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Abstract: Previous studies have reported a shift in the timing of sleep during adolescence toward
a later time. To date, it is unclear whether hormonal changes during puberty might contribute
to this change in sleeping behavior. We systematically assessed pubertal development and sleep
timing in a cross-sectional case-control study in girls with precocious (n = 42) and boys with delayed
pubertal development (n = 19). We used the Munich ChronoType Questionnaire and the Children’s
ChronoType Questionnaire to assess sleep timing in patients and age- and sex-matched controls
(n = 309) and used the midpoint of sleep on free days, corrected for potential sleep debt accumulated
during the school week, as a marker for sleep timing. Compared to the controls, girls with central
precocious puberty showed a delay in sleep timing of 54 min, and girls with premature pubarche
slept on average 30 min later. Male adolescents with delayed pubertal development showed an
average sleep midpoint that was 40 min earlier compared to the control group. The results of this
pilot study suggest an association between pubertal onset and shifts in sleep timing, which is a novel
finding in human sleep behavior. Prospective studies in larger cohorts will be needed to examine the
robustness and generalizability of the findings.
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1. Introduction

Sleep timing, a key aspect of sleep behavior, varies largely within the population [1]. Sleep
timing emerges from the interplay between the circadian system and sleep homeostasis and differs
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between individuals who wake up early in the morning and individuals who wake up late in the day.
This variation in sleep timing has been used as a proxy for chronotype, or the individual phase of
entrainment [2–7]. Recently, studies have reported a biphasic shift of sleep timing in parallel with
chronological maturation [1,8–11], with adolescents continuously shifting later during adolescence,
and then becoming earlier again in early adulthood [1,12,13]. Adolescents on average have a later
phase of entrainment and this is paralleled by their sleep timings, especially on non-school days when
sleep timing is not affected by school start times, but at least in part regulated by the circadian system.
This phase delay leads to a mismatch with early school and work start times, a phenomenon also
referred to as social jetlag [14]. In teenagers, who have overall later chronotypes than adults and
therefore are more likely to experience this mismatch even with daytime schedules, social jetlag has
been associated with worse academic achievements. In adults, higher levels of social jetlag have been
associated with adverse metabolic profiles and obesity [12,15–21].

Late adolescent sleep timing has been attributed to environmental factors [22–25], but might also
be related to endogenous hormonal changes during puberty [26,27]. This hypothesis is supported by
rodent studies where gonadectomized rodents showed a shift toward later timings in their day–night
activity rhythm [28–31]. We therefore examined the association between pubertal development and
sleep timing in children with precocious or delayed puberty using validated questionnaires [1,32] and
compared those to age- and sex-matched controls. Pubertal development is divided into pubarche
(occurrence of, e.g., pubic hair), which is dependent on adrenal gland function, and central puberty
(leading to breast development, menarche), which is related to the secretion of gonadotropins
by the hypothalamus and pituitary and estrogen/testosterone production by the ovaries or testis.
Premature thelarche indicates transient breast development without stimulation by gonadotropins.
We hypothesized that the precocious onset of pubertal development (i.e., premature pubarche and
precocious central puberty) would be associated with a later sleep timing, while delayed pubertal
development would be associated with earlier sleep timing phenotypes.

2. Results

2.1. Sleep Timing in Patients with Precocious or Delayed Pubertal Development

The characteristics of all cohorts are summarized in Table 1. We observed that boys with a delayed
pubertal development had a significantly earlier chronotype than the male database control cohort of
the same age (n = 19) (Figure 2A; Table 2). Girls with precocious central puberty (n = 13) and premature
pubarche (n = 19), in turn, showed significantly later sleep timing as compared to their age-matched
female controls (Figure 2B; Table 2). However, sleep timing did not differ between the 10 girls with
a premature thelarche and the controls (Figure 2B, Table 2). However, the database control group
was slightly younger than the patient cohort with precocious puberty. Social jetlag did not differ
between controls and boys with delayed puberty (Figure 1A; Table 2) or girls with an early pubertal
development (Figure 1B; Table 2).

