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Abstract
Many aspects of gene regulation are mediated by RNAmolecules. However, regulatory RNAs have remained elusive
until very recently. At least three types of small regulatory RNAs have been characterized in Drosophila:
microRNAs (miRNAs), piwi-interacting RNAs and endogenous siRNAs. A fourth class of regulatory RNAs includes
known long non-coding RNAs such as roX1 or bxd. The initial sequencing of the Drosophila melanogaster genome
has served as a scaffold to study the transcriptional profile of an animal, revealing the complexities of the function
and biogenesis of regulatory RNAs. The comparative analysis of 12 Drosophila genomes has been crucial for the
study of microRNA evolution. However, comparative genomics of other RNA regulators is confounded by technical
problems: genomic loci are poorly conserved and frequently encoded in the heterochromatin. Future developments
in genome sequencing and population genomics in Drosophila will continue to shed light on the conservation, evolu-
tion and function of regulatory RNAs.
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REGULATORYRNAs
Early models of gene expression envisioned a system

of transcriptional regulation mediated by RNA

molecules [1, 2]. This regulatory role of RNA mol-

ecules was largely abandoned as transcription factors

were characterized, leading to a transcription-factor-

centered view of gene regulation [3, 4]. After the

discovery of RNA interference (RNAi) in eukary-

otes (reviewed earlier [5]), the idea of regulatory

RNAs was resurrected in a different form: some

RNA molecules may be down-regulating other

RNA molecules by sequence complementarity.

This type of antisense RNA-mediated regulation

had been already described in prokaryotes [6].

When microRNAs (miRNAs) were first observed

in the roundworm Caenorhabditis elegans, a mechanism

of gene down-regulation by RNA–RNA comple-

mentarity in eukaryotes became apparent [7, 8]. We

currently know that multiple types of RNAs have

important regulatory functions in the cell, and that

they are widespread in animal genomes. Current

models of gene regulation integrate the RNA

component, providing a much more complex pic-

ture than we had two decades ago.

Drosophila melanogaster has dominated the field of

genetics for over a century. Not surprisingly, genes

regulating animal development were first discovered

in this species [9]. Early investigations by Ed Lewis

showed that multiple loci controlling the fly body

patterning were closely linked in a single genomic

region, the bithorax complex (BX-C, see [10] and

references therein). These loci are located in the

genome in the same order as they are spatially ex-

pressed in the fly, and they were named after

the anatomic region affected in their mutants

(Figure 1). Lewis initially characterized 8 genes in

the BX-C complex, but only three of them coded

for proteins: Ubx, abd-A and Abd-B [11]. Transcripts

from the other loci were identified much later [12].

We currently know that three of these transcripts

are regulatory RNAs: one long non-coding RNA,

bxd and two miRNAs, iab-4 and iab-8 (Figure 1).

The pioneering work by Ed Lewis on the BX-C

complex in Drosophila, therefore, represented the
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first functional analysis of regulatory RNAs in

animals.

The D. melanogaster genome sequence has been

particularly useful to study regulatory sequences

[13]. FlyBase [14] catalogues about 1500 non-protein

coding loci (Table 1). miRNAs are the only class of

regulatory RNAs indexed in FlyBase. Other known

and putative regulatory RNAs are included in the

long non-coding RNA category. Genetic loci

encoding other short regulatory RNAs such as

piwi-interacting RNAs (piRNAs) or endogenous

small interfering RNAs (siRNAs) are currently not

even catalogued. This review focuses on how

Drosophila genomics has contributed to the analysis

of regulatory RNAs, and how future developments

will provide a better understanding of their function

and evolution.

microRNAs
miRNAs are key regulators of gene expression at the

post-transcriptional level. They bind to target tran-

scripts by sequence complementarity inducing either

degradation or translational repression [15, 16].

miRNA biogenesis is well understood [Figure 2

(top-left)]. A miRNA locus is transcribed into a pri-

mary miRNA, which is processed by the RNase

complex Drosha/Pasha producing a precursor hair-

pin [16]. Precursor hairpins are further cleaved in the

cytoplasm by DCR-1 and LOQS (Table 2), the

products of the genes Dicer-1 and loquacious [17].

