563021347 0.000103782 
fiso_L_L01 MT+_Complex_and_Neighboring_Visual_Areas 0.554972657 0.000136548 
fiso_L_31pv Posterior_Cingulate 0.552704707 0.000147338  
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coordinating timing information across different sensory modalities and maintaining cortical alertness, necessary for precise time 
estimations [56]. By focusing on these areas, our study leverages their known functional responsibilities to explore how their 
microstructural changes might influence time perception in older adults. Although regions such as the cerebellum and occipital lobe 
also play roles in timing and perceptual tasks, our study prioritized those regions most directly linked to the cognitive and perceptual 
dimensions of the timing tasks employed, aiming to delineate the neural underpinnings of time perception within this specific context. 
Future studies could expand this focus to include a broader array of brain regions, thereby providing a more comprehensive under-
standing of the neural architecture underlying time perception across different tasks and conditions. 

Specific subcortical regions, such as the nucleus accumbens that was not found to contribute to time perception in the literature, 
were identified in this study. This region is associated with the limbic system and regulates limbic functions of motivation, affect, and 
reward [57]. The contribution of the nucleus accumbens can be explained by the nature of the Time-Wall Estimation task. While the 
task is a measure of motion prediction and time perception, the objective of the task is to press the space bar at the exact moment the 
target would pass through the notch marked at the bottom of the display. The nucleus accumbens is the neural interface between 
motivation and action, having the nature of the Time-Wall Estimation task explain its role in time perception for this study. 

Notably, both the ODI and FISO measures exhibited significant results, highlighting their effectiveness in estimating average error 
time. However, it is worth mentioning that the NDI measure did not yield any significant prediction. It is intriguing to observe the close 
relationship between NDI and ODI, as they are both linked to the synaptic connections in the cortex [58]. While NDI indicates neurite 
density, ODI is more prominently expressed within the brain cortex, which suggests that ODI holds a greater influence in conveying 
information between brain regions. The observed increase in neurite arborization coupled with the decrease in extracellular structure 
expansion (as evidenced by the decreased FISO measure) implies enhanced network efficiency. It provides valuable insights into how 
ODI emerged as the strongest predictor of time perception, considering its involvement in highly distributed neural processes. In 
addition, the models constructed based on conventional measures of brain structure such as regional brain volume and cortical 
thickness were not significant predictors of average error time in the task. These further emphasize the sensitivity of ODI and FISO 
measures in predicting time perception ability in older adults. 

In this study, we utilized the heightened sensitivity of NODDI measures to derive biologically meaningful indices that allowed us to 
determine which ROIs contribute to time perception. This approach overcomes the limitations of conventional diffusion measures 
(such as Fractional Anisotropy (FA)), which are less sensitive to detecting cortical microstructural changes related to aging. However, 
there are still some limitations that could be improved in future research. First, this study investigated the neural networks involved in 
perceiving a range of durations, requiring enhancement of the study design to compare neuroanatomical measures for short and long- 
time durations under different timing conditions. Second, to obtain a comprehensive understanding of the neurobiological measures, 
there is a need for multimodal neuroimaging methods to measure brain activity to obtain a better sense of neurobiological measures. 

5. Conclusion 

This study utilized a multivariate analysis to investigate the combination of neural networks predicting a range of multi-second 
timing durations. We indicated that microstructure properties of the frontal, parietal and temporal regions, along with the basal 
ganglia would be the highest predictors of time perception. We also found that those with higher FISO and lower ODI showed poorer 
performance in time estimation. Unlike other studies, this study examines the prediction of both short and long timing durations with 
multivariate analysis, rather than univariate analysis. NODDI measures, which have increased sensitivity to certain brain changes at 
the cellular level, were used for the first time to identify the neural networks that are playing a key role in predicting time. Future 
studies should assess whether these same networks are contributing to time perception in older adults with mild cognitive impairment 
(MCI) and whether degeneration of these networks contribute to early diagnosis or detection of dementia. 
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