In secondary analyses, we examined potential differences in sleep duration. Boys with delayed
pubertal development slept significantly longer on school days compared to controls (Supplemental
Figure S1A; Table 2), while sleep duration on free days was comparable across both groups
(Supplemental Figure S1B; Table 2). We observed no differences in the duration of sleep on work and
on free days in girls compared to the female controls (Supplemental Figure S1C,D; Table 2).
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Figure 1. Chronotype of patients with delayed or early pubertal development compared to control 
individuals. (A) MSFsc (corrected midpoint of sleep on free days) was significantly earlier in the boys 
with delayed pubertal development compared to a healthy control group. (B) The MSFsc was 
significantly shifted toward a later time in girls with early onset of puberty (precocious puberty and 
premature pubarche) compared to a healthy control group. No differences of chronotype were 
identified in a group of girls with premature thelarche in relation to the control group. In the box 
plots, the horizontal line represents the median and the bars indicate the 5th and the 95th percentiles. 
The MSFsc is documented in decimal, military time. * p < 0.05; *** p < 0.001 

 
Figure 2. Social jetlag. (A) We did not observe systematic differences between boys with delayed 
pubertal development and the control group (B) Furthermore the social jetlag did not differ between 
girls with precocious puberty, premature pubarche, or premature thelarche compared to age-matched 
controls. In the box plots, the horizontal line represents the median and the bars indicate the 5th and 
the 95th percentiles. 
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Figure 1. Social jetlag. (A) We did not observe systematic differences between boys with delayed
pubertal development and the control group (B) Furthermore the social jetlag did not differ between
girls with precocious puberty, premature pubarche, or premature thelarche compared to age-matched
controls. In the box plots, the horizontal line represents the median and the bars indicate the 5th and
the 95th percentiles.
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Figure 2. Chronotype of patients with delayed or early pubertal development compared to control
individuals. (A) MSFsc (corrected midpoint of sleep on free days) was significantly earlier in the
boys with delayed pubertal development compared to a healthy control group. (B) The MSFsc was
significantly shifted toward a later time in girls with early onset of puberty (precocious puberty
and premature pubarche) compared to a healthy control group. No differences of chronotype were
identified in a group of girls with premature thelarche in relation to the control group. In the box
plots, the horizontal line represents the median and the bars indicate the 5th and the 95th percentiles.
The MSFsc is documented in decimal, military time. * p < 0.05; *** p < 0.001
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Table 1. Sample characteristics for patients (by puberty status) and a database control sample. Pubertal
development was assessed using Tanner stages. A clinical Tanner stage of ≥2 defines an onset of
puberty and Tanner stage of 5 represents the mature adult clinical status. For the database control
cohorts, no information about pubertal stages was available.

Delayed
Puberty

Precocious
Central
Puberty

Premature
Pubarche

Premature
Thelarche

Database
Control Group,

Adolescents
(Roenneberg et al.)

Database
Control Group,

Children
(Werner et al.)

Samples size 19 boys 13 girls 19 girls 10 girls 240 69

Age (years) 15.7 ± 1.1 8.0 ± 1.3 6.6 ± 1.3 5 ± 2.6 15.1 ± 1.2 6.4 ± 1.2

Sex
(female/male) 0/19 13/0 19/0 10/0 0/240 69/0

Tanner stage
(breast) n/a 2.9 ± 0.9 1.3 ± 0.8 2.2 ± 0.4 n/a n/a

Tanner stage
(genitalia) 2.0 ± 1 n/a n/a n/a n/a n/a

Tanner stage
(pubic hair) 2.0 ± 1 2.5 ± 1.3 2.2 ± 0.9 1.0 ± 0 n/a n/a
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Table 2. Chronotype, sleep, and social jetlag by patient and database control sample. All patient groups were analyzed with respect to chronotype, sleep duration, and
social jetlag (mean value ± SD) and these data were compared to the results of control-database groups. P-values, false discovery rate (FDR) corrected p-values, and
effect size (Cohen’s d) are noted within the field.

Delayed Puberty Precocious
Central Puberty

Premature
Pubarche

Premature
Thelarche

Database Control
Group, Adolescents
(Roenneberg et al.)

