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Abstract

Objectives: Now a days, squamous cell carcinoma (SCC) margin assessment is done by examining histopathology images and
inspection of whole slide images (WSI) using a conventional microscope. This is time-consuming, tedious, and depends on
experts’ experience which may lead to misdiagnosis and mistreatment plans. This study aims to develop a system for the
automatic diagnosis of skin cancer margin for squamous cell carcinoma from histopathology microscopic images by applying
deep learning techniques.

Methods: The systemwas trained, validated, and tested using histopathology images of SCC cancer locally acquired from Jimma
Medical Center Pathology Department from seven different skin sites using an Olympus digital microscope. All images were
preprocessed and trained with transfer learning pre-trained models by fine-tuning the hyper-parameter of the selected models.

Results: The overall best training accuracy of the models become 95.3%, 97.1%, 89.8%, and 89.9% on EffecientNetB0,
MobileNetv2, ResNet50, VGG16 respectively. In addition to this, the best validation accuracy of the models was 94.7%, 91.8%,
87.8%, and 86.7% respectively. The best testing accuracy of the models at the same epoch was 95.2%, 91.5%, 87%, and 85.5%
respectively. From these models, EfficientNetB0 showed the best average training and testing accuracy than the other models.

Conclusions: The system assists the pathologist during the margin assessment of SCC by decreasing the diagnosis time from an
average of 25 minutes to less than a minute.
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Introduction

Skin cancer is the most common type of cancer that affects
humans worldwide. According to the literature out of three
people diagnosed with cancer, there is a possibility of one
patient with skin cancer.1 It is a common type of cancer that
starts to grow in the epidermis layer of the skin.2,3 The number
of people affected by skin cancer will be expected to exceed
13.1 million by 2030.2,4 In the United States, the occurrence of
skin cancer is reported to be 22.1 per 100 000 people. The
number of new patients yearly predicted is expected to be
more than 63 000, and skin cancer is now rated as the sixth
most common of all cancers.4 Skin cancer is generally clas-
sified into two major groups; melanoma and non-melanoma.
The frequency of non-melanoma skin cancer (NMSC), in-
cluding basal cell carcinoma (BCC) and squamous cell car-
cinoma (SCC) has increased from 3.4 to 4.9 million cases per
year.5 Nevertheless, they can be fatal when it is left undiag-
nosed and untreated early.6 SCC accounts for most NMSC-
related metastatic cancer diseases and death. According to
Ref. 1 it is the second most frequent kind of skin cancer.
Generally, scaly red spots, open sores, raised growths with a
central depression, or warts are frequent signs of SCC.
Nevertheless, there are three differentiation stages of SCC.
These are (see Figure 1); (1) well-differentiated SCC, (2)
poorly differentiated SCC, and (3) undifferentiated/or invasive
SCC. The well-differentiated SCC is characterized by having
one property of grade I SCC. The poorly differentiated
property of cells indicates grade II and grade III SCC. Grade
IV SCC can be characterized as an invasive/undifferentiated
type. Visual inspection,, and histopathology are the current
diagnostic methods for surgeons to differentiate between tu-
mor and normal tissue for skin cancer including SCC. Of these
techniques, histopathology diagnosis is the gold standard
method used not only to identify its type but also for grading
and diagnosing/assessing the tumor margins.7 The differential
diagnosis between SCC histologic grades is crucial, as it will
further determine the therapeutic approach and follow-up of
the tumor.8 However, in this research, since we are focusing on
the marginal diagnosis of the tumor, we consider all grades as
malignant and the cancer-free margin as normal/or benign.

As shown in Figure 1 above, in well-differentiated tumors,
the cells are organized and have a shape that has been usually
seen in normal tissue images. The poorly differentiated cells
are looking disorganized when seen under the eyepiece of the
microscope, and tend to grow and spread faster than grade I
tumors, ie, the well-differentiated ones. Those SCC tumor
cells, which are not differentiated, look highly disorganized
and spread more tremendously than the poorly differentiated
categories.

Therefore, early detection of skin cancer margin is required
to prevent the progression of cancer to advanced stages and
reduce cancer fatality. Nowadays, SCC is clinically diagnosed
using dermoscopic examination and tissue biopsy followed by
Mohs micrographic surgery (MMS).6,9 Among these, biopsy
tests are the gold standard method in the diagnosis procedure
of SCC. After diagnosis, for treatment planning, the surgical
excision is the routinely used method for all SCC treatments,
followed by a histopathological margin assessment of all ribs
of the tumor. This would help for the confirmation of the total
removal of the tumor cells.10 A cancer margin, as defined by
the National Cancer Institute (NIH), is “the edge or border of
the tissue removed in cancer surgery”.11 If the margin is
assessed correctly, this border surrounds the cancerous tissue
as well as a rim of normal tissue to later confirm a successful
resection. Histopathological assessment of surgical margin is
performed by analyzing by taking sample tissue from all
margin and examining it under the microscope. Surgery can
cure ∼45% of all patients with cancer,5 however, in 40% to
50% of cases a remaining tumor cell is found at the margins,7

and extra surgery is required, which results in sophisticated
treatment, high cost, greater morbidity, infection risk, and late
therapy.12 Unfortunately, up to 39% of the patients who ex-
perience, surgery leave the operating room without a complete
resection due to positive or close margins.

