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Synthesis of SiC/SiO2 core–shell 
nanowires with good optical 
properties on Ni/SiO2/Si substrate 
via ferrocene pyrolysis at low 
temperature
Bo‑Yu Chen, Chong‑Chi Chi, Wen‑Kuang Hsu & Hao Ouyang*

In this study, the high-density SiC/SiO2 core–shell nanowires were synthesized on the nickel coated 
SiO2 (100 nm)/Si substrate by chemical vapor deposition (CVD) method with ferrocene precursor at 
temperature 1000 °C compared to previous studies (1300–1600 °C). The present work provides an 
efficient strategy for the production of SiC/SiO2 nanowires with uniform morphology and good optical 
properties, where the Ni layer plays important roles for this fabrication at low temperature which 
reduces the decomposition temperature of hydrocarbon gases and improves the growth quality of SiC 
nanowires. The as-synthesized SiC/SiO2 nanowires consist of single crystal 3C structures as well as 3C 
structures with defects along [111] direction. In the photoluminescence (PL) spectrum, the SiC/SiO2 
core–shell nanowires revealed an obvious blueshift. The blueshift is due to the formation of nanoscale 
silicon carbide polytypism caused by the stacking faults in 3C–SiC and the nanoscale polytypism 
also caused the transition from indirect to direct bandgap which explains why the stacking faults 
percentage in SiC confirmed from X-ray diffraction (XRD) is 19%, but ultimately makes the strongest 
emission intensity. Finally, the PL characteristics are further improved by changing the diameter of 
the SiC nanowire and etching and an approximate model followed by the vapor–liquid–solid (VLS) 
mechanism was proposed to explain the possible growth mechanism of the SiC/SiO2 nanowires.

One-dimensional (1D) silicon carbide (SiC) nanomaterials such as nanowires, nanotubes, nanoneedle, nano-
belts, and nanocables have attracted much attention due to their outstanding properties, such as high thermal 
conductivity, high mechanical strength, high electron mobility, chemical inertness, biocompatibility and wide 
band gap. Therefore, they can be used in microelectronics and optoelectronics devices, gas detection, field emis-
sion device, biomolecule-delivery vectors or intracellular electrodes, and high temperature nanoscale devices1–4.

For the application of blue and violet light emitters in displays, LEDs devices, SiC materials show a very sta-
ble luminescence and can be used in harsh environments and strict requirements due to the high temperature 
chemical and thermal stability4,5. Although the bulk SiC shows weak emission at room temperature because 
of its indirect band gap but this problem can be solved by diminishing the crystallite size to several or tens of 
nanometers4,6. However, there are still some challenges for SiC nanomaterial’s photoluminescence (PL) charac-
teristics. The PL characteristics are observed to be quite variable, which strongly depends on the morphology 
(SiO2), size (diameter), structure (defects)7–25. Shena et al.20 synthesized the SiC/SiO2 nanowires with emission 
peak at 408 nm, the SiC/SiO2 nanowires synthesized by Zhang et al.17 shows emission peak at 438 nm and Shen 
et al. synthesized the SiC/SiO2 nanowires with emission peak at 401 nm19.

So far, several methods have been used to grow SiC nanowires. These synthesis methods include chemical 
vapor deposition (CVD)12,17,23, carbonthermal reduction13,24, vapor phase epitaxy26, arc-discharge7 and solid 
state reaction route27, etc. Among these the chemical vapor deposition (CVD) is the easiest and mostly used 
method because of the high possibility of large area growth and easy to control the shape and composition 
of the products28,29. However, conventional CVD process requires high deposition temperature because the 
hydrocarbon gas decomposition is an endothermic process30,31. In the absence of a catalyst, it requires a high 
operating temperature of about 1200 °C30,31. However, the operating temperature can be lowered, if a suitable 
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metal catalyst is added (ex: Fe, Co, Ni)29–32. Besides, in order to grow SiC nanowires at lower temperature, many 
precursors have been tried, such as methyltrichlorosilane (MTS)33,34, polycarbosilane (PCS)35, polymethylsilane 
(PMS)36, ferrocene37–41 or mixed precursors42,43, etc. Among these, ferrocene is a cheaper and safer precursor and 
it has been demonstrated to be an efficient catalyst precursor for the synthesis of carbon nanotubes44, whereas 
it is seldom to be used for the synthesis of SiC/SiO2 nanowires. Niu and Wang synthesized 3C–SiC nanowires 
via CVD by evaporating ferrocene onto a Si wafer at 1550 °C37. Hu et al. synthesized SiC/SiO2 nanowires with 
a ferrocene-assisted chemical vapor reaction process at 1400 °C38. Li et al. synthesized SiC nanowires with fer-
rocene by a CVD route at 1500–1600 °C39.