Database Control
Group, Children

(Werner et al.)
Statistical Test

Chronotype
(MSFsc)

3.8 ± 0.8
p = 0.039

FDR cor. p = 0.1248
d = 0.23

3.0 ± 1.1
p < 0.001

FDR cor. p = 0.008
d = 0.34

2.58 ± 1.0
p = 0.03

FDR cor. p = 0.1248
d = 0.24

2.2 ± 1.0
p = 0.7314

FDR cor. p = 0.7802 4.46 ± 1.4 2.1 ± 0.6
- T-test (one sided)

- Effect size
(Cohen’s d)

Sleep duration on
school days (h)

8.0 ± 1.5
p < 0.001

FDR cor. p = 0.008
d = 0.55

10.1 ± 0.8
p = 0.2088

FDR cor. p = 0.4176

10.04 ± 0.7
p = 0.0643

FDR cor. p = 0.1715

10.12 ± 1.0
p = 0.3144

FDR cor. p = 0.4895
7.3 ± 1.0 10.4 ± 0.6

- T-test (one sided)
- Effect size
(Cohen’s d)

Sleep duration on
free days (h)

8.3 ± 1.5
p = 0.47

FDR cor. p = 0.5785

10.19 ± 1.0
p = 0.052

FDR cor. p = 0.1248

10.43 ± 0.9
p = 0.2014

FDR cor. p = 0.4176

10.65 ± 1.6
p = 0.9191

FDR cor. p = 0.9191
8.4 ± 1.3 10.68 ± 0.7 - T-test (one sided)

Social jetlag (h)
1.32 ± 0.74
p = 0.3255

FDR cor. p = 0.4895

0.09 ± 1.28
p = 0.3365

FDR cor. p = 0.4895

0.39 ± 0.74
p = 0.6642

FDR cor. p = 0.7591

0.52 ± 1.15
p = 0.3792

FDR cor. p = 0.5056
1.52 ± 0.87 0.318 ± 0.61 - T-test (one sided)
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2.2. Hormone Levels in Patients with Abnormal Pubertal Development

Plasma hormone levels were available for 12 patients with delayed puberty, 8 patients
with precocious puberty, 15 patients with premature pubarche, and 3 patients with premature
thelarche. We observed a positive correlation between sleep timing and the levels of the adrenal
androgen-precursor steroid 17-OHP (r = 0.54, p = 0.036, false discovery rate (FDR) corrected p = 0.1105;
Figure 3) in girls with premature pubarche. Blood parameters were available for 8 girls with precocious
puberty; however, in this limited sample size no other association with hormonal parameters reached
statistical significance after outlier correction (>2 SD from mean).
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Figure 3. 17-hydroxy-progesterone levels. Patient blood values were available only for a subgroup of
participants (n = 15). A significant positive correlation between the 17-OHP levels of patients with
premature pubarche and sleep timing (assessed by MSFsc) was observed within this small cohort.

No further information about pulsatile gonadotropin secretion was available at this stage.
All correlation coefficients between sleep timing and LH (luteinizing hormone), stimulated FSH
(follicle stimulating hormone), testosterone, estradiol, 17-OHP, or DHEAS were below 0.2. Correction
for multiple comparisons was performed by using FDR, giving a corrected level of significance alpha
threshold of 0.16.

3. Discussion

Several studies have reported a shift in sleep timing during adolescence that, on average, has a
magnitude of about 60–120 min [13]. Although sleep timing is variable among individuals, this trend
has been described in several populations [1,8,9,11,33] and replicated in a longitudinal study [34].
While several studies in rodents point toward an impact of pubertal hormones on chronotype shift [35],
human evidence for such a link is scarce. We examined patients with the rare condition of precocious
(incidence: 1:5000–1:10,000) or delayed puberty onset. To explore a potential role of hormone levels
in this phenomenon, we performed a cross-sectional pilot study in these patients and collected
sleep information using established, validated questionnaires [32,36]. Children and adolescents with
abnormal pubertal development differed from their age- and sex-matched controls, in the hypothesized
directions. Interestingly, only girls with accelerated puberty and with substantial clinical symptoms
of precocious puberty or premature adrenarche showed later sleep timing (54 min and 30 min,
respectively) as compared to controls. Girls with milder forms of premature thelarche—without
a central pubertal stimulation—did not differ from controls. Inversely, boys with a delayed puberty
slept on average 40 min earlier. Together, these data imply that human pubertal development might be
linked with sleep timing. It is noteworthy though, that the sample size was small and that associations
did not survive multiple testing adjustments. Therefore, prospective replication in larger settings is
warranted. Furthermore, girls are entering puberty at a younger age than boys for unknown reasons.
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This sexual dimorphism affects sleep timing and chronotype, leading to differences between boys and
girls. These differences are additionally observed before and after puberty [1,32].