The manual histopathology, which is based on the con-
ventional microscope margin assessment method, is a time-
consuming and tedious process. The accurate decision of the
margin diagnosis needs an experienced pathologist. Some-
times it may require the decision of two or more experts to
provide a reliable pathology report, which directly affects the
delay of the treatment plan and cure rate. The current

Figure 1. Sample histopathology SCC images acquired from Jimma University Medical Center (a) Well-differentiated SCC, (b) Poorly
differentiated SCC, (c) Undifferentiated/or invasive SCC. Abbreviation: SSC, squamous cell carcinoma.
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procedural protocol for any skin cancer-related treatment in
Ethiopia is the removal of the tumor part and waiting for a
pathology report for the complete removal of cancer. The
report took more than a month.12–14 A current topic of research
focuses on creating computer-aided diagnostic (CAD) systems
for skin lesions, intending to help dermatologists by reliably
analyzing histopathology images of skin lesions for automated
identification of SCC.

Related Works

To date, various image processing and machine learning
techniques have been used to diagnose the SCC margin.
However, the accuracy of the developed system was not
sufficient most probably due to the use of few data sets only
from online sources and use of Most recently, M. Halicek
et al15 proposed the studies on hyperspectral imaging (HSI)
and fluorescent imaging of head and neck SCC in fresh
surgical samples from 102 patients/293 tissue samples. HIS
was captured using Maestro spectral imaging system. The
autofluorescence images were acquired from 500 to 720 nm in
10 nm increments to produce a hypercube of 23 spectral bands
using autofluorescence-imaging modality. They used a deep
learning method of Inception V4 transfer learning to classify
the whole tissue specimens into cancerous and normal. In this
study two experiments were performed. The first experiment
consisted of training the CNN on the primary tumor (T) and all
normal (N) tissues while testing on T and N tissues from other
patients. The second experiment consisted of training on the
primary tumor (T) and all normal (N) tissues while testing only
tumor-involved cancer margin (TN) tissues from other pa-
tients. HSI detected conventional SCC in the larynx, oro-
pharynx, and nasal cavity with .85-.95 AUC score, and
autofluorescence imaging detected HPV+ SCC in tonsillar
tissue with .91 AUC score for different organ sites. Generally,
the result shows that AUCs upwards of .80-.90 were obtained
for SCC detection with HSI-based. Again another study in
Ref. 16 which was written by M. Halicek et al shows the
ability of HSI-based cancer margin detection for oral cancer of
thyroid cancer and oral SCC. The CNN-based method clas-
sifies the tumor-normal margin of oral squamous cell carci-
noma (SCC) vs normal oral tissue with an area under the curve
(AUC) of .86 with 81% accuracy, 84% sensitivity, and 77%
specificity. In the same study, thyroid carcinoma cancer
normal margins were classified with an AUC of .94 for in-
terpatient validation, performed with 90% accuracy, 91%
sensitivity, and 88% specificity. This study compared support
vector machine (SVM) with radial basis function (RBF) type
kernel and CNN deep neural network model to classify SCC,
and .80 and .85 AUC were achieved by the models respec-
tively. In Ref. 7 L.Ma et al proposed, that a fully convolutional
network (FCN) model based on U-Net architecture was im-
plemented and trained for tissue classification in hyperspectral
images (HIS) of 25 ex vivo SCC surgical specimens from 20
different patients. They used only patches containing the

tumor-normal margin to train the model, while the patches
with only tumor or only normal tissue were not used in the
training process. The model was evaluated per patient and
achieved pixel-level tissue classification with an average area
under the curve (AUC) of .88, as well as .83 accuracy, .84
sensitivity, and .70 specificity. Kassem. M.A et al17 proposed
Skin Lesions Classification Into Eight Classes for ISIC 2019
Using Deep Convolutional Neural Network and Transfer
Learning. This paper proposes a model for highly accurate
classification of skin lesions. The proposed model utilized the
transfer learning and pre-trained model with GoogleNet. The
proposed model successfully classified the eight different
classes of skin lesions, namely, melanoma, melanocytic nevus,
basal cell carcinoma, actinic keratosis, benign keratosis,
dermatofibroma, vascular lesion, and Squamous cell carci-
noma. The achieved classification accuracy, sensitivity,
specificity, and precision percentages are 94.92%, 79.8%,
97%, and 80.36%, respectively. They used online datasets to
train and test their models.