The result is a double-stranded RNA molecule

(miRNA duplex in Figure 2) with an approximate

length of 21 nt. One of the arms of the miRNA

duplex typically becomes the mature sequence.

Partial complementary between the mature

miRNA and its target mediates the translational re-

pression in association with Argonaute 1 (AGO1).

When the complementarity between the miRNA

and the target is perfect, the miRNA enters the

RNAi pathway, and the targeted transcript is instead,

degraded by Argonaute 2 (AGO2) [18].

The first miRNA ever characterized was lin-4 in

C. elegans [7, 8]. Lin-4 remained as a unique type of

regulator until, a few years later, a second miRNA

was characterized: let-7. Like lin-4, let-7 was first

identified in C. elegans [19]. However, by that time,

the genome of Drosophila was already available [20],

and let-7 was identified by sequence similarity in this

species, as well as in other animals with ongoing

Figure 1: Drosophila Bithorax Complex and associated loci.Genetic loci associated with the two thoracic and nine
abdominal Drosophila segments from early genetic experiments. Boxes depict genes annotated in FlyBase. Black
boxes are protein-coding genes, and white boxes are non-protein-coding genes.

Table 1: Non-protein-coding RNAs annotated to the
Drosophila melanogaster genome

Number of loci*

Transfer RNAs 318
Small nuclear RNAs 43
Small nucleolar RNAs 281
Ribosomal RNAs 116
MicroRNAs 240
Other non-coding RNAs 577

*Annotated in FlyBase, 2 March 2012.
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genome projects [21]. Since both lin-4 and let-7

control developmental timing, they were classified

as small temporal RNAs (stRNAs). In a collective

effort, three groups cloned multiple stRNAs from

D. melanogaster, C. elegans and humans [22–24], and

introduced the term microRNA.

The initial cloning of miRNAs from 22 Drosophila
loci [22] showed early that miRNAs are often clus-

tered in the genome. The comparative analysis of

miRNAs in Drosophila was crucial to establish the

basis of the computational prediction of small

RNAs [25]. By first screening the genome for po-

tential miRNA loci, the cloning experiments

became more specific (i.e. less expensive). Likewise,

the prediction of miRNA targets was first modelled

in D. melanogaster using this initial set [26, 27]. Both

prediction of miRNA loci and targets had relied on

conservation in a second available Drosophila genome

sequence: D. pseudoobscura. Because of the small size

of miRNAs and their target sites, the proper study of

miRNAs required a more extensive collection of

closely related genomes. This opportunity came

Figure 2: Biogenesis of Drosophila small regulatory RNAs. miRNA: primary microRNAs (pri-miRNA) are tran-
scribed from the genome and processed by DROSHA/PASHA into precursor hairpins (pre-miRNA). Some miRNAs
(mirtrons) are spliced from introns by the spliceosome machinery bypassing the action of DROSHA/PASHA.
pre-miRNAs are processed in the cytoplasm by DCR-1/LOQS producing double-stranded miRNAs (ds-miRNA),
from which one of the arms in sorted and loaded into AGO1 or AGO2 inducing either translational repression or
RNA interference, respectively. endo-siRNA: long endogenous double-stranded RNAs (endo-dsRNA) are encoded
in transposon-rich genomic locations, and they are processed by DCR-2/R2D2 into double stranded siRNA.
Exogenous dsRNAs follow the same path as endo-siRNAs. Other siRNAs are produced from the processing of
genome encoded long hairpins (hpRNA) by DCR-2/LOQS. siRNAs trigger the RNA interference response in associ-
ation with AGO2. Somatic piRNA: Long piRNA clusters are transcribed into precursors (pre-piRNA), which are
cleaved by PIWI generating small piRNAs. PIWI/piRNA complexes mediate the silencing of RNA transposons in
the nucleus.Germline piRNA: AGO3/AUB mediate the cleavage of genomic encoded piRNAs and RNA transposons
in the cytoplasm in a feed-back loop called the ping-pong mechanism. PIWI is required in this pathway, but its role
has not been clarified so far.