For the ferrocene pyrolysis, it will be decomposed into the iron, hydrogen and hydrocarbon gas at temperature 
above 500 °C and the hydrocarbon gas is the source of carbon in silicon carbide45.

Although the Ferrocene has iron atom, decomposition efficiency of hydrocarbon gas is poor for growing 
CNT according to YD Lim et al. study44. For the hydrocarbon gas decomposition process, the catalyst activities 
are Ni > Co > Fe, the nickel has the best growth quality (growth rates and yield)30,32,46. Thus, the nickel thin film 
will be deposited on the substrate in advance to improve the quality of SiC growth in this study. Besides, it is 
also necessary to study the ferrocene as precursor to synthesize SiC nanowire at lower temperature to offer an 
energy-effective and cost-effective strategy.

In this study, the high-density SiC/SiO2 core–shell nanowires were synthesized on the nickel coated SiO2 
(100 nm)/Si substrate by chemical vapor deposition (CVD) method at 1000 °C with ferrocene precursor. The 
CVD technology was used to control the shape and composition of the as-synthesized nanowires to improve PL 
properties which are not worse than the previous papers7–25.

Experiment
Ni films were deposited on the SiO2 (100 nm)/Si substrate with the size 2.0 × 2.5 cm2 at room temperature by 
ion-beam deposition system under the base pressure of 8.0 × 10–8 Torr in the chamber. Before deposition, the 
substrate was cleaned by an ultrasonic cleaner for 20 min by using acetone, ethanol and DI water and then was 
dried in nitrogen flow. The Ni target (purity 99.99%) was pre-sputtered for 10 min to eliminate the contamina-
tion on the target surface before deposition. The beam voltage and beam current of the dc ion-source was set to 
800 V/7.0 mA and the sputtering pressure is 7.2 × 10–5 Torr. The final thickness of Ni film was about 40 nm with 
deposition rate 0.03 nm/s. After the deposition of Ni, the sample was placed into the quartz tube furnace with a 
precursor—Ferrocene (C5H5)2Fe (purity 99.0%, 1200 mg), as shown in Fig. S1. The furnace is divided into three 
parts, where the first part was set to 400 °C, and the second and third parts were adjusted to 1000 °C respectively 
to grow nanowires. The precursor was placed 7 inches at the left side of the furnace and the sample was put on 
the second part of the furnace. Before heating, the vacuum in the quartz tube will be evacuated to 1.0 × 10–2 Torr, 
and then N2 gas (purity 99.999%) is injected into the quartz tube to 1 atm, and then the vacuum in the quartz 
tube will be evacuated to 1.0 × 10–2 Torr again, the above steps will be repeated 3 times to purify the atmosphere 
in the quartz tube. After that, it will take 3 h to slowly increase the temperature to the target temperature (400 °C, 
1000 °C, 1000 °C) and then held for 1 h at a constant N2 flow of 160 SCCM to keep the pressure at 1 atm to grow 
nanowires. The quartz tube was naturally cooled to room temperature. The parameters of film deposition and 
CVD were summarized in Tables S1 and S2.

X-ray diffractometer [XRD (Rigaku-TTRAX III)] with the Cu target (λ = 1.5406 Å) was used to determine 
the crystalline phases. The scanning electron microscopy (SEM) (FESEM-8000) was used to analyze the surface 
morphology. The microstructure and composition of the sample were investigated by transmission electron 
microscopy (TEM) (JEOL ARM-200FTH) with Energy-dispersive X-ray spectroscopy (EDS) and simulation 
software JEMS (Java Electron Microscopy Simulation Software)47. For TEM observation, the as-synthesized 
SiC/SiO2 nanowires were dispersed in ethanol (purity 99.5%) by ultrasonication for 15 min, and then a droplet 
of solution was dropped onto a lacey carbon-coated copper grid (300 mesh). The detail procedure is shown in 
Fig. S2. The photoluminescence (PL) spectrum was performed at room temperature using a fluorescence spec-
trophotometer (PerkinElmer LS55) with the excitation wavelength of 325 nm.