L. Zhang et al14 proposed a deep learning-based stimulated
Raman scattering (SRS) microscope of laryngeal squamous
cell carcinoma on fresh surgical specimens using a 34-layered
residual convolutional neural network (ResNet34) to classify
33 fresh surgical samples into normal and neoplasia to di-
agnosis the abnormality of the samples. Even though they
modeled the system with high accuracy (100%) for the
classification of samples into normal and neoplasia, margin
assessment was not addressed. On the other hand, Khalid M
et al in Ref. 18 proposed Classification of Skin Lesions into
Seven Classes Using Transfer Learning with AlexNet. The
parameters of the original model are used as initial values,
where they randomly initialize the weights of the last three
replaced layers. The proposed method was tested using the
most recent public dataset, ISIC 2018. Based on the obtained
results, they could say that the proposed method achieved
great success where it accurately classifies the skin lesions into
seven classes. These classes are melanoma, melanocytic ne-
vus, basal cell carcinoma, actinic keratosis, benign keratosis,
dermatofibroma, and vascular lesion. The achieved percent-
ages were 98.70%, 95.60%, 99.27%, and 95.06% for accu-
racy, sensitivity, specificity, and precision, respectively. In
Ref. 19 B. Fei et al proposed a machine learning-based
quantification method for HIS data from 16 patients, who
underwent head and neck surgery used for binary classifi-
cation as cancer normal tissues. They used normal and tumor
tissues for training and the model were evaluated on the
histopathology of tumor-normal interface from the same pa-
tients. The study classifies the normal and cancer tissues but
not on the boundary of the tumor margin. They got distin-
guished of 90% ± 8% accuracy, 89% ± 9% sensitivity, and
specificity of 91% ± 6. The above-mentioned studies used
hyperspectral imaging (HSI) modalities for the peripheral
margins, which has a limitation on the deep penetration of the
deep margins where the most positive margin cases were
reported. Starting with the primary clinical samples obtained
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from the Jimma Medical Center (JMC), Department of Pa-
thology, histopathology images tainted with typical artifacts
such as fringing dust, and non-collimated lighting were ac-
quired using a locally available microscope. Our setup closely
resembled a clinical microscope that is often seen in resource-
poor hospital settings. The images were then preprocessed to
remove the artifacts and increase the number of trained data
sets. Different transfer learning and deep learning artificial
intelligence-based models were applied and their classification
performance was compared.

Proposed Models

The acquired microscopic histology images often contained
artifacts from diverse sources that needed to be rectified using
appropriate preprocessing methods. Therefore, this section
explicates the details of the image acquisition and image
processing techniques required for the margin classification,
followed by a brief discourse on the transfer learning methods
used in this work. The overall workflow/block diagram used
for developing the system is outlaid in Figure 2.

In this research, four models have been selected and trained
with the locally collected SCC data sets. These models were
selected due to their outperforming in related works. These
were, VGG16, ResNet-50, MobileNetV2, and Effi-
cientNetB0. A detailed explanation of each model is found in
Supplementary Material 1.

Experimental Design

Data Collection/Image Acquisition

In collaboration with the Pathology, Histology, and Derma-
tology Departments at Jimma University Medical Center,
tissue samples were obtained from skin cancer surgical resection.
The tissues were obtained from different skin parts (legs, feet,

hands, toes, eyes, face, and neck) of the patient (see Table 1) for
SCC, which is the most abundant and most frequently diagnosed
skin cancer type in Jimma University Medical Center (JUMC). .
The tissue images were acquired using a digital compound light
microscope (Olympus, CX21FS1, Guangzhou, China) equipped
with a ×100 oil immersion objective and a ×10 eyepiece
magnification integrated with a camera of 5MP digital resolution
(see Figure 3(a)). For a given slide (see Figure 3(b)), a mag-
nification of ×10 was used in the image acquisition of the his-
topathology image (see Figure 3(c) and (d)). To do this, the tissue
biopsies were processed via formaldehyde Xing and paraffin
embedding (FFPE) and cut into thin sections. Finally, it was
stained with hematoxylin and eosin (H&E) to observe the
structure of the cells (see Figure 3(b)).

The safest margin for surgical resection of different cancer
types is different based on the tumor resection margin stan-
dards of the providers.20–23 For the oral tongue, a negative
margin was proposed to be 2.2 mm. Another study found cuts
within 1 mm of oral cavity tumor margins are associated with
significantly increased recurrence rates. Negative resection
margins are the primary prevention of disease relapse of the
cancer cells.16,24 For this study, based on the JUMC standard
of care for skin cancer histopathology margin assessments,
more than 1 mm surgical margin is considered as a margin
negative, and less than 1 mm is considered as a margin
positive. Taking19,22 as a reference three regions of interest
were selected and images were acquired in this study: the
tumor, normal, and tumor-normal interface regions.