358 Marco



with the sequencing, assembly and comparative ana-

lysis of the 12 Drosophila genomes [28]. Additionally,

the breakthrough of high-throughput sequencing

allowed small RNAs characterization without the

need for cloning. The combination of computational

prediction of miRNAs based on comparative gen-

omics and the fast validation of candidates by deep

sequencing resulted in a dramatic expansion in the

number of known miRNAs in Drosophila (Figure 3,

[29–31]). These analyses revealed additional miRNA

features: (i) as suspected, the mature functional se-

quence of a miRNA is more conserved than the

precursor hairpin [28]; (ii) some miRNAs (mirtrons)

bypass the action of Drosha during their biogenesis,

being processed as introns by the splicing machinery

[32, 33]; (iii) the comparison of closely related species

improves the identification of functional miRNA

target sites [34]. More recently, as a part of the

modEncode project [35], the profile of small

RNAs has been thoroughly investigated in multiple

tissues and developmental stages, permitting the dis-

covery of additional miRNAs [36]. miRBase [37],

the repository for all miRNAs sequences, currently

catalogues 240 loci encoding miRNAs in

D. melanogaster.
The systematic characterization of miRNAs in

multiple Drosophila genomes has provided an excel-

lent opportunity to study the evolutionary dynamics

of these tiny regulators [38, 39]. Within the

Drosophila lineage, miRNAs appear to have high

turnover rates [38, 40]. Comparison with other spe-

cies also shows that only a few miRNAs are con-

served among the animals [41, 42]. However, a

number of striking observations have been made

from the deep sequencing of miRNAs from multiple

species: (i) Highly conserved miRNAs can change

their function during evolution by modifying their

Dicer/Drosha cleavage sites [42, 43]; (ii) functional

changes can also occur by changing the arm of the

precursor that will produce the mature miRNA

[43–45]. Specifically, in D. melanogaster, �20% of the

conserved miRNAs produce a different mature se-

quence than their Tribolium castaneum orthologue [43];

(iii) Clusters of co-transcribed miRNAs change dy-

namically during evolution [43, 46]. All these changes

are likely to affect the miRNA function. Undoubt-

edly, the analysis of more arthropods will provide a

clearer picture of miRNA functional evolution.

ENDOGENOUS siRNAs
The injection of double-stranded RNAs to induce

targeted gene silencing has been used extensively in

the genetic analysis of plants and animals [5]. This

mechanism, called RNAi, is now well understood

[5, 47]. Long exogenous double-stranded RNAs

are cleaved in the cell into double-stranded RNA

molecules of about 21 nt, known as siRNAs. This

cleavage is mediated by the DCL-2 Dicer family

member in Drosophila [Figure 2 (bottom-left)].

siRNAs bind to full complementary sequences

within the target inducing their degradation. In

Drosophila, this degradation is mediated by AGO2.

The first endogenous (endo-) siRNAs (i.e. encoded

in the genomic sequence) in animals were found in

C. elegans [48], followed 2 years later by their discov-

ery in Drosophila [49–51]. Strikingly, experiments in

Drosophila revealed the existence of two independent

genomic sources of endo-siRNAs [Figure 2

(bottom-left)]. Some siRNAs are generated from

long double-stranded RNA molecules (endo-

dsRNAs) and are processed by the same enzymes

known to cleave exogenous siRNAs: DCR-2 and

R2D2 [49, 50]. Endo-dsRNAs are mainly composed

of transposon-derived sequences. Other siRNAs are

derived from long RNA hairpins (hpRNAs), and

instead of R2D2, the processing is mediated by

LOQS, the partner of DCR-1 in the miRNA path-

way [49, 51]. miRNA and siRNA pathways are thus

intertwined, sharing at least two proteins: AGO2 and

LOQS [Table 2; Figure 2 (left)].