Plasma hormone levels were available in a subset of individuals with altered pubertal
development. We observed a positive correlation between the 17-OHP levels and the sleep timing in
girls with premature pubarche. These results support the notion that pubertal development is linked to
sleep phenotypes, as the elevation of these hormone levels represents the activation of pubarche [26,37].
Recently, Foley et al. reported a prospective association between trajectories in pubertal timing and
sleep behavior in a large US cohort [31]; those results are in line with our observation that higher
17-OHP levels were associated with a later sleep timing in our study. We did not identify further
associations between plasma hormone levels and sleep timing. Because of the limited sample size, we
further emphasize the need of replication efforts examining sleep behavior and pubertal stages.

Boys with delayed puberty slept longer on work/school days compared to controls. This could
be due to the differences in sleep timing, as boys with delayed pubertal development had earlier
sleep onsets on average than the database control group. Given that earlier sleep timing is in better
alignment with early school start times—in Germany, schools typically start at around 8:00 a.m.—those
boys experienced less sleep curtailment than the controls of the database control cohort. While controls
showed nearly a 1.1 h discrepancy between sleep duration on school and free days, boys with delayed
puberty only had a 0.3 h difference. This difference was not statistically significant, but was in line
with previous reports of increasing sleep debt during the week as a function of sleep timing [12].

This is an exploratory study with a limited number of patients. However, the magnitude of the
differences that were found in the hypothesized directions suggests a strong biological effect that
needs to be replicated in a larger cohort of children. Our study has several further limitations. First, the
cross-sectional design does not allow the disentanglement of the directionality of associations. Ideally, a
prospective study [34], would assess environmental factors, individual circadian phase (for example, by
means of dim-light melatonin onset [38]), objective sleep behavior, as well as all established clinical and
objective hormonal markers of pubertal development, and genetic information. Second, due to limited
access to control data, the database control group was slightly younger than the group of patients
with central precocious puberty. Furthermore, no information about pubertal stages or any hormonal
levels was available for this database control cohort, and this hampered direct comparisons of sleep
behavior by pubertal stages. Precocious and delayed pubertal development are rare clinical conditions
though, and it is unlikely that either database comprised a substantial number of individuals who were
precocious or delayed in their pubertal development. If exposure misclassification occurred, it was
likely non-differential, which would result in an underestimation of the association. Another limitation
relates to the question of which physiological component of pubertal regulation is leading to changes in
sleep timing. The onset of puberty is reflected by the release of hypothalamic peptides that will in turn
trigger the pituitary gonadotropins FSH and LH, which then stimulate the gonadal secretion of sex
steroids. Those sex steroids (i.e., estrogen and testosterone) finally lead to the visible clinical signs of
pubertal development. In addition, the adrenal release of androgens leads to pubic hair development.
Several rodent studies have shown that both, the adrenal and the central hypothalamic–pituitary axis
can have an impact on circadian clock output [39–41], and that androgens and estrogens can modify
clock-gene expression [42,43]. Moreover, gonadectomized animals do not show a physiological activity
change during adolescence, a phenomenon that can be restored when these animals are treated with
testosterone or estrogen [44,45]. While a direct translation of such findings is not appropriate, given
the fundamental differences in the length of sexual maturation, timing of activity, and exposure to
social and environmental factors, those results largely suggest a potential role for hormonal pathways
related to changes in behavioral timing not only in rodents but also in humans.

4. Material and Methods

This study has been approved by the ethical committee of the Charité Universitätsmedizin Berlin
(No. EA2/032/12) and the ethical committee of the Ludwig Maximilian University. The patients and
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their legal guardians gave written informed consent, and the study was conducted in accordance with
the Declaration of Helsinki.

4.1. Patient Cohort

All patients were recruited in the outpatient clinic of the Department of Pediatric Endocrinology
(Charité Universitätsmedizin Berlin) and the outpatient clinic of the Endokrinologikum (Dr. K.P.
Liesenkötter, Berlin, Germany). We only included children in the study if their diagnostic workup
revealed an idiopathic precocious or delayed pubertal development, excluding other primary causes
such as adrenal, pituitary, or gonadal tumors; syndromic cases; or patients with congenital adrenal
hyperplasia. The definitions for precocious and delayed pubertal development were based on
international guidelines [46]. A clinical Tanner stage of ≥2 defines an onset of puberty. Tanner
stages of the breast (girls), genitalia (boys), and pubic hair (both) were recorded. We also included girls
with premature thelarche (clinically defined by transient breast development without the stimulation
of gonadotropins before the age of 8) and girls with premature adrenarche (clinically defined by the
occurrence of pubic hair without stimulation of gonadotropins before the age of 8). Delayed pubertal
development was defined as an absence of pubertal clinical findings (Tanner stage of 1) at an age
above 13 years in girls and 14 years in boys, respectively [37]. In total, 74 patients were recruited with
these disturbed pubertal developments. Because of the low number of males in the precocious puberty
group (n = 10) and the low numbers of females in the cohort with delayed puberty (n = 3), we only
included boys with delayed and girls with precocious puberty a posteriori in the analysis (finally 61
out of the initial 74 patients were included in the analysis). For this reason, 19 patients with delayed
puberty, 13 individuals with precocious central puberty, 19 patients with premature pubarche, and
10 individuals with premature thelarche were included within this proof-of-concept study (Table 1).

4.2. Database Control Cohorts

The study included two different control groups, depending on their age. We compared patients
with delayed puberty to a convenience sample of age- and sex-matched controls (n = 240; age: 15.1 ±
1.2 years) from the Munich ChronoType Questionnaire (MCTQ) database (www.theWeP.org), while
younger children (<10 years) with precocious puberty were compared to age- and sex-matched
controls from the Children’s ChronoType Questionnaire (CCTQ) database (n = 69; age: 6.4 ± 1.2 years).
The latter database control group was slightly younger than the precocious puberty group. Information
about pubertal stages or hormonal parameters of the participants was not available.

4.3. Sleep Assessments

The chronotype assessment in patients older than 10 years was performed with the Munich
ChronoType Questionnaire (MCTQ) and in patients younger than 10 years with the Children’s
ChronoType Questionnaire (CCTQ) [1,32,36], both of which use the midpoint of sleep on free days
corrected for the sleep debt accumulated over the workweek (MSFsc; corrected midpoint of sleep
on free days) as a surrogate for chronotype. Social jetlag was calculated as the absolute difference
between the midpoint of sleep on free days and on work days [14]. Both questionnaires also allow
the computation of average sleep duration on free and work days. The use of two chronotype
questionnaires was necessary, because only the CCTQ is established and evaluated in children below
10 years of age. However, the CCTQ is based on the MCTQ. Both questionnaires are well established
and have been validated to quantify sleep behavior and sleep.

4.4. Laboratory Measurements

Puberty-associated hormones such as the gonadotropins LH and FSH (basal and GnRH
(gonadotropin releasing hormone) stimulated), as well as the sex steroid hormones testosterone,
estradiol, 17-OHP (17-hydroxyprogesterone), and DHEAS (dehydroepiandrosteronesulfate) were
measured at the Labor Berlin-Charité Vivantes GmbH according to standard protocols. Blood collection

www.theWeP.org
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was performed during the first presentation of the patient within the outpatient clinic between 8:30
and 9:00 a.m. The chronotype questionnaire and blood collection were performed on the same day.

4.5. Statistical Analysis

Statistical analyses were performed using SPSS (SPSS Inc., Chicago, IL, USA, version 23.0).
We examined whether patients with precocious puberty had later sleep timings as compared to their
matched controls using a one-sided t-test. In addition, we also examined whether patients with delayed
pubertal development showed earlier sleep timings as compared to controls. In the secondary analysis,
we examined the association between pubertal stage and sleep duration, expecting that children
with precocious puberty would sleep less than controls, and that individuals with delayed pubertal
development would sleep longer [47]. Outliers were defined by ±2 standard deviations, and we tested
the robustness of the results in a sensitivity analysis excluding potential outliers, whenever appropriate.

We report results of this pilot study with a significance level of alpha set to 0.05. Finally, in
exploratory analyses, we examined whether the hormonal markers of pubertal development were
higher in patients with later sleep timings. In case the data were not normally distributed, as tested
with the Shapiro–Wilk test, we used adequate non-parametric tests (Spearman correlation) to examine
the robustness of the aforementioned associations. We also report p-values adjusted for multiple testing
by implementing a false discovery rate (FDR) [48].

5. Conclusions

Taken together, we observed sleep timing differences in patients with precocious or delayed
pubertal development compared to control database groups. This support the notion that endogenous
factors might contribute to sleep timing during puberty. This deserves further attention, and future
studies are needed examining robustness of our results, potential interactions with environmental
factors, and generalizability across healthy and patient populations.

Supplementary Materials: Supplementary materials can be found at http://www.mdpi.com/2624-5175/1/1/
13/s1.
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