The collected slides (see sample slides in Figure 3(b)) were
from 50 patients. The number of patients distributed for each
organ was: 12 patients with SCC of the legs, 8 on hands, 3 on
the eyes, 14 on feet, 6 on toes, 4 on the neck, and 3 on the face.
Regarding histologic grading, 17 patients with well-
differentiated SCC and 15 patients with poorly differenti-
ated SCC, 18 patients were Invasive SCC as stipulated in

Figure 2. The general diagram of the proposed system.
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Table 1. Tissue samples that are entirely normal were used as
Margin Negative and the sample that contains tumor-normal
margins and entire tumor were used as Margin Positive cat-
egory. All H&E-stained histopathology images were labeled
as margin negative andmargin positive and confirmed by 2 (two)
pathologists for histopathologic assessment. Finally, both pa-
thologists and histologists validated the correct labeling of the
captured slide images, whichwere used as our acquired data used
for developing our model. In this research, a total of three 345

normal, 284 images for tumor, and 199 for a tumor-normal
section of histopathology images were originally acquired (see
sample acquired image in Figure 3(d)).

From Table 1 above, out of 50 patients originally 345
margin negative and 483 margin positive (the combination of
pure tumor and tumor-normal section) histopathology images
were acquired. Seven different skin organs and three histo-
logic grades of SCC were used aiming to use the models for
most skin parts of the body. As the research did not involve the

Table 1. Squamous Cell Carcinoma Data Set the Information of Patients and Whole Slide Images.

Site of Dataset Information Number of Patients Normal (WSI) Tumor (WSI) Tumor-Normal (WSI)

Leg 12 104 80 56
Hand 8 60 58 36
Foot 14 101 88 56
Toe 6 46 4 24
Eye 3 17 18 13
Neck 4 8 4 8
Face 3 9 9 6
Total 50 345 284 199
Based on histological grading
Well-differentiated 17 110 82 67
Poorly-differentiated 15 112 95 60
Invasive 18 123 10 72

Total 50 345 284 199

Abbreviation: WSI, whole slide images.

Figure 3. Data acquisition procedure in Jimma University Medical Center pathology department. (a) The setup used for image acquisition, (b)
Shows sample slides with SCC, (c) during the image acquisition, (d) sample acquired well-differentiated SCC histopathology image.
Abbreviation: SSC, squamous cell carcinoma.
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direct use of humans, animals or other subjects, a formal ethics
approval was not required for this study. This was checked and
confirmation for this was received from the Jimma Uni-
versity’s institutional review board.

Image Preprocessing

The acquired images usually contained noise due to excessive
irregularities arising from the staining procedure. On the other
hand, the number of originally acquired images could be not
enough to train our model. Thus, the purpose of preprocessing
is to improve image quality by removing unwanted objects
and noise from histopathology images and increasing the
number of images by applying different image augmentation
techniques.25,26 In the preprocessing step, the following
methodology was adopted.

1. Resize: Deep learning models are computationally
expensive and require all input images to have the same
size. Therefore, to decrease the computational

time,20,27 the original Red Green Blue (RGB) image
(2048 × 1536) was reduced to 224 by 224 pixels (see
Figure 4).

2. Image Smoothing: during image capturing of micro-
scopic images, it could be susceptible to different
noises, such as additive, random, impulsive, and
multiplicative are normally associated with any image.
Noise deletion is most important in medical image
analysis.28 The most frequently affected noises in the
medical images are Gaussian, pepper, speckle, and
Poisson noises. As compared with other filters, in this
research, a median filter was used to remove the salt
and pepper noise in the whole slide image. One of the
major advantages of the median filter is that it strongly
preserves the edges of an image29 (see Figure 5).

3. Stain Normalization: color normalization is an im-
portant preprocessing task in the whole-slide image
(WSI) of digital pathology.30,31 It refers to standardized
color distribution across input images and focused on
hematoxylin and eosin (H&E) stained slides. Color

Figure 4. Original and resized image.

Figure 5. The original resized image and the median filtered image.
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normalization techniques like stain normalization are
an important processing task for computer-aided di-
agnosis (CAD) systems32 which is achieved by nor-
malizing the stains for enhancement and reducing the
color and intensity variations present in stained images
from different laboratories, consequently, increasing
the estimation accuracy of CAD systems.30 In this
study, a Macenko stain normalization algorithm, which
was popular in histopathology slides32–34 was used (see
Figure 6).

4. Data Augmentation: It is a method used to significantly
increase the amount and variety of data available for
training models.28,35,36 Data augmentation was per-
formed by rotating the images in 90°, 180°, 270°,
horizontal flip, and vertical flip to increase the available
data without affecting their features. As result, the
number of data was increased by six times.

Model Training

The obtained original data was split into 80% for training, 10%
for validation, and 10% for testing through a stratified cross-
validation method. This means out of 828 originally acquired
images, 662 were used for training, 82 for validation, and 84
for testing purposes. After augmentation of 6× (with 90°,
180°, 270°, horizontal flip, and vertical flip), the number of
images in each class becomes 1656 for Margin Negative, and
2316 for Margin Positive excluding the testing data set, which
needs to be the original dataset and is 84 (35 for MN and 49 for
MP) images. Therefore, the training, validation, and testing
data classes contain 3972, 492, and 84 images, respectively.
To train the models for the SCC classification task, utilizing
the concept of transfer learning,37,38 the actual classifier was
replaced (1000 nodes) in each pre-trained model with a new

one (sigmoid layer with 1 node) for binary classification of
SCC images.

During training, the bottom layers were kept fixed (frozen)
and not retrained (using the weight values from a pre-trained
model or it was already trained), while a few top layers (dense
layers or fully connected layers) and the appended classifier
(activation function (sigmoid) that delivers an output classi-
fication and sigmoid is mostly used for binary classification).
Since training from scratch is computationally expensive and
requires a large amount of data to achieve high performance
we applied the concept of transfer learning by adjusting the
parameters such as a learning rate, the number of epochs,
and the optimizer, to achieve the best possible results (see
Tables 2 and 3).

Taking a pre-trained deep neural network (VGG 16, Resnet
50, Mobile net v2, Efficient net B0) as a feature extractor and
freezing the weights for the convolutional layers in the net-
work. The last three layers have been replaced with a new
fully-connected, sigmoid, and 2 classification output layers on
top of the body of the network.

After operating on several trials and testing with different
transfer learning pre-trained models, we have selected four
models and compared their results. These were (1) the visual
geometry group (VGG16), (2) Residual Network (ResNet50),
(3) EfficientNetB0 and MobileNetV2.

The network architecture of VGG16 is a sixteen-layer deep
CNN. It consists of thirteen convolution layers arranged into
five blocks, each followed by a pooling operation. The net-
work uses filters of size 3 × 3 for convolution and 2 × 2 size
windows for pooling operation. The convolutional stack is
followed by two fully connected layers, each consisting of
4096 nodes. The final layer is a SoftMax layer that assigns a
class to each image.37 The residual network (ResNet50): has a
depth of fifty (50) layers, forty-eight (48) convolutions, one

Figure 6. The median filtered image and stained normalized image.
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max-pooling, and one average pooling and 3 times deeper
than VGG-16, having less computational complexity.37 The
residual addresses the problem of training a really deep
architecture by introducing an identity skip connection,
which is also called a shortcut jump over layer.39 On the other
hand, an EfficientNetB0, which is an Efficient Net family a
newly developed classifier, uses a compound scaling ap-
proach with fixed ratios in all three dimensions to maximize
speed and precision and shows enormous results in this
study40 and does not change the layer operation in the
baseline network while scaling. Furthermore, MobileNetV2
is having bottleneck layer in the residual connections.
Lightweight depth-wise convolutions are used by the in-
termediate expansion layer to filter features as the source of
nonlinearity. MobileNetV2 is having 32 filtered initial fully
connected convolutions.39

In this research, different hyper-parameters of the model
were fine-tuned to increase the performance of our developed
module while it was trained with the modified models. These
include choosing the right optimizer, adjusting the learning
rate, and choosing the appropriate activation and loss function.
The following Table 3 shows the functions and parameters
used for the models during the training.

As an optimizer, the Adam optimizer was chosen for its
best performance in terms of speed to converge faster and
accuracy.37 The number of epochs used was different based on
the models, while the learning rate was set to .0001 and the
activation function used was ReLu. The loss function for
binary class classification was binary cross-entropy.

Performance Evaluation Metrics

To evaluate the performance, we calculated accuracy, preci-
sion, recall, F1-score, specificity, and AUC value. These
statistical metrics are based on True Positives (TP), False
Negatives (FN), False Positives (FP), and True Negatives
(TN). Here, TP and TN represent the number of correctly
identified margin positive and margin negative images, re-
spectively, while FP and FN denote the number of margin
negative images wrongly classified or accepted as margin
positive and the number of margins positive images incor-
rectly classified as margin negative respectively.27,37 All
equations from equations (1)-(5) were taken from Ref. 41.

1. Accuracy: the accuracy scores tell how often the
models produced correct results and it is calculated
using equation (1) below

Accuracy ¼ TPþ TN

TPþ TNþ FPþ FN
(1)

2. Precision: it simply shows “what number of selected
data items are relevant”. In other words, out of the
observations that the algorithm has predicted to be
positive, how many of them are positive is calculated
by precision. In other words, precision reflects a
model’s consistency concerning margin positive out-
comes. Precision is calculated based on the following
equation (2)

Table 2. Fine-Tuning Made on the Layers of the Model.

Models
Frozen Convolutional Layers (Fixed

Layers)
New-Top
Layer

Output Features
Extracted

Input Features for the
Classifier

Classifier
Output

VGG 16 13 convolutional layers Last three
layers

25 088 256 2

Resnet 50 48 convolutional layers Last three
layers

2048 256 2

Mobile net v2 52 convolutional layers Last three
layers

1280 256 2

Efficient net
B0

81 convolutional layers Last three
layers

1280 256 2

Table 3. Functions and Parameters Used for Each Model During the Training.