Unlike miRNAs, endo-siRNAs are mostly

derived from repetitive regions. Their detection

therefore, requires the mapping of short sequenced

reads to highly repetitive genomic regions. Perhaps,

Table 2: Drosophila melanogaster loci encoding for en-
zymes involved in small RNA biogenesis

Gene Protein Small RNAs associated

Dicer-1 DCR-1 microRNAs
Dicer-2 DCR-2 siRNAs
Loquacious LOQS microRNAs, siRNAs
r2d2 R2D2 siRNAs
Drosha DROSHA microRNAs
Partner of drosha PASHA microRNAs
Argonaute-1 AGO1 microRNAs
Argonaute 2 AGO2 siRNAs, microRNAs
Argonaute 3 AGO3 germline piRNAs
aubergine AUB germline piRNAs
piwi PIWI somatic and germline

piRNAs
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for that reason, the characterization of Drosophila
endogenous siRNAs (and piRNAs, see below)

occurred after the annotation of the heterochromatic

regions of the genome, which are largely composed

of nested transposable elements [52]. Heterochroma-

tin sequences of other Drosophila species have been

identified, but an assembled heterochromatic

genome only exixts, so far, for D. melanogaster
[52, 53]. This imposes a limit on the study of small

RNAs other than miRNAs. Consequently, the iden-

tification of orthologous siRNA loci among droso-

philids has not been very successful. A couple of

exceptions can be found for siRNA loci overlapping

conserved protein coding genes, such as cis-NAT

(antisense to tkv) [54] and hp-CG4068 (antisense to

CG4068) [51]. The conservation is, however, lim-

ited to closely related species. The study of neigh-

bouring genes to detect orthologous siRNA loci and

a better characterization of heterochromatin across

the 12 Drosophila genomes will tell us more about

the origin of these small regulators.

piRNAs
Both mature miRNAs and siRNAs have a size of

�21 nt. During a systematic cloning of small RNAs

in Drosophila, a class of RNAs slightly longer than a

miRNA was noticed [55]. These sequences were

described as repeat-associated small interfering

RNAs (rasiRNAs). rasiRNAs were soon identified

as a particular type of piwi-interacting RNAs

(piRNAs) [56]. piRNAs are transcribed from gen-

omic piRNA-clusters, mostly composed of inactive

transposable elements (TEs, reviewed in [57]).

Before the discovery of piRNAs, co-suppression of

TEs had been already described [58, 59], and a role

of ancestral transposon insertions in silencing novel

TEs from the same family was also proposed [59, 60].

Moreover, it has been suggested that clusters of

TEs may form a co-suppression network that

down-regulates the expression of other TEs [61].

Indeed, piRNAs are known now to be an important

defensive mechanism against transposons [62–65].

This suggests that, most likely, a complex TE

co-suppression network based on piRNAs does

exist.

The discovery of the piRNA pathway has re-

vealed the nature of two previously known phenom-

ena in Drosophila. First, the maternal effect locus

flamenco induces the silencing of gypsy transposons

[66]. The flamenco locus is actually a piRNA-cluster

[63]. Second, hybrid dysgenesis in Drosophila is pro-

duced by the massive mobilization of P-elements in

the germ line [67]. The piRNA-mediated response is

behind this classic phenomena [68]. There may be,

however, two independent piRNA pathways

[64, 69, 70] [Figure 2 (right)]. A somatic pathway

happens in the nucleus of the follicle cells of the

ovary. In somatic cells, large piRNA-clusters are

transcribed and then processed by PIWI into small

piRNAs [Figure 2 (top-right)]. PIWI/piRNA com-

plexes directly target transposable elements. The

flamenco locus is of this kind. An independent

germ-line pathway occurs mainly in the cytoplasm

of the nurse cells [Figure 2 (bottom-right)]. In this

case, genomic piRNA transcripts and targeted

Figure 3: The number of D. melanogaster miRNAs annotated in miRBase.
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(transposon-derived) sequences induce the degrad-

ation of each other through the proteins AUB and

AGO3. A feed-back loop, called ‘ping-pong’, is es-

tablished, generating a characteristic pattern of sense/

antisense piRNAs overlapping each other by 10 nu-

cleotides. Functional analyses showed that PIWI is

also involved in this second pathway, but its role is

not yet clear [64].

The piRNA pathway is conserved in animals

(reviewed previously [47]). Consequently, other

Drosophila species should code for piRNAs. However,

the comparative analysis of conserved piRNAs be-

tween drosophilids is, as in the case of endo-siRNAs,

problematic. The flamenco locus is conserved between

D. melanogaster, D. yakuba and D. erecta and it encodes

anti-sense piRNAs that target transposons of the gypsy
family across the Drosophila lineage, although the spe-

cific transposons that are targeted vary from species to

species [69]. Clusters of TEs, from which piRNAs

derive, tend to be located in the heterochromatin

[57]. As in the case of endogenous siRNAs, the ana-

lysis of the heterochromatic part of the genome is

crucial to further investigate the origin and evolution-

ary dynamics of piRNAs.

Although the primary function of piRNAs is the

defence against TEs, a role in chromatin regulation

has also been proposed [56, 71]. Interestingly,

piRNAs are likely to regulate Drosophila telomeric

chromatin, which is mostly composed of retrotrans-

posons (reviewed in [72]). In agreement with these

observations, specific piRNA targets in the Drosophila
telomeric retrotransposon HeT-A have been identi-

fied [73]. These targets are conserved in other

Drosophila species [73]. Other instances of piRNA-

mediated chromatin regulation involving TEs are

still unknown.

LONGNON-CODING RNAs
Long non-coding RNAs (lncRNAs) are often

defined as transcripts longer than 200 nt with little

or no protein-coding capacity [74]. In practice, an

RNA molecule is considered to be a lncRNA if it

cannot be ascribed to any other class of non-protein

coding RNAs (Table 1). As discussed in the previous

sections, small regulatory RNAs show signatures of

enzymatic processing in their mature products

(mainly conserved size and RNase cleavage sites),

facilitating their identification in the genome.

However, lncRNAs have no recognizable signatures

and their characterization has been based, almost

exclusively, on transcriptional analyses. The first

characterized lncRNA in Drosophila was bxd

(Figure 1), a non-protein-coding transcript that

regulates the expression of Ubx. Paradoxically,

when bxd transcripts were first characterized, it was

proposed that they encode small regulatory proteins

rather than acting as long regulatory RNAs [12].

Soon after, other lncRNAs were identified in

Drosophila (Table 3). The successful differentiation

of female germline cells in the ovary requires the

RNA product of the gene pgc [75]. Dosage compen-

sation in males is also mediated by two RNA mol-

ecules: roX1 and roX2 [76]. Even the heat–shock

stress response is regulated by non-protein-coding

RNAs form the Hsr! gene [77].

After the sequencing of the Drosophila genome,

the first systematic screenings of Drosophila
lncRNAs detected 52 putative loci [80, 81].

Whole-genome tiling arrays have facilitated the de-

tection of potential lncRNAs [82], although their

validation requires further experimental confirm-

ation. More recently, it has been estimated that

around 5000 loci may encode non-protein-coding

transcripts in Drosophila [83]. However, the number

of functional regulatory lncRNAs is still to be

determined.

In some cases, the detection of orthologous

lncRNAs among drosophilids requires analysis of

their secondary structures, in addition to their pri-

mary sequences. For instance, roX1 and roX2 se-

quences diverged so fast that their detection in the

12 Drosophila genomes was based on the conservation

of structural features of their RNA products [28].

According to FlyBase [14], bxd, Hsr! and pgc are

also conserved across drosophilids. However, both

sequence and structural conservation is often

Table 3: Drosophila melanogaster loci producing long
non-coding RNAs

Gene
(Symbol)

RNA
lengtha

Function Reference

bxd 1755 Ubx regulation [12]
Hsro 14 084 Heat^ shock stress response [77]
pgc 1167 Germ cell transcriptional

inhibition
[75]

roX1 3748 Dosage compensation [76]
roX2 1368 Dosage compensation [76]
sphinx 1280 Courtship behaviour [78]
yar 1488 Sleep behaviour [79]

Note: aLength of the longest RNA transcript.
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restricted to a small part of the RNA molecule [74],

making the detection of homologous lncRNAs

difficult even between closely related species.

Consequently, a comprehensive evolutionary ana-

lysis of Drosophila lncRNAs is still missing. It is ex-

pected that the sequencing of complete genomes

from different populations of Drosophila will help

us to understand the evolutionary origin of these

enigmatic sequences.

FUTURE PROSPECTS
Comparative genomics has been particularly useful

for the detection of non-protein-coding RNAs

[84]. However, prediction of small regulatory

RNAs is based on the structure of their precursors

due to the size and unstructured nature of the mature

sequences. Recently, identification of novel mature

small RNAs has proceeded almost exclusively by

transcriptional profiling of small RNAs. The com-

bination of deep sequencing and comparative gen-

omics in Drosophila has permitted the identification

and evolutionary analyses of miRNAs, but the study

of piRNAs and endo-siRNAs has additional issues.

First, both piRNAs and endo-siRNAs are likely to

vary with the transposable element content of the

host genome, and the comparison between even

close species is difficult. Also, siRNAs and piRNAs

are often located in heterochromatic regions [57],

which has been extensively studied in D.melanogaster,
but not as much in other fly species. The sequencing

and assembling of heterochromatic DNA from the

other 11 Drosophila genomes will create an oppor-

tunity to study the conservation of these RNAs

within the Drosophila genus.

The identification of lncRNAs is also a challenge,

particularly as we do not know of any universal fea-

tures of all lncRNAs. The comparative analyses of

lncRNAs could be improved by using indirect stra-

tegies to identify homologues. For instance, the

study of syntenic blocks has been very helpful to

annotate orthologous transfer-RNAs in Drosophila
[85]. Similar approaches may be successfully applied

to lncRNAs (and other non-protein-coding

sequences).

Population genetics is particularly useful to study

the evolutionary dynamics of fast evolving genes

(e.g. [86]). The study of regulatory RNAs in popu-

lations has been mostly restricted to miRNAs

[87, 88], although piRNAs have recently captured

the attention of population geneticists [65]. With the

development of deep sequencing, the characteriza-

tion of entire genomes from hundreds of different

populations is becoming a reality (http://dpgp.org/).

Population genomics of non-coding RNAs shows

particular promise for the near future.

Do any large classes of regulatory RNA remain

unidentified? Are there genomic signatures that

would allow us to detect non-coding RNAs without

having transcriptional information? Do small RNAs

have other, yet unknown, biological functions?

These are some of the most important questions in

the RNA biology field. The D. melanogaster genome

and its close relatives will have a lot to say.

Key Points

� The sequencing and analysis ofDrosophila genomeshavehad a big
impact on the study of regulatory RNAs.

� The comparison of 12 Drosophila genomes revealed important
aspects of the evolutionary dynamics ofmiRNA sequences.

� Comparative genomics analysis of regulatory RNAs other than
miRNAs has been, so far, less successful.

� Population genomics and heterochromatin sequencing in other
Drosophila species are promising areas to investigate the nature
of regulatory RNAs.
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