Results and discussion
First, the SEM was used to confirm whether nanowires were generated or not. Figure 1a shows a low-magni-
fication SEM image. It can be seen that silicon carbide nanowires with the length about 10 µm are randomly 
and densely grown on the substrate. Figure 1b shows a high-magnification SEM image, which clearly reveal 
the catalyst particles attached to the tip of the nanowire (yellow arrow in the Fig. 1b). This phenomenon is very 
common in vapor–liquid–solid (VLS) mechanism48. The Fig. S3 shows the schematic diagram of as-synthesized 
nanowires on the substrate.

To estimate the density of SiC/SiO2 nanowires, the SEM image is divided into 48 parts, as shown in Fig. S4, 
and 10 of the 48 parts are randomly selected to count the number of nanowires and ensure that there is no 
double-counting in the 10 randomly selected parts, then the average of these 10 randomly selected parts is used 
to estimate the nanowires density in the SEM image and its density is estimated to be 11.81 number/μm2, as 
shown in Table S3.

Then, the XRD was used to determine the crystalline phases. Figure 2 shows the XRD pattern of as-synthe-
sized SiC/SiO2 nanowires. It is indicated that the sample is composed of 3C–SiC and metal silicide (NiSi2, NiSi, 
Ni2Si, NiFeSi). The diffraction peaks at 35.82°, 41.60° and 59.95° are aligned with the (111), (200), (220) planes 
respectively of 3C–SiC (JCPDS: 04-002-9070).

According to the previous reports45,49, the minor peak at 33.75° is caused by stacking faults in the (111) 
planes of 3C–SiC, and the stacking faults density can be evaluated by the intensity ratio (X) of SF peak and SiC 
(200) peak50,51. 
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where ISF and I(200) are the intensity values of SF peak and SiC (200) peak respectively. A larger ratio value dem-
onstrates the higher stacking faults density in the SiC. However, in order to get more precise value, GSAS-II52 
software was used to simulate and analyze the effect of stacking faults on XRD of silicon carbide. The results were 
shown in the Figs. S5 and S6. From the SiC stacking faults XRD simulation (Fig. S6), it can be found that as the 
stacking faults density increases, the intensity ratio (X) also increases, which corresponds to Eq. (1).

(1)X =
ISF

I(200)

Figure 1.   (a) Low magnification SEM images of as-synthesized nanowires, (b) high magnification SEM images 
of as-synthesized nanowires.

Figure 2.   The XRD pattern of as-synthesized nanowires.
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In our experiment (Fig. 2), the intensity ratio (  ISF
I(200)

 ) is 1.28, which confirms to the simulation result with 
stacking faults percentage of 19%. It means that the SiC nanowires in this experiment possess 19% stacking faults.

In order to obtain the microstructure and composition of as-synthesized nanowires, TEM and EDS analyses 
were carried out. Figure 3a is a low-magnification TEM image of as-synthesized nanowires. It can be seen that 
some nanowires have no catalyst particles at the tip and the length becomes shorter. This is because some nanow-
ires broke and catalyst particles were dropped off during the TEM sample preparation process. Figure 3b is the 
high magnification TEM of the red rectangle in Fig. 3a. In order to study the composition of the catalyst particles, 
EDS was performed, and the results are shown in Fig. 3c. The catalyst particles are composed of C, Si, O, Fe, Ni.

Figure 4a is the HRTEM image of the catalyst particles. It can be found that the catalyst particles have good 
crystallinity and are wrapped by an amorphous layer and a multilayered structure respectively, as shown in 
Fig. 4b. From the EDS analysis, it can be found out that oxygen is present. So the amorphous layer here could 
be due to SiO2.

Next, in order to study the multilayered structure, the selected area electron diffraction (SAED) of red rec-
tangle A and red rectangle B in Fig. 5a was carried out, as shown in Fig. 5b and c. They are found to be consistent 
with the zone axis [100] of graphene structure (JCPDS card 00-056-0159). Thus, it can be known that the catalyst 
particles are wrapped by an amorphous SiO2 and 5–6 layers of graphene structure respectively.

Figure S7a show the SAED of the catalyst particle structure. It is indexed to the [110] zone axis of Ni2Si 
(JCPDS 00-048-1339) with double diffraction. The diffraction pattern caused by double diffraction was pointed 
out with yellow arrows in Fig. S7b. The appearance of double diffraction is due to the tip structure of nanowires 
which is about 100 nm in thickness and is enough to cause double diffraction. Moreover, Fig. S8a shows the STEM 
image. The STEM images clearly show the position of the atoms, the Ni atoms are in a group of four, showing a 
staggered arrangement. The position of atoms is consistent with the result of the [110] zone axis of Ni2Si (JCPDS 
00-048-1339) simulated by JEMS software, as shown in Fig. S8b. However, there is Fe in the analysis of EDS. The 
size of Fe and Ni atoms are similar, which will replace the part of Ni in Ni2Si to form FexNi2−xSi substitutional 
solid solution, but its crystal system still belongs to orthorhombic, which can also be obtained from JCPDS card. 
For example, it might be Fe0.57Ni1.43 Si (04-017-4935), or FeNiSi (04-010-3510), etc.

Figure 3.   (a) The low-magnification TEM image of as-synthesized nanowires. (b) The high-magnification TEM 
image of the selected area marked by the red rectangle in (a). (c) The EDS pattern of the catalyst particles.
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Figure 6a shows the HRTEM image of the nanowire and it indicates that the SiC nanowire is covered by 20 nm 
amorphous SiO2 layer, the diameter of SiC nanowire is about 40 nm. Compared with the catalyst particle struc-
ture of nanowire, there is no graphene structure found here. Moreover, an obvious difference can be observed in 
Fig. 6b and c. In Fig. 6b, the diffraction points are spots, which are confirmed to the zone axis [0-11] of 3C–SiC 
(JCPDS 04-002-9070) simulated by JEMS software, and the diffraction spots are correspond to (111), (− 111), 
(− 200), respectively. It indicates that the nanowire is a single crystal structure and grows along the [111] direc-
tion. However, the diffraction pattern in Fig. 6c shows streaks along the [111] direction, which represents the 
presence of defects along the [111] direction. To investigate the defect structure of the Fig. 6c in detail, STEM 
characterization studies were conducted. In Fig. S9, the STEM image shows the planar defects: stacking faults 
and twins along [111] directions which indicates that the stacking faults exists in (111) plane. The results are 
consistent with the SAED observations, the streaks along the [111] direction in the SAED is due to the dense 

Figure 4.   (a) The HRTEM image of the catalyst particle (b) the partial enlarged image of the selected area 
marked by the yellow rectangle in (a), showing an amorphous layer (SiO2) and a multilayered structure 
(graphene).

Figure 5.   (a) The HRTEM image of the catalyst particles. (b,c) The selected area electron diffraction (SAED) 
images of the selected area marked by the red rectangle A and B respectively in (a).
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stacking faults. From the above analysis, the SiC nanowires consists of single crystal 3C structures (Part A) as 
well as 3C structures with defects along [111] direction (Part B).

From the above-mentioned analysis, an approximate model was proposed in Fig. 7 to explain the possible 
growth mechanism of the SiC/SiO2 nanowires.

Based on the existence of catalytic particle on the tips of SiC/SiO2 nanowires, the growth process follows the VLS 
mechanism481.	 Catalyst droplet surface adsorbs reactant gas

2.	 The decomposed species dissolve in the droplet surface

Figure 6.   (a) The HRTEM image of the nanowire, (b) the SAED image of the selected area marked by the 
red rectangle A in (a), showing it consists of a single-crystal structure, (c) the SAED image of the selected area 
marked by the red rectangle B in (a), showing the streaks along [111] direction.

Figure 7.   Four steps growth model of SiC/SiO2 core–shell nanowires. (a) dewetting of the Ni thin film, (b) 
formation of a Ni–Fe–C liquid droplet, (c) the nucleation of SiC, (d) the growth of SiC/SiO2 nanowires.
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3.	 The species diffuse into the droplets
4.	 Precipitation and growth occur at the liquid–solid interface

In this model, the growth of SiC/SiO2 nanowires belong to tip-growth and the nanowires growth and the 
process is divided into four main steps.

Step (a).  As the temperature increases, Ni film does not react with SiO2 layer, but disperses and aggregates 
into the individual islands on the top of SiO2 layer, as shown in Fig. S10.

Step (b).  As the temperature increases, the ferrocene will sublimate and evaporate then diffuse into the sec-
ond and third parts of furnace by the N2 flow.

When the temperature rise above 500 °C, ferrocene decomposes completely according to the Eq. (2)45

The hydrocarbon gas was adsorbed on the surface of catalyst particles, which decomposed into the carbon 
atoms and H2

29–32

Although the growth temperature is 1000 °C, the melting point of the particles will decrease at nanoscale52 
and the reaction between hydrocarbon gas and Ni is exothermic53,54. Thus, the particles will become liquid 
droplets. The C and Fe will dissolve in the Ni droplet surface and diffuse into it to form Ni–Fe–C liquid droplet.

The Ni catalyst is very important in the process of preparing SiC nanowires at low temperature using the CVD 
method. Because it can decrease the decomposition temperature of the hydrocarbon gas 29–32 and according to the 
Lim et al. study44, the production of CNTs with Ferrocene precursor shows low quality, but the growth with nickel 
added shows good quality. Thus, the nickel catalyst added can also promote the growth quality of SiC nanowires.

Step (c).  When the C atoms reach the interface of droplet/SiO2, the carbothermal reaction of SiO2 layer will 
be occurred and form SiC55–57.

In addition, during the growth process, the Fe and Si atoms will diffuse into Ni droplet from Ni–Fe–C–Si–O 
liquid droplet.

Step (d).  When the SiO2 under catalyst particles is completely decomposed, the growth of SiC nanowire will 
be changed to

the Si atom is provided by the Si substrate.
Meanwhile, the catalyst particles start to lift off due to weak interaction with the substrate.
From the thermodynamic point of view, the reaction (8) can take place during the cooling stage preferably38.

Thus, the SiO2 can wrap on the surface of crystallized SiC nanowires.
Finally, it can be observed that a nanowire consists of a SiC core and SiO2 shell with FexNi2−xSi nanoparticle 

at the tip.
Here, the SiC/SiO2 nanowires were successfully synthesized at lower temperature. In order to study its effi-

ciency in potential emitting device applications, the PL measurement was performed. Figure 8 shows a room-
temperature PL spectrum of as-synthesized SiC/SiO2 nanowires with the excitation wavelength of 325 nm. As 
shown in Fig. 8, this spectrum exhibits a strong emission peak at 397 nm (3.12 eV) with a full width at half 
maximum of 69 nm. Compared with the bandgap of 2.39 eV (525 nm) for bulk 3C–SiC, the silicon carbide 
nanowires have an obvious blue shift phenomenon. According to the previous reports9,58–60, the phenomenon of 
blue shift can be attributed to the effects of confinement effect and defects (stacking fault) in the silicon carbide 
nanowires. According to the quantum confinement effect, when the diameter ‘d’ (d = 2r) of the material gradually 
decreases, the energy gap will increase which causes the phenomenon of blue shift58.

where r = 1/2d, Eg is the bulk 3C–SiC bandgap (2.39 eV), ε0 = 8.854187817 × 10−12F/m, ε ≈ 10 is the vacuum 
dielectric constant and high frequency dielectric constant respectively. μ is the reduced mass of the exciton, 
1/μ = 1/me + 1/mh ; me and mh is SiC effective mass of electron and effective mass of hole, respectively. Base on the 

(2)Fe(C5H5)2 → Fe+H2 + CH4 + C5H6 + as well as reactive hydrocarbons

(3)CnHm → nC +
m

2
H2

(4)C+ SiO2 → SiO+ CO

(5)2C+ SiO → SiC+ CO

(6)SiO+ 3CO → SiC+ CO2

(7)C+ Si → SiC,

(8)3SiO
(

g
)

+ CO
(

g
)

→ SiC(s)+ 2SiO2(s)

(9)E∗ = Eg +
h2

8µr2
−

1.8e2

4πε0εr
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above formula, the 3C–SiC emission peak of the silicon carbide nanowire with a diameter of about 40 nm is about 
516 nm, so the phenomenon of blue shift of the emission peak (397 nm) is not due to the quantum confinement 
effect. The next factor is the defects (stacking fault) in the silicon carbide nanowires. By considering the theory of 
stacking faults in the silicon carbide nanowires, a spontaneous polarization occurs around each hexagonal turn 
in 3C–SiC stacking and then create a potential barrier in the conductive band at each hexagonal fault. Finally, it 
will form quantum well and confine the electrons to the stacking fault layers. Thus, each stacking fault nano-layers 
may act as SiC polytypism nanosegments60,61. In this case, the stacking faults in 3C–SiC produce the 6H–SiC and 
4H–SiC nanosegments. Therefore, the structure of the nanowires can be viewed as a 3C–SiC matrix containing 
4H and 6H–SiC nanosegments. However, according to the GSAS-II software simulation results, the stacking 
faults percentage in SiC is only 19%, the emission intensity caused by nano-scale silicon carbide polytypisms 
should be lower than that of 3C–SiC. However, the PL spectrum (Fig. 8) shows an opposite result. This is due 
to the size of the nanoscale SiC polytypism is about 1–3 nm. According to Yan et al. study, the indirect bandgap 
structures will convert into direct bandgap structures when the SiC approach a few nanometers62. Besides, the 
direct bandgap structures will make the higher emission efficiency than that of indirect bandgap structures. This 
is why the PL spectrum in Fig. 8 shows a strong emission intensity at 397 nm.

Besides, the defects in SiO2 can also generate emission peak and can be divided into two types11,63,64, one is 
due to oxygen vacancy around (426–470 nm) and the second is due to twofold coordinated silicon lone-pair 
centers (–O–Si–O–) around (415–445 nm). The defects in SiO2 makes the PL peak asymmetric (the shoulder 
at the right side in Fig. 8).

According to the above analysis, two methods were used to improve the PL property. First, the diameter of 
the silicon carbide nanowire was reduced from 40–50 nm to 20–30 nm by changing the thickness of the Ni film 
on the substrate from 40 to 25 nm. The PL spectrum of new sample is shown in Fig. S11 and it can be seen that 
the intensity of the right side of the PL emission peak decreases. This phenomenon was also mentioned in the 
report of Min Liu and Ke-Fu Yao7.

Second, the new sample (SiC nanowire diameter: 20 nm) was put into a Teflon beaker which contains 1% 
HF aqueous solution and performed etching for 3 min and 5 min to remove SiO2. After etching, the thickness 
of the SiO2 was successfully decreased and the FWHM is reduced to 60 nm and 56 nm, respectively, as shown in 
Figs. S12 (3 min), S13 (5 min) and S14 (PL spectrums). These results are consistent with the results of H.T. Liu 
et al.11, the defects in SiO2 will produce an emission peak around 426 nm, and the removal of SiO2 will decrease 
the emission intensity of the defects in SiO2. The Fig. S15 shows the PL spectrum compared with the previous 
studies. It can be found that the SiC/SiO2 in this study show a good photoluminescent property. All the decom-
position peaks in Fig. 8 with different sources are listed in Table 1.

Figure 8.   The room-temperature PL spectrum of as-synthesized SiC/SiO2 nanowires with the excitation 
wavelength of 325 nm. The red line is the sum of all decomposition peaks, which fits original experiment data 
very well.
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Conclusions
In this study, the nickel thin film will be deposited on the substrate in advance. It acts as a catalyst to decrease 
decomposition temperature of the hydrocarbon gas and promote the growth quality of SiC nanowires. Thus, 
compared with the previous reports of synthesizing SiC nanowires by ferrocene precursor37–41, the growth tem-
perature in our experiment can be reduced to 1000 °C, but the SiC/SiO2 nanowires are still successfully and 
densely synthesized with the lengths about ten micrometers.

In addition, the as-synthesized SiC/SiO2 nanowires emit a violet light with high color purity. The reasons 
for the blue shift phenomenon in the PL spectrum were discussed in detail. The results indicated that the major 
reason is the stacking faults in 3C–SiC, which results in the formation of nano-scale silicon carbide polytypisms. 
Unlike bulk SiC polytypisms, the nano-scale SiC polytypisms leads to the band folding, which makes the transi-
tion from indirect to direct bandgap and ultimately makes the emission intensity higher. This is why the GSAS-II 
software simulation results show the faults percentage in SiC is only 19%, but the emission intensity is so strong.

Finally, a possible model was proposed to explain SiC/SiO2 nanowires growth mechanism and improve the 
photoluminescence characteristics of silicon carbide nanowires by changing nickel film thickness and etching.
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