Function/Parameter EffecientNetB0 MobileNet V2 ResNet 50 VGG16

Classification function Sigmoid (binary) Sigmoid Sigmoid Sigmoid
Optimizer Adam Adam Adam Adam
Loss function Binary-cross entropy Binary-cross entropy Binary-cross entropy Binary-cross entropy
Epochs 30 50 100 70
Early stop 10 10 10 10
Learning rate 10�3 10�3 10�3 10�3

Batch size 64 64 64 64

8 Cancer Control



Precision ¼ TP

TPþ FP
(2)

3. Recall: it presents “what number of relevant data items
are selected”. It indicates out of the positive obser-
vations, how many of them have been predicted by the
algorithm. According to equation (3), the recall equals
the number of true positives divided by the sum of true
positives and false negatives: Recall calculates the ratio of
correctly identified Margin Positive images to all Margin
Positive images in the test data (see equation (3)).

Recall ¼ TP

TPþ FN
(3)

4. Specificity: determines how much it classifies the
Margin Negative images correctly (see equation (4)).

Specif icity ¼ TN

TNþ FP
(4)

5. F1 score: The F1 score represents a weighted average
of precision and recall (equation (5)).

F1 Score ¼ 2*
Precision xRecall

Precisionþ Recall
(5)

6. ROC-AUC score: This metric is calculated using the
ROC curve (receiver operating characteristic curve)
which represents the relation between the true positive
rate (sensitivity or recall) and false positive rate (1-
specificity). Area Under ROC Curve or ROC-AUC is
used for binary classification and demonstrates how
good a model is in discriminating between positive and
negative target classes. Especially, in our case, the
importance of margin positive (reduced recurrence)
and margin negative (organ conservation) classes are
equal for us, ROC-AUC score can be a useful per-
formance metric.37,42 Receiver Operating Character-
istic (ROC) plots TP rate (equation (6)) vs FP rate
(equation (7)) and helps us understand the relationship
between correctly classified Margin Positive and
misclassified Margin Negative images. The area under
the curve (AUC) is a scalar value ranging between 0
and 1 and represents how well our model differentiates
between Margin Negative and Margin Positive images.

TPR ¼ TP

TPþ FN
(6)

FPR ¼ FP

TNþ FP
¼ 1� Specif icity (7)

An excellent model has an AUC near 1 which means it
has a good measure of separability. A poor model has an
AUC near 0, which means it has the worst measure of
separability.

Results

Training and Validation Results

In this study, a binary classification for the Histopathology
Margin of SCC was established. As per the data split ratio
used, the amount of data for training the models was 1656 for
Margin Negative (MN) and 2316 for Margin Positive classes
(MP). Totally, 3972 images have taken as a training set and
490 for validation (204 for Margin Negative (MN) and 288 for
Margin Positive (MP), and 84 for testing (34 images for
Margin Negative (MN), 48 images for Margin Positive (MP))
were used.

During training, the performance of the validation group
was calculated and monitored. The optimal operating
threshold was calculated for the validation group for gener-
alizable results, and it was used for generating performance
evaluation metrics for the testing group. The early stop trigger
would activate when validation loss did not improve for 10
consecutive epochs. In this case, the training phase would
stop. Therefore, the best loss value saved and best validation
loss would be achieved for the optimal operating threshold.
Generally, the training process is monitored by ‘best loss
‘which quantized the error between algorithm output and a
given target value, and the validation accuracy and training
accuracy in this best loss would be gained. After the end of the
training, the best model or best checkpoint is saved based on
this the saved model is loaded and can be tested using a testing
dataset that is independent of the training and validation data
set. In this study, we used stratified cross-validation. So, a 10-
fold cross-validation was performed, splitting all datasets into
80% for training, 10% for validation, and 10% for the testing
group. To reduce bias in the experiment, the fully independent
testing group was only classified a single time at the end of the
experiment with 84 images, after all, network optimization
had been determined using the validation set. Different models
(as shown in Figure 7) were trained and tested. From those
models, Four (4) models with higher accuracy and AUC were
selected. VGG16, ResNet 50, Mobile Net v2, and Efficient
Net B0 were the selected models. Finally, the learning and
generalizability performance of the models was measured
using a learning curve.

The experimental results demonstrate that the application
of Efficient Net B0 to the dataset of SCC considerably im-
proves the overall performance and thus achieves the best
outcome compared to other convolutional neural networks.

The following Figure 8 shows the training and validation
accuracy for the four (4) selected models (VGG16, ResNet 50,
Mobile Net v2, and Efficient Net B0).
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The train learning curve is calculated from the train data set.
It shows how well the model is learning while the validation
learning curve is calculated from a hold-out validation data set
to see how well the model is generalizing. For the selected
models, their trained learning curves are good for all of them

and the validation learning curves were good for the three
models (VGG16, ResNet 50, and Efficient Net B0). Mobile
Net v2 has less generalization on the validation data set. Table
4 shows the testing and validation best accuracy of the models’
weight values acquired at different epochs.

Figure 7. Different models’ training accuracy on squamous cell carcinoma data set.

Figure 8. Training and validation accuracy for (a) VGG16, (b) ResNet 50, (c) Mobile Net v2, (d) Efficient Net B0.
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Testing Results

The performance of the models was tested on 84 images; with
35 margins negative and 49 margins positive, respectively,
obtained from the originally collected data. The confusion
matrix in Figure 9 shows the performance of each model on
the test data.

