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Abstract: The prevalence of intestinal parasites and vector-borne agents of dogs and cats in the Pine
Ridge Reservation, South Dakota were determined. Fecal samples (84 dogs, 9 cats) were examined
by centrifugal floatation and by immunofluorescence assay (FA) for Giardia and Cryptosporidium.
PCR was performed on Giardia [beta-giardin (bg), triose phosphate isomerase (tpi), glutamate
dehydrogenase genes (gdh)] and Cryptosporidium [heat shock protein-70 gene (hsp)] FA positive
samples. Cat sera (n = 32) were tested for antibodies against Bartonella spp., Toxoplasma gondii,
and FIV, and antigens of FeLV and Dirofilaria immitis. Dog sera (n = 82) were tested for antibodies
against T. gondii, Borrelia burgdorferi, Ehrlichia canis, and Anaplasma phagocytophilum and D. immitis
antigen. Blood samples (92 dogs, 39 cats) were assessed by PCR for amplification of DNA of
Bartonella spp., Ehrlichia spp., Anaplasma spp., haemoplasmas, and Babesia spp. (dogs only). The most
significant results were Giardia spp. (32% by FA), Taenia spp. (17.8%) and Cryptosporidium spp. (7.1%).
The Giardia isolates typed as the dog-specific assemblages C or D and four Cryptosporidium isolates
typed as C. canis. Antibodies against T. gondii were detected in 15% of the dogs. Antibodies
against Bartonella spp. and against T. gondii were detected in 37.5% and 6% of the cats respectively.
FeLV antigen was detected in 10% of the cats.
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1. Introduction

The Pine Ridge Indian Reservation is an Oglala Sioux Native American reservation located
in South Dakota. Native American reservations have been recognized as one of the six main
distressed regions of poverty in the United States [1]. The prevalence of zoonotic enteric pathogens
in client-owned dogs in the United States has been well documented and people are known to
be at risk but this information is unknown in the dogs on reservations in the United States [2].
A national survey based on microscopic examination of 1,199,293 fecal samples from client-owned
dogs identified the following parasites: ascarids (2.2%), hookworms (2.5%), whipworms (1.2%),
Giardia (4.0%), and Cystoisospora (4.4%) [2]. Additionally, a study done in our laboratory detected
Cryptosporidium parvum (3.8%) and Giardia spp. (5.4%) in client-owned dogs from Colorado [3]. Giardia
and Cryptosporidium are important causes of diarrhea in humans and animals worldwide. Dogs can
harbor strains of Giardia and Cryptosporidium that are dog-specific and also other strains that can be
transmitted to humans [4,5]. The prevalence rate of Cryptosporