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Abstract Both spike rate and timing can transmit information in the brain. Phase response

curves (PRCs) quantify how a neuron transforms input to output by spike timing. PRCs exhibit

strong firing-rate adaptation, but its mechanism and relevance for network output are poorly

understood. Using our Purkinje cell (PC) model, we demonstrate that the rate adaptation is caused

by rate-dependent subthreshold membrane potentials efficiently regulating the activation of Na+

channels. Then, we use a realistic PC network model to examine how rate-dependent responses

synchronize spikes in the scenario of reciprocal inhibition-caused high-frequency oscillations. The

changes in PRC cause oscillations and spike correlations only at high firing rates. The causal role of

the PRC is confirmed using a simpler coupled oscillator network model. This mechanism enables

transient oscillations between fast-spiking neurons that thereby form PC assemblies. Our work

demonstrates that rate adaptation of PRCs can spatio-temporally organize the PC input to

cerebellar nuclei.

Introduction
The propensity of neurons to fire synchronously depends on the interaction between cellular and

network properties (Ermentrout et al., 2001). The contribution of cellular properties can be mea-

sured with a phase response curve (PRC). The PRC quantifies how a weak stimulus exerted at differ-

ent phases during the interspike interval (ISI) can shift subsequent spike timing in repetitively firing

neurons (Ermentrout et al., 2001; Ermentrout et al., 2012; Gutkin et al., 2005) and thereby pre-

dicts how well-timed synaptic input can modify spike timing. Consequently, the PRC determines the

potential of network synchronization (Ermentrout et al., 2001; Ermentrout et al., 2008;

Gutkin et al., 2005; Smeal et al., 2010). However, the PRC is not static and shows significant adap-

tation to firing rates. In cerebellar Purkinje cells (PCs), their phase responses to weak stimuli at low

firing rates are small and surprisingly flat. With increased rates, responses in later phases become

phase-dependent, with earlier onset-phases and gradually increasing peak amplitudes. This PRC

property has never been theoretically replicated or explained (Couto et al., 2015; Phoka et al.,

2010), nor has its effect on synchronizing spike outputs been explored.

On the circuit level, high-frequency oscillations caused by reciprocal inhibition have been

observed in many regions of the brain, including the cortex, cerebellum and hippocampus

(Bartos et al., 2002; Buzsáki and Draguhn, 2004; Cheron et al., 2004; de Solages et al., 2008).

The functional importance of oscillations in information transmission is largely determined by their

spatio-temporal scale, which for hard-wired inhibitory connections, is generally assumed to be driven

by external input. It is interesting to explore whether firing rate-dependent PRCs can contribute to

dynamic control of the spatial range of oscillations based on firing rate changes, because this would

have significant downstream effects (Person and Raman, 2012).
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To examine the mechanism of rate-dependent PRCs, we use our physiologically detailed PC

model (Zang et al., 2018) and a simple pyramidal neuron model to explore the rate adaptation of

PRCs. By analyzing simulation data and in vitro experimental data (Rancz and Häusser, 2010), we

show that rate-dependent subthreshold membrane potentials can modulate the activation of Na+

channels to shape neuronal PRC profiles. We also build a PC network model connected by inhibitory

axon collaterals to simulate high-frequency oscillations (de Solages et al., 2008; Witter et al.,

2016). Rate adaptation of PRCs increases the power of oscillations at higher firing rates, firing irreg-

ularity and network connectivity also regulate the oscillation level. The causal role of the PRC is con-

firmed using a simpler coupled oscillator network model. The combination of these factors enables

PC spikes uncorrelated at low basal rates to become transiently correlated in transient assemblies of

PCs at high firing rates.

Results

PRC exhibits rate adaptation in PCs
PRCs were obtained by repeatedly exerting a weak stimulus at different phases of the ISI. The result-

ing change in ISI relative to original ISI corresponds to the PRC value at that phase (Figure 1A). All

previous abstract and detailed PC models failed to replicate the experimentally observed rate adap-

tation of PRCs (Akemann and Knöpfel, 2006; Couto et al., 2015; De Schutter and Bower, 1994;

Khaliq et al., 2003; Phoka et al., 2010). Our recent PC model was well constrained against a wide

range of experimental data (Zang et al., 2018). Here, we explored whether this model can capture

the rate adaptation of PRCs under similar conditions. When the PC model fires at 12 Hz, responses

(phase advances) to weak stimuli are small and nearly flat for the whole ISI (Figure 1B,D). Only at a

very narrow late phase do the responses become phase-dependent and slightly increased. With

increased rates, the responses remain small and flat during early phases. However, later phase-

dependent peaks gradually become larger (Figure 1C), with onset shifted to earlier phases

(Figure 1D). It should be noted that the increased late-peak amplitude may be affected by how the

PRC is computed (Equation 1): it is normalized by the ISI, causing the peak amplitude to increase

for higher firing rates (smaller ISIs).

In agreement with experiments under the same stimulus conditions (Phoka et al., 2010), the

peak of PRCs finally became saturated at ~0.06 at high rates. The relationship between normalized

PRC peaks and rates can be fitted by the Boltzman function and matches experimental data

(Figure 1C, fitted with 1/ (1 + e�(rate�a)/b), a = 49.1, b = 26.4 in the model versus a = 44.1 and

b = 20.5 in experiments Couto et al., 2015). PRCs in our model show similar rate adaption with

inhibitory stimuli (phase delay, Figure 1—figure supplement 1A). This form of rate adaptive PRCs

requires the presence of a dendrite in the PC model (Figure 1—figure supplement 2), but the den-

drite can be passive (Figure 1—figure supplement 1B). We also tested the effect of increasing stim-

ulus amplitude on PRC adaptation. Increasing stimulus amplitude consistently shifts onset-phases of

phase-dependent peaks to the left and increases their amplitudes (Figure 1—figure supplement

1C).

To unveil the biophysical principles governing rate adaptive PRC profiles, we need to answer two

questions: why are responses nearly flat in early phases and why do responses become phase-

dependent during later phases?

The biophysical mechanism of rate adaptation of PRCs in PCs
We examined how spike properties vary with firing rates and find that the facilitation of Na+ currents

relative to K+ currents, due to elevated subthreshold membrane potentials at high rates, underlies

the rate adaptation of PRCs. After each spike, there is a pronounced after-hyperpolarization (AHP)

caused by the large conductance Ca2+-activated K+ current, and subsequently the membrane poten-

tial gradually depolarizes due to intrinsic Na+ currents and dendritic axial current (Zang et al.,

2018). As confirmed by re-analyzing in vitro somatic membrane potential recordings (shared by Ede

Rancz and Michael Häusser Rancz and Häusser, 2010), subthreshold membrane potential levels are

significantly elevated at high firing rates, but spike thresholds rise only slightly with rates

(Figure 2A). This means that the ISI phase where Na+ activation threshold (~ �55 mV for 0.5% acti-

vation in PCs Khaliq et al., 2003; Zang et al., 2018) is crossed shifts to earlier phases with
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increasing rates. Consequently, larger phase ranges of membrane potentials are above the threshold

at high rates (Figure 2B).

During early phases of all firing rates, membrane potentials are distant from the Na+ activation

threshold of the Na+ channels (Figure 2A,B). The depolarizations to weak stimuli fail to activate suffi-

cient transient and resurgent Na+ channels to speed up voltage trajectories (Figure 2C). Conse-

quently, phase advances in early phases are small and flat. At later phases, membrane potentials

gradually approach and surpass the Na+ activation threshold. Stimulus-evoked depolarizations acti-

vate more Na+ channels to speed up trajectories in return. Therefore, phase advances become large

and phase- (actually voltage-) dependent. Because high-rate-corresponding elevated membrane

potentials have larger slopes at the foot of the Na+ activation curve, the same DV activates more

Na+ channels and, in addition to the normalization, contributes to larger PRC peaks at high rates
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Figure 1. PRC exhibits strong rate adaptation in PC model. (A) Schematic representation of the definition and computation of PRCs. The current pulse

has a duration of 0.5 ms and an amplitude of 50 pA. Different spike rates were achieved by somatic current injection (Couto et al., 2015; Phoka et al.,

2010). (B) The rate adaptation of the flat part and the phase-dependent PRC peak. (C) PRC peak amplitudes at different firing rates fitted by the

Boltzmann function. (D) Duration of the flat phase at different firing rates.

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1 . Rate-dependent PRCs.

Figure supplement 2 . Rate-dependent PRCs are influenced by the dendrite.
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Figure 2. Modulated subthreshold membrane potentials account for the rate adaptation of PRCs. (A and B) Experimental and simulated voltage

trajectories in PCs at different rates. All voltage trajectories are shown from trough to peak within normalized ISIs. The model used (Zang et al., 2018)

was not fitted to this specific experimental data. Spike thresholds at different rates are labeled in plots. The Na+ activation threshold is defined as �55

mV (stippled line). Right plots show phase dependence of Na+-activation threshold on firing rates. (C) Stimulus-triggered variations of inward ionic

currents (solid) and outward ionic currents (dashed) at different phases and rates. Ionic currents are shifted to 0 (grey line) at the onset of stimulus to

compare their relative changes. At phase = 0.2, the outward current is still decreasing due to the inactivation of the large conductance Ca2+-activated

K+ current at 162 Hz. (D) Larger slopes of the Na+ activation curve at high membrane potentials.

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1 . Effect of Subthreshold Membrane Potentials on Shaping PRCs.

Zang et al. eLife 2020;9:e60692. DOI: https://doi.org/10.7554/eLife.60692 4 of 18

Research article Neuroscience

https://doi.org/10.7554/eLife.60692


(Figure 2C,D). Under all conditions (except phase = 0.2, 162 Hz), stimulus-evoked depolarizations

also increase outward currents, but this increase is smaller than that of inward currents (mainly Na+)

due to the high activation threshold of K+ currents (mainly Kv3) in PCs (Martina et al., 2003;

Zang et al., 2018). As the stimulus becomes stronger, it triggers larger depolarizations and the

required pre-stimulus membrane potential (phase) to reach Na+ activation threshold is lowered.

Thus, increasing the stimulus amplitude not only increases PRC peaks, but also shifts the onset-

phases of phase-dependent responses to the left (Figure 1—figure supplement 1C). In the absence

of a dendrite (Figure 1—figure supplement 2), the larger amplitude spike is followed by a stronger

afterhyperpolarization (Zang et al., 2018) that deactivates K+ currents allowing for an earlier depo-

larization in the ISI, resulting in a completely different PRC.

We further confirmed that the critical role of subthreshold membrane potentials in shaping PRC

profiles is not specific to the PC by manipulating PRCs in a modified Traub model

(Ermentrout et al., 2001; Figure 2—figure supplement 1 and accompanying text).

Rate-dependent high-frequency oscillations
The potential effect of firing rate-caused variations of cellular response properties on population syn-

chrony has been largely ignored in previous studies (Bartos et al., 2002; Brunel and Hakim, 1999;

de Solages et al., 2008; Heck et al., 2007; Shin and De Schutter, 2006). Here, we examine

whether spike rate correlates with synchrony in the presence of high-frequency oscillations that have

been observed in the adult cerebellar cortex (Cheron et al., 2004; de Solages et al., 2008).

Although axon collateral contacts between PCs were originally described to exist only in juvenile

mice (Watt et al., 2009), recent work demonstrated their existence also in adult mice (Witter et al.,

2016). We built a biophysically realistic network model composed of 100 PCs with passive dendrites

distributed on the parasagittal plane (Witter et al., 2016). Each PC connects to the somas of its five

nearest neighboring PCs through inhibitory axon collaterals on each side based on experimental

data (Bishop and O’Donoghue, 1986; de Solages et al., 2008; Watt et al., 2009; Witter et al.,

2016). Rates of each PC are independently driven by parallel fiber synapses, stellate cell synapses,

and basket cell synapses (Figure 3A). More details are in Materials and methods.

When the average cellular rate is 116 Hz, PCs in the network tend to fire within interspaced clus-

ters with time intervals of ~6 ms (Figure 3B). However, individual PCs do not fire within every cluster.

Therefore, spikes in the network show intermittent pairwise synchrony on the population level rather

than spike-to-spike synchrony (Figure 3B). Each peak in Figure 3C corresponds to a ‘cluster’. Based

on the power spectrum, the network oscillates at a frequency of ~175 Hz (inverse of the cluster inter-

val,~6 ms), which is independent of cellular firing rates (116 Hz in red and 70 Hz in blue, Figure 3D),

because oscillation frequency is mainly determined by synaptic properties (Brunel and Hakim, 1999;

Brunel and Wang, 2003; de Solages et al., 2008; Maex and De Schutter, 2003). When cellular fir-

ing rates increase from 70 Hz to 116 Hz, the power of high-frequency oscillations significantly

increases and the peak becomes sharper. When individual PCs fire at low rates (10 Hz), the network

fails to generate high-frequency oscillations and each PC fires independently, as evidenced by the

flat power spectrum (Figure 3D). High-frequency oscillations and their firing rate-dependent

changes are also reflected in the average normalized cross-correlograms (CCGs) between PC pairs

(Figure 3E). When PCs fire at 70 Hz and 116 Hz, in addition to positive central peaks, two significant

side peaks can be observed in the CCGs, suggesting correlated spikes with 0 ms-time lag and ~6

ms-time lag. Amplitudes of the peaks increase with cellular firing rates and disappear when they are

low (10 Hz).

In Figure 3, the variation of cellular rates was driven by synaptic input to demonstrate the rate

adaptation of high-frequency oscillations. However, it is difficult to differentiate the relative contribu-

tion of PRC shapes and firing irregularity (measured by the CV of ISIs) since they covary with firing

rates (Figure 3D). Therefore, cellular rates were systematically varied by dynamic current injections,

which were approximated by the Ornstein–Uhlenbeck (OU) process (Destexhe et al., 2001). This

simulation protocol also causes the formation of high-frequency oscillations (Figure 4—figure sup-

plement 1). When PCs fire with low to moderate CV of ISIs, they show loose spike-to-spike syn-

chrony at high rates, and the power peak increases with cellular firing rates. High-frequency

oscillations were never observed for low cellular firing rates (Figure 4A, Figure 4—figure supple-

ment 1). With high CV of ISIs, spikes are jittered and the loose spike synchrony is disrupted

(Figure 4B). Oscillation changes due to firing properties are also reflected in average normalized
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CCGs. Both central and side peaks increase with the cellular firing rate and decrease with the spiking

irregularity. Our results show that small spiking irregularity supports high-frequency oscillations.

At the circuit level, the strength of inhibitory synapses and connection radius are difficult to deter-

mine accurately, but their values are critical for the function of axon collaterals. Within the ranges of

experimentally reported synaptic conductance and connection radius (de Solages et al., 2008;

Orduz and Llano, 2007; Watt et al., 2009; Witter et al., 2016), the network generates robust

high-frequency oscillations (Figure 4C,D). In addition, we find that increasing the conductance of

inhibitory synapses or their connection radius increases the power of high-frequency oscillations and

make the power spectrum sharper. The increased oscillation power due to connectivity properties is

also captured by the larger peaks in CCGs.

Together, our simulation data suggest that the correlation between PC spikes is strong under

conditions of low to moderate spiking irregularity, high cellular firing rate, high synaptic conduc-

tance, and large connection radius.

High-frequency oscillations are caused by rate-dependent PRCs
Because both oscillation power and PRC are firing rate dependent, a causal relationship is possible.

This is supported by the effect of PRC size on oscillations: decreasing its size leads to weaker oscilla-

tions and can even cause weaker oscillations at higher spike rates (Figure 4—figure supplement 2).

However, it is impossible to manipulate PRC shapes in the complex PC model without greatly affect-

ing other cell and network properties. Therefore, we investigated the effect of rate-dependent PRC

shapes in a network of simple coupled oscillators (Kuramoto, 1984; Smeal et al., 2010), where the
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Figure 3. High-frequency oscillations show adaptation to cellular firing rates. (A) Schematic representation of the network configuration. (B) Example of

sampled PC voltage trajectories in the network. (C) Example of population rates in the network (time bin 1 ms). (D) The power spectrum of population

rates of the network at different cellular rates and firing irregularity (CV of ISIs). (E) Averaged normalized CCGs at different cellular rates.
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firing rate specific PRC was used as the coupling term Z(�) (see Materials and methods). In such a

coupled oscillator network, the oscillation power shows a firing rate dependence similar to that of

the complex PC network (Figure 5A,B). This finding demonstrates that the firing rate adaptation of

the PRC is sufficient to cause firing-rate-dependent oscillations.

Next, we investigated the specific contribution of the flat part that dominates the PRC at low fir-

ing rates versus the late peak with increasing amplitude that appears at higher firing rates. We

checked which of these PRC components is responsible for the effect on oscillations by fixing the

amplitude of the peak to the value for a specific firing rate. Networks simulated with fixed PRC peak

amplitudes show power spectra (Figure 5C,D) that are very similar to that obtained with the actual

PRC (Figure 5B). An exception is when peak amplitude is very small (for firing frequencies of less

than 30 Hz, not shown). The only significant difference between Figure 5C and D is the peak oscilla-

tion frequency, which increases with the firing rate for which the amplitude was taken.

In conclusion, the ratio of flat part width to peak width of the firing rate dependent PRC causes

the rate dependence of high-frequency oscillations. At low firing rates the dominant flat part sup-

presses the coupling between oscillators. At high firing rates the coupling increases during the late

peak and synchronizes the oscillators, but the strength of oscillation does not depend on peak

amplitude in this network.

Figure 4. Effect of cell and network properties on high-frequency oscillations. (A) Low cellular firing rates decorrelate the network output in the forms of

reduced peaks of power spectrums (left) and CCGs (right). CV ISI is ~0.45. Synaptic conductance is 1 nS and radius is 5. (B) Irregular spiking (high CV of

ISIs) also decorrelates network. The cellular firing rate is ~141 Hz. Same layout and network properties as in A. (C) Small conductance (cond) of

inhibitory synapses decorrelates network output. Same layout and network properties as in A with cellular firing rate ~151 Hz and CV ISI ~ 0.45. (D)

Short connection radius also decorrelates network output. Same layout and cellular firing properties as C.

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1 . Formation of High-frequency Oscillations at High Rates.

Figure supplement 2 . Decreased PRC at high firing rates can weaken oscillations.
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Transient correlations form cell assemblies
Correlation of spiking has often been proposed as a mechanism to form transient cell assemblies

(Abeles, 1982; Hebb, 1949; Singer, 1993). This assumes that oscillations can appear and fade rap-

idly and that they can appear in networks with heterogeneous firing rates. We have previously simu-

lated networks with a range of homogeneous stable cellular rates. Here, we first test whether rate-

dependent synchrony still holds when population rates change dynamically. Population rates of the

network approximate the half-positive cycle of a 1 Hz sine wave (peak ~140 Hz) with the duration of

each trial being 1 s (Figure 6A). We compute shuffle-corrected, normalized joint peristimulus time

histograms (JPSTHs) to reflect the dynamic synchrony (Aertsen et al., 1989; Figure 6—figure sup-

plement 1A). The main and the third diagonals of the JPSTH matrix, corresponding to 0 ms-time lag

correlation and 6 ms-time lag correlation respectively, are plotted to show the dynamic synchrony at

transiently increased rates (bin size is 2 ms, Figure 6B). At low basal rates, there are no correlations

between spikes. Both correlations start to increase ~250 ms after the onset of simulations when the

cellular firing rate increases. Closely following rate changes, they decrease again when the cellular

rates drop. It demonstrates that axon collateral-caused spike correlations can be achieved transiently

to transmit a correlation code conjunctive with temporal cellular firing rate increases.

Figure 5. Firing-rate adaptation of high-frequency oscillations is caused by the PRC. (A) Dependence of peak

power of high-frequency oscillations in the complex PC network of Figure 3 (cyan) and in the coupled oscillator

network (red) on cellular firing rate. (B) The power spectrum of the coupled oscillator network depends on the

cellular firing-rate-specific PRC used as coupling term. Inset: firing-rate-dependent coupling factors Z(�) used. (C)

Same as B but with the peak amplitude of Z(�) set to that of the peak of 30 Hz firing rate. (D) Same as C for the

peak of 70 Hz firing rate.
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Although it remains unclear whether the population of PCs converging onto a same cerebellar

nuclei (CN) neuron are homogeneous or heterogeneous (Uusisaari and De Schutter, 2011), simulta-

neous bidirectional PC rate changes have been observed during cerebellum-related behaviors

(Chen et al., 2016; Herzfeld et al., 2015). It is very likely that neighboring PCs show heterogeneous
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Figure 6. Correlations can be transient and robust to heterogeneous spike rates. (A) Population spike rates of PCs. (B) The 0 ms- and 6 ms-time lag

correlations increase with population rates. (C–E) The rate-dependent correlation is robust to heterogeneous cellular rate changes. From (C) to (E), the

number of decreased rate cells increases from 10 to 30. (F) Correlations between decreased-rate neurons in the network (n = 30). (G) Correlations

between increased-rate neurons and decreased-rate neurons (n = 30 for each group).

The online version of this article includes the following figure supplement(s) for figure 6:

Figure supplement 1 . Dynamic correlations of the PC network outputs.

Figure supplement 2 . Transient correlations for a 2.5 Hz sine wave.
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spike rate changes (Hong et al., 2016), which can reduce spike correlations (Markowitz et al.,

2008). Therefore, we distributed 10–30 extra cells with decreasing spike rates (Figure 6—figure

supplement 1B) in the network to test the effect of heterogeneous neighboring rate changes on

transient correlations. They were randomly scattered among the cells with increasing rates. Spike

correlations still become larger for the subgroup of PCs showing increased cellular rates, despite a

slight decrease of the correlation amplitude when more cells decrease their spike rates (Figure 6C–

E). Moreover, the spiking in PCs with decreased firing rates is not correlated (Figure 6F), nor is it

correlated with oscillating increased-rate PCs (Figure 6G), making the assembly formation specific

to fast spiking PCs. Similar results were obtained for a faster change of population rates (2.5 Hz sine

wave, Figure 6—figure supplement 2). The results suggest that a population of PCs with increased

spike rates can form a correlated assembly that will strongly affect downstream neurons even when

it is surrounded by non-correlated neighboring PCs with decreased spike rates.

Discussion
In this work, we reproduced the firing rate-dependent PRC of PCs and dissected the underlying bio-

physical mechanisms. Next, we explored the role of these PRCs in synchronizing spikes in cerebellar

PCs and how they can support the formation of transient assemblies.

Biophysical mechanisms underlying rate-dependent PRCs
The profiles of neuronal PRCs are regulated by ionic currents (Ermentrout et al., 2012) and they

show rate adaptation (Couto et al., 2015; Ermentrout et al., 2001; Gutkin et al., 2005;

Phoka et al., 2010; Tsubo et al., 2007). Cerebellar PCs exhibit a transition from small, phase-inde-

pendent responses to large, phase-dependent type-I responses with increasing rates (Couto et al.,

2015; Phoka et al., 2010), but the mechanism was unknown (Akemann and Knöpfel, 2006;

Couto et al., 2015; De Schutter and Bower, 1994; Khaliq et al., 2003; Phoka et al., 2010). This

work reproduces and explains the experimentally observed rate adaptation of PRCs. Note that the

slight increase of PRCs in the very narrow late phase in our model (low rate, Figure 1B) may be anni-

hilated by noise in spontaneously firing neurons (Couto et al., 2015; Phoka et al., 2010).

Compared with previous work emphasizing the slow deactivation of K+ currents in cortical neu-

rons (Ermentrout et al., 2001; Gutkin et al., 2005), here we demonstrate the role of rate-depen-

dent subthreshold membrane potentials and their corresponding activation of Na+channels. In both

pyramidal neurons and PCs, spike rates cause significant variation of the subthreshold membrane

potential during the ISI (Rancz and Häusser, 2010; Tsubo et al., 2007). In response to a stimulus,

both Na+ and K+ currents are activated. In PCs, the main K+ current is high-threshold activated

(Martina et al., 2003; Zang et al., 2018); therefore, depolarization-facilitated Na+ currents domi-

nate, causing larger normalized PRCs at high rates (Figure 2). This facilitation may be further

boosted in PCs by enhanced excitability, such as SK2 down-regulation reducing the AHP and elevat-

ing subthreshold membrane potentials (Grasselli et al., 2020; Ohtsuki and Hansel, 2018). We did

not explore possible PRC differences between zebrin-positive and zebrin-negative PCs due to a lack

of data (Zhou et al., 2014). Previous PC models (Akemann and Knöpfel, 2006; Couto et al., 2015;

De Schutter and Bower, 1994; Khaliq et al., 2003; Phoka et al., 2010) included low-threshold-acti-

vated K+ currents, which counteract facilitated Na+ currents. In the original Traub model, slow deac-

tivation of K+ currents and consequent hyperpolarization synergistically reduce the normalized PRC

peaks at high rates (Ermentrout et al., 2001; Gutkin et al., 2005). By minimally modifying the Traub

model, elevated subthreshold membrane potentials generate larger normalized PRC peaks at high

rates (Figure 2—figure supplement 1).

The evidence supporting rate-dependent correlations
Rate-dependent synchrony in the cerebellum has been demonstrated for Golgi cells (van Welie

et al., 2016) but not, as yet, for PCs. However, careful analysis of previous experimental data in the

cerebellum provides some evidence to support our findings. In the work of de Solages et al., 2008,

units with lower average rates (<10 Hz) did not exhibit significant correlations between neighboring

PCs, for unknown reasons. This can be explained by the small flat PRCs at low rates. Under extreme

conditions, when the PRC is constantly 0 (equivalent to disconnection), no correlations can be

achieved (Figures 3–6). Additionally, the experimental oscillation power increased by the application
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of WIN 55,212–2, which was intended to suppress background excitatory and inhibitory synapses

(de Solages et al., 2008). The increased power could be due to more regular spiking after inhibiting

the activity of background synapses (Figure 4B). However, it could also be caused by increased

spike rates (Figure 4A), because this agent also blocks P/Q type Ca2+ channels and consequently P/

Q type Ca2+-activated K+ currents, to increase spike rates (Fisyunov et al., 2006). Similarly,

enhanced oscillations have also been observed in calcium-binding protein gene KO mice, which

have significantly higher simple spike rates (Cheron et al., 2004). A more systematic experimental

study of the firing rate dependent appearance of loose simple spike synchrony among PCs and its

relation to behavior would be required to confirm these predictions.

The rate-dependent correlations observed in this study are different from those reported previ-

ously by de la Rocha et al., 2007. In that study, common input-mediated correlation increased rap-

idly with increasing rate at low firing rates in pyramidal cells (their Figure 1e) and in integrate-and-

fire models (their Figure 2c), while the PRC mediated correlations in our study of inhibitory coupling

only appear at much higher firing rates (Figure 5A). Moreover, the findings of de la Rocha et al.,

2007 are not general, they only apply for neurons with integrator firing properties (Hong et al.,

2012).

Down-stream effects of PC assemblies
PCs inhibit their target neurons in the CN, which in turn form the only cerebellar output. It is difficult

to finely regulate CN firing rates with inhibition only, because it operates over the narrow voltage

range between resting potentials and GABAA reversal potentials. Two solutions for this problem

have been proposed. The first is that synchronized pauses of PC firing will release CN neurons from

inhibition, leading to rebound firing (De Schutter and Steuber, 2009; Lee et al., 2015). There is

strong evidence that this mechanism works in controlling the onset of movement in the conditioned

eyeblink reflex (Heiney et al., 2014) and in saccade initiation (Hong et al., 2016). The other solution

provides a more continuous rate modulated CN output by time-locking of CN spikes to PC input.

Several experimental studies have demonstrated that partial synchronization of afferent PC spiking

can time-lock the spikes of CN neurons to their input (Gauck and Jaeger, 2000; Person and Raman,

2012). The ability to rapidly increase the correlation level within a subgroup of PCs with increased

firing rates (Figure 6) is therefore predicted to have a strong effect on CN spiking. Moreover, this

does not require strong synchronization. Similar results were observed when jitter higher than the

few ms predicted by our network model (Figure 3B) was applied to the synchronous PC input

(Gauck and Jaeger, 2000). Previous evidence has demonstrated neocortical oscillations can entrain

cerebellar oscillations (Ros et al., 2009). Though high-frequency oscillations (Figure 3) don’t rely on

common input, they can still be regulated by cortical inputs and drive neurons in the thalamocortical

circuit (Timofeev and Steriade, 1997) and cerebral cortex (Popa et al., 2013).

Advantages of transient PC assemblies
The actual convergence and divergence of PC axons onto CN neurons remains a controversial topic

in the literature. There are roughly ten times more PCs than CN neurons and PC axons branch exten-

sively leading to computed convergence values ranging from 20 to over 800 (Uusisaari and De

Schutter, 2011), although many authors have recently converged on the compromise of ~50

(Person and Raman, 2012). If CN neurons just average the activity of all afferent PCs, much of the

potential information generated by the large neural expansion in cerebellar cortex would be lost.

Our PC network with parameters that fall within physiological ranges can rapidly generate and dis-

rupt oscillations based on the cellular firing rates (Figures 3 and 6), with no need of increasing affer-

ent input correlation. Note that rate-related synchrony can also be achieved via common synaptic

inputs (Heck et al., 2007), gap junctions (Middleton et al., 2008), and ephaptic coupling

(Han et al., 2018), when connections are weak. This means that transiently correlated PC assemblies

can form and disappear quickly. Such assemblies, even if consisting of only a few PCs (Person and

Raman, 2012), can finely control spiking in CNs. Because the assemblies can consist of variable sub-

sets of afferent PCs to a CN neuron, this greatly expands the information processing capacity of the

cerebellum.
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Conclusion
We have shown that firing-rate dependent PRCs can cause firing-rate dependent oscillations at the

network level. Such a mechanism supports the rapid formation of transient neural assemblies in cere-

bellar cortex.

Materials and methods
The detailed PC model and the interconnected network model were implemented in NEURON 7.5

(Carnevale and Hines, 2006). The Traub model was implemented in MATLAB.

PRC computations
Our recently developed compartment-based PC model was used (Zang et al., 2018). To compute

the PRCs in Figure 1, brief current pulses with a duration of 0.5 ms and an amplitude of 50 pA were

administered at the soma at different phases of interspike intervals. The resulting perturbed periods

were then used to calculate phase advances by Ermentrout et al., 2001:

PRC¼ ð<ISI>� ISIperturbÞ=<ISI> (1)

This is the same equation used in experimental studies (Couto et al., 2015; Phoka et al., 2010),

to facilitate comparison. Different cellular rates were achieved by somatic holding currents

(Couto et al., 2015; Phoka et al., 2010). To compute PRCs in response to negative stimuli, the

amplitudes of the pulses were changed to -50 pA. To compute PRCs of our PC model with passive

dendrites, only H current and leak current were distributed on the dendrites with the same parame-

ters as in the active model (Zang et al., 2018). The Traub model (Traub et al., 1999) was imple-

mented according to the work of Ermentrout et al., 2001; Gutkin et al., 2005. In the modified

version of this model, the conductance of the kdr current was reduced from 80 to 40. Activation and

deactivation rates of this current were shifted to the right by 30 mV, an(v)=0.032*(v+22)/(1-exp(-(v

+22)/5)); bn(v)=0.5*exp(-(v+27)/40); the conductance of AHP current was increased from 0 to 0.1.

Network simulations
We implemented our recurrent inhibitory PC layer network using the Watts-Strogatz model

(Watts and Strogatz, 1998) to avoid boundary effects. To reduce simulation time, we used the PC

model with passive dendrites, which exhibits similar rate-dependent PRCs to the PC model with

active dendrites (Figure 1—figure supplement 1B). In the baseline version of the network, 100 PCs

were distributed on the parasagittal plane (Witter et al., 2016), corresponding to 2 mm of folium

with a distance of 20 mm between neighboring PC soma centers. 100 PCs are within the estimated

range of PCs converging to a same cerebellar nuclei neuron (Person and Raman, 2012). Each PC

was connected to its nearest 2*radius neighboring PC somas and connections had 0 rewiring proba-

bility. The PCs were interconnected, according to anatomical data showing collaterals present

toward both the apex and the base of the lobule with only slight directional biases (Witter et al.,

2016). The baseline value of radius was 5 within the range of experimental estimates (Bishop and

O’Donoghue, 1986; de Solages et al., 2008; Watt et al., 2009; Witter et al., 2016). The inhibitory

postsynaptic current (IPSC) was implemented using the NEURON built-in point process, Exp2Syn.

G = weight * (exp(-t/t2) - exp(-t/t1)), with t1 = 0.5 ms (rise time) and t2 = 3 ms (decay time). The

reversal potential of the IPSC was set at �85 mV (Watt et al., 2009). The conductance was 1 nS

(de Solages et al., 2008; Orduz and Llano, 2007; Witter et al., 2016). The delay between onset of

an IPSC and its presynaptic spike timing was 1.5 ms (de Solages et al., 2008; Orduz and Llano,

2007; Witter et al., 2016). To test the effect of rate-dependent PRCs on high-frequency oscillations,

we varied the cellular rates in two paradigms. In the first paradigm (Figure 3), each PC is contacted

by 4000 excitatory parallel fiber synapses (PF, on spiny dendrites), 18 inhibitory stellate cells (STs, on

spiny dendrites) and four inhibitory basket cells (BSs, on the soma). Activation of excitatory and

inhibitory synapses in each PC was approximated as an independent Poisson process with different

rates. We simulated five conditions: PC rate = 10 Hz when PF rate = 0.27 Hz, ST rate = 14.4 Hz, BS

rate = 14.4 Hz; PC rate = 47 Hz when PF rate = 1.62 Hz, ST rate = 28.8 Hz, BS rate = 28.8 Hz (used

in Figure 5); PC rate = 70 Hz when PF rate = 2.16 Hz, ST rate = 28.8 Hz, BS rate = 28.8 Hz; PC
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rate = 93 Hz when PF rate = 2.7 Hz, ST rate = 28.8 Hz, BS rate = 28.8 Hz (used in Figure 5); PC

rate = 116 Hz when PF rate = 3.24 Hz, ST rate = 28.8 Hz, BS rate = 28.8 Hz.

To more systematically explore different factors regulating network outputs, we used a second

paradigm (Figure 4, Figure 4—figure supplements 1 and 2). Cellular rates of each PC were manip-

ulated by injecting stochastic currents on the soma. The stochastic current was approximated by the

commonly used Ornstein-Uhlenbeck random process (Destexhe et al., 2001), t dI
dt
¼ �I þ s

ffiffiffiffi

t
p

hi tð Þ.
s represents the amplitude of the fluctuation; hi represents uncorrelated white noise with unit vari-

ance; t ¼ 5 ms. In this paradigm, we systematically varied the rates and firing irregularities of PCs

(CV of ISIs) to explore their importance for network output. Due to the intrinsic relationship between

CV of ISIs and firing rates, a larger s is required for higher firing rates to get the same CV of ISI.

Phase response is a result of input current and response gain of the cell. We reduce the phase

response by halving the input current (synaptic conductance) to achieve a smaller response at high

firing rates (Figure 4—figure supplements 2). The conductance of inhibitory synapses was tested

with the values of 0.75, 1.0, 1.25 and 1.5 nS in Figure 4C. We also explored the effect of connection

radius with the values of 3, 5, 7 and10 in Figure 4D.

To test a spatio-temporally increased correlation, we randomly distributed extra 10–30 PCs with

decreased cellular rates into the original network (Figure 6, Figure 6—figure supplement 2), includ-

ing 100 increased-rate cells. Similar with Figure 4, each PC receives dynamic current injections

approximated by an Ornstein-Uhlenbeck random process. Their mean population firing rates are

shown in Figure 6—figure supplement 1B.

Coupled oscillator model
The model comprises 100 neurons that are randomly connected to each other with connection prob-

ability of p=0.75 (Figure 5). The ‘subthreshold dynamics’ of individual neurons is given by the phase

equation

d�

dt
¼ 1

T
þZ �ð Þ snet tð Þþ sind tð Þð Þ;

where � is a phase variable ranging from 0 to 1. T is an intrinsic period of the oscillation. Z(�) is a

PRC. sind and snet are the individual and network input, respectively. At �=1, the model cell “spiked.”

Then, � was reset to �-1 and the spike was added to the spike train variable (see below).

Z(�) is given by

Zð�Þ ¼ A � c if 0���1-d,

A cþB sin pð�þ d� 1Þ=dð Þð Þ if 1-d<��1.

�

Here, c represents the flat part of the Purkinje cell PRC and the other term represents a ’bump’

around � = 1. We found that the bump width is ~3 ms in time regardless of the firing rate, and set d

= 3 ms/T. We also used c = 0.08 and A = 12.

In the case when the model PRC scales as the PC PRC (Figure 5B), B = famp(1/T) where famp(r) is a

normalized PRC amplitude given a baseline firing rate r in Figure 1C. In Figure 4C and D with no

amplitude scaling of the PRC, B = famp(30 Hz) and B = famp(70 Hz) are used, regardless of T,

respectively.

sind tð Þ is given by the Ornstein-Uhlenbeck (OU) process, qtsind ¼ �sind=t þ s0z, where z is a Wiener

process based on the standard normal distribution. We used t = 3 ms and s0 = 0.2.

snet tð Þ is given by

dsnet

dt
¼� snet

t syn

þ i tð Þ;

i tð Þ ¼ g
j

X

oj t� dð Þ;

where j represents other neurons connected to each cell, and oj tð Þ is a spike train of the cell j. d =

1.5 ms is a synaptic delay. g = -20 is a connection weight, and t syn= 3 ms is a decay time for the syn-

aptic current.
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We used the forward Euler method with a time step of 0.025 ms to integrate the subthreshold

equation, while we also confirmed that our results did not change if we use 0.0125 ms. The OU pro-

cesses were integrated with the same time step and backward Euler method.

Data analysis
The power spectrum of the spike trains of the network was estimated by Welch’s method, which cal-

culates the average of the spectra of windowed segments (window size 128 points). In each trial

under each specific stimulus condition, the length of the signal was 2 s, with a time resolution of 1

ms. The final result was the average of 14 trials.

To compute the CCGs under each specific stimulus condition, we first computed pairwise correla-

tions between the spike trains of two neurons and then corrected them by shift predictors, which

removed the ‘chance correlations’ due to rate changes. Then correlations were divided by the trian-

gular function Q tð Þ ¼ T � jt j and
ffiffiffiffiffiffiffiffi

lilj
p

. T was the duration of each trial and t was the time lag.

Q tð Þ corrects for the degree of overlap between two spike trains for each time lag t . li was the

mean firing rate of neuron i (Kohn and Smith, 2005). Finally, the CCGs between all pairs in the net-

work were averaged to reflect the population level spike correlations. Thus, similar with previous

work (Heck et al., 2007), the computed CCGs reflect the ‘excess’ correlation caused by axon collat-

erals in our work.

To measure the dynamic correlation over the time course of the stimulus, we computed JPSTHs

(Aertsen et al., 1989). We first picked two neurons from our network and aligned their spike-count

PSTHs to stimulation onset with 2 ms time bins in each trial (larger time bins annihilated the positive

peaks due to the significant negative correlations in paired spikes, see CCGs in Figures 3 and

4). We constructed the JPSTH matrix by taking each stimulus trial segment and plotting the spike

counts of one cell on the horizontal and one on the vertical. If there is a spike from neuron i at time

x, and a spike from neuron j at time y, one count will be added to the matrix index (x,y). By repeat-

ing this process for different trials, we got a raw matrix for a cell pair i and j. Then by the shift-predic-

tor (repeated previous steps with shuffled stimulation trials), we removed correlations due to co-

stimulation caused firing rate changes. Next step, we normalized the JPSTH by dividing with the

product of standard deviations of the PSTHs of each neuron. To measure the correlation of the

assembly, we averaged JPSTH between all non-repeated cell pairs in the defined ‘assembly’ of our

network (Oemisch et al., 2015). The corrected matrix values become correlation coefficients, with

values between �1 and +1. The main diagonal of the JPSTH matrix provides a measure of time-vary-

ing 0 ms time lag correlations and the third main diagonal (2 ms time bin) provides a measure of 6

ms time lag correlations. Due to the small-time bin we used, we simulated 1992 trials (for

Figure 6B–E) to compute JPSTH between PC pairs and smoothed the JPSTHs for visualization pur-

pose. Due to the small number of decreased-rate neurons in the network, we simulated 26112 trials

to compute Figure 6F,G (30 decreased-rate neurons). When decreased-rate neuron numbers are 10

and 20 (Figure 6C,D), we did not compute their correlations due to the computational challenge.

For Figure 6G, we randomly picked 30 from 100 increased-rate neurons to make pairs with 30

decreased-rate neurons.
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Watt AJ, Cuntz H, Mori M, Nusser Z, Sjöström PJ, Häusser M. 2009. Traveling waves in developing cerebellar
cortex mediated by asymmetrical purkinje cell connectivity. Nature Neuroscience 12:463–473. DOI: https://doi.
org/10.1038/nn.2285, PMID: 19287389

Watts DJ, Strogatz SH. 1998. Collective dynamics of ’small-world’ networks. Nature 393:440–442. DOI: https://
doi.org/10.1038/30918, PMID: 9623998

Zang et al. eLife 2020;9:e60692. DOI: https://doi.org/10.7554/eLife.60692 17 of 18

Research article Neuroscience

https://doi.org/10.1523/JNEUROSCI.5106-04.2005
http://www.ncbi.nlm.nih.gov/pubmed/15814797
http://www.ncbi.nlm.nih.gov/pubmed/15814797
https://doi.org/10.1007/978-3-642-69689-3
https://doi.org/10.1007/978-3-642-69689-3
https://doi.org/10.1016/j.neuron.2015.03.010
https://doi.org/10.1016/j.neuron.2015.03.010
http://www.ncbi.nlm.nih.gov/pubmed/25843404
https://doi.org/10.1523/JNEUROSCI.23-33-10503.2003
http://www.ncbi.nlm.nih.gov/pubmed/14627634
https://doi.org/10.1073/pnas.0803183105
https://doi.org/10.1073/pnas.0803183105
http://www.ncbi.nlm.nih.gov/pubmed/18550830
https://doi.org/10.1523/JNEUROSCI.23-13-05698.2003
https://doi.org/10.1523/JNEUROSCI.23-13-05698.2003
http://www.ncbi.nlm.nih.gov/pubmed/12843273
https://doi.org/10.1016/j.neuron.2008.03.030
https://doi.org/10.1016/j.neuron.2008.03.030
http://www.ncbi.nlm.nih.gov/pubmed/18549787
https://doi.org/10.1523/JNEUROSCI.1262-15.2015
http://www.ncbi.nlm.nih.gov/pubmed/26400938
https://doi.org/10.1016/j.isci.2018.02.001
http://www.ncbi.nlm.nih.gov/pubmed/29888747
https://doi.org/10.1073/pnas.0707489104
http://www.ncbi.nlm.nih.gov/pubmed/17965230
https://doi.org/10.1038/nature10732
https://doi.org/10.1371/journal.pcbi.1000768
https://doi.org/10.1371/journal.pcbi.1000768
http://www.ncbi.nlm.nih.gov/pubmed/20442875
https://doi.org/10.1523/JNEUROSCI.5521-12.2013
http://www.ncbi.nlm.nih.gov/pubmed/23575852
https://doi.org/10.1073/pnas.1008605107
http://www.ncbi.nlm.nih.gov/pubmed/21131572
https://doi.org/10.1523/JNEUROSCI.2327-09.2009
https://doi.org/10.1523/JNEUROSCI.2327-09.2009
http://www.ncbi.nlm.nih.gov/pubmed/19692605
https://doi.org/10.1152/jn.00570.2006
http://www.ncbi.nlm.nih.gov/pubmed/16987931
https://doi.org/10.1146/annurev.ph.55.030193.002025
http://www.ncbi.nlm.nih.gov/pubmed/8466179
https://doi.org/10.1098/rstb.2009.0292
https://doi.org/10.1098/rstb.2009.0292
https://doi.org/10.1111/j.1469-7793.1997.153bf.x
https://doi.org/10.1111/j.1469-7793.1997.153bf.x
http://www.ncbi.nlm.nih.gov/pubmed/9350626
https://doi.org/10.1111/j.1460-9568.2007.05579.x
https://doi.org/10.1111/j.1460-9568.2007.05579.x
http://www.ncbi.nlm.nih.gov/pubmed/17553012
https://doi.org/10.1113/jphysiol.2010.201582
http://www.ncbi.nlm.nih.gov/pubmed/21521761
https://doi.org/10.1016/j.neuron.2016.04.013
http://www.ncbi.nlm.nih.gov/pubmed/27161527
https://doi.org/10.1038/nn.2285
https://doi.org/10.1038/nn.2285
http://www.ncbi.nlm.nih.gov/pubmed/19287389
https://doi.org/10.1038/30918
https://doi.org/10.1038/30918
http://www.ncbi.nlm.nih.gov/pubmed/9623998
https://doi.org/10.7554/eLife.60692


Witter L, Rudolph S, Pressler RT, Lahlaf SI, Regehr WG. 2016. Purkinje cell collaterals enable output signals from
the cerebellar cortex to feed back to purkinje cells and interneurons. Neuron 91:312–319. DOI: https://doi.org/
10.1016/j.neuron.2016.05.037, PMID: 27346533
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