Once the confusion matrix is done, the TP, TN, FP, and FN
values are easily known. From those values, the overall
precision, recall, specificity, f1-score, and test accuracy were
calculated and their result is seen in Table 5 below. The
following table shows the overall training results for the se-
lected network architectures for SCC margin classification.

As depicted in Table 4 above, among the four (4) models
used, the EffecientNetB0 model achieved the best
performance.

On the other hand, the performance of the model can be
evaluated using receiver operator characteristic (ROC)
Curves, which are a useful tool to predict the probability of
binary outcomes and describe how well the model is at dis-
tinguishing the classes. The Area Under the Curve (AUC) is a
measure of the ability of a classifier to distinguish between
Margin Negative and Margin Positive and is used as a
summary of the ROC curves. Figure 10 illustrates the ROC
curve generated using SCC histopathology images for his-
topathology margin classification with average values of
AUC, 90.5%,94%,95%,100% for VGG16, ResNet 50, Mobile
Net v2, Efficient Net B0, respectively.

As indicated in Figure 10 above, for all models used in this
research, EfficientNetB0 outperforms with the highest AUC
and the best performance of the model in distinguishing the
margin positive and margin negative classes with 100%.

Table 4. The Models Have Saved the Best Weight Values Acquired at the nth Epoch.

Models Validation Loss (nth Epoch) Validation Loss (Value) Validation Accuracy (%) Training Accuracy (%)

VGG16 54 .297 86.7 89.9
ResNet-50 70 .278 87.8 89.8
Mobile Net v2 38 .17 91.8 97.1
Efficient Net B0 22 .159 94.7 95.3

Figure 9. The normalized confusion matrix for the (a) VGG16, (b) ResNet 50, (c) Mobile Net v2, (d) Efficient Net B0 models.
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Discussion

This work focuses on a deep learning-based SCC diagnosis
system. The developed system shows the promising result of
replacing the currently existing manual diagnosis methods
with an automated system. Skin cancer SCC can be diagnosed
by clinical examination, including visualization,6 optical
imaging technique, and histopathology (biopsy) tests. Among
these, the histopathology test is the gold standard and the most
common technique used to identify cancer types and classify
the grade, and margin status of the tumor margin in low re-
source settings.9 The most preferable treatment for SCC is the
surgical removal of the entire tumor tissue, followed by
margin assessments10 which can help the surgeon repeatedly

operate the margin removal process until margin free report is
gained and proceed to the next step for reconstruction surgery,
which is depending on pathologist margin status reports.
Unfortunately, there is a shortage of pathologists in most
developing countries and health care providers, including
Ethiopia. The complexity of margin assessments and their
subjective decision, which depends on the expert’s experience,
leads to misdiagnosis and local recurrence of the cancer cells.

The major aim of this study was to classify SCC histo-
pathological images as Margin Negative and Margin Positive
to classify the histopathological surgical margin. To achieve
this, four different models were developed. The best result was
achieved by fine-tuning the pre-trained model of
EfficientNetB0.

Table 5. Models |Testing Performance Results Summary.

Models

Accuracy Precision Recall F1-Score Specificity

Area Under the Curve%(%) (%) (%) (%) (%)

VGG16 85.5 87 86 86 86 90.5
ResNet 50 87 91 87 88 87 94
MobileNetV2 91.5 91.5 91.5 91.5 95 95
EffecientNetB0 95.2 95 96 95 96 100

Figure 10. Receiver operating characteristic curve and area under the curve value for (a) VGG16, (b) ResNet 50, (c) Mobile Net v2, (d)
Efficient Net B0 models.
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As shown in the testing result confusion matrix in Figure 9,
ReseNet50 classifies the margin positive 98% with the best
results, and Efficient Net B0 equally classifies the margin
positive as that of ResNet50. VGG16 is about 92% for margin
negative, ReseNet50 classified worthily, which is 76%.
However, the margin negative data is 100% classified by both
MobileNetV2 and Efficient Net B0models. As shown in Table
4, the best overall training and validation accuracy achieved
by Efficient Net B0 was 95.3% and 94.7% respectively, which
is on averagely greater than the other models used in this work.
Moreover, as depicted in Table 5 the overall testing perfor-
mance of the system achieved by Efficient Net B0 were95%
(at 22 epoch) accuracy, 95% precision, 96% recall, 95% F1
score, 96% specificity, and 100% AUC. This result shows the
EfficientNetB0 model outperformed the other models in
classifying the SCC.

In this work, a histopathological dataset of SCC and im-
plement a state-of-the-art EffecientNetB0 CNN architecture
for margin classification with the best results. To the best of the
authors’ knowledge, this is the first work to investigate SCC
margin classification of skin cancer disease in digitized whole-
slide histological images for seven different skin parts and on
the three histologic grades of SCC and with such much-
improved accuracy. This is the first attempt to design and
develop a deep learning computer-aided diagnosis of SCC
margin classification system using whole slide images using

locally acquired data sets. We can conclude that the developed
system can classify the whole slide of SCC histopathology
images with good classification accuracy. Moreover, the de-
veloped model has overcome the gap in margin classification
of histopathology images in margin-free results during skin
cancer surgical treatment of SCC.

In the following Table 6, our proposed system was com-
pared with some previous studies. Almost all studies were
focused on only one skin organ location for margin classifi-
cation, ie, oral. However, for the proposed method, seven
different skin organ locations were collected and classified
with good accuracy results.

Nevertheless, this study focuses only on the SCC type of
skin cancer margin classification and was limited due to fi-
nancial and time constraints to acquire more datasets to study
for other types of cancer cells. Moreover, the current module
not able to grade the SCC levels other than classification of the
tumor.

Algorithm Demonstration

The developed graphical user interface (GUI) using Effe-
cientNetB0 (with the highest testing accuracy model ∼95.2%)
was tested with respect to response time and ease of use. It is
found to be easy to use and convenient for users. Once ini-
tialized, the result can be achieved within less than 10 seconds.

Table 6. Comparing the Proposed Method With Others.

Authors Preprocessing Data Size and Site Model Used
Modality/Output

Results Accuracy (%)/AUC

Proposed
method

-Median filter 828 images/seven sites,
foot, leg, eye, hand,
toe, face, and neck

VGG16, ResNet-50,
MobileNetV2,
EfficientNetB0

Compound light
microscope/
binary
classification

95.3% training and 95.2%
testing accuracy with
EffeciantNetB0 model

-Stain normalization
-Normalization

L. Ma et al
(2021)7

Squamous cell
carcinoma/
hypopharynx, larynx

U-net architecture Maestro spectral
imaging/binary
classification

AUC of 88% accuracy, 83%,
sensitivity 84%, specificity
70%

A. R. Triki
et al
(2017)12

-Sobel edge detector Breast LeNet (CNN) OCT/Binary
classification

90% accuracy
-Gaussian filter

J. D. Dorm
et al
(2019)15

— 293 tissues samples/
head and neck

Inceptionv4 Fluorescent
imaging/Binary
classification

80-90% AUC

M. Halicek
et al
(2018)16

— — CNN-based method Maestro spectral
imaging/Multi-
class
classification

SCC: (AUC) of 86% with
81% accuracy, thyroid:
AUC of 94% 90%
accuracy

E. Kho et al
(2019)43

Spectral normalization 18 patients SVM Maestro spectral
imaging/Binary
classification

88% accuracy

B. Fei et al19 Data normalization was
to remove the
spectral
nonuniformity

16 patients/head and
neck

— Maestro spectral
imaging/binary
classifcation

Average accuracy of 90% ±
8%

Abbreviations: SVM, support vector machine; AUC, area under the curve.
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As shown in Figure 11, the GUI has a button to load an image
and preprocess it and display/classify the diagnosing result.
Moreover, the result obtained can be saved using the “save”
button, and possible to continue analyzing more images while
the “clear” button is used.

Conclusions

The existing manual histopathology margin assessment for the
SCC method requires experienced experts, and it is time-
consuming, tedious, and depends on the knowledge and ex-
perience of the pathologist, which may sometimes require two
or more experts to provide a reliable pathology report, which
directly affects the treatment plan and cure rate. In this research,
we used whole slide images of clinical data collected from
Jimma University Medical Center, Pathology Department and
trained, validate, and test different selected models by fine-
tuning the hyperparameter of four different models, and got
significant accuracy. The novel module of our dataset and the
promising results of this work demonstrates the potential of
such methods that could help to create a tool to increase the
efficiency and accuracy of pathologists performing margin
assessment on histological slides for the guidance of skin cancer
resection operations, especially in low resource settings. The
developed system provides the margin classification result
within a minute, which shows much improvement from 20 to
30 minutes manual diagnosing methods. For the future, con-
catenating models of ResNet 50 which had more advantage on

margin positive, which benefit the patients with reduction of
recurrence rate of cancer cells, and Efficient Net B0 which had
more advantage on margin negative guaranty organ preser-
vation and increases the module performance.

Appendix

Abbreviations

AUC Area Under the Curve
BCC Basal Cell Carcinoma
CCPDMA Complete Circumferential Peripheral and Peep

Margin Assessment
FN False Negative
FP False Positive
H & E Hematoxylin and Eosin
HPV Human Papilloma Virus
HFUS High-Frequency Ultrasonography
IPC Intraoperative Pathologist Consultant
JUMC Jimma University Medical Center
OCT Optical coherence tomography
MMS Mohs Micrographic Surgical
NMSC NonMelanoma Skin Cancer
RCM Reflectance Confocal Microscopy
ROC Receiver Operator Characteristic
SCC Squamous Cell Carcinoma
TN True Negative
TP True Positive
WSI Whole Slide Image

Figure 11. The developed graphical user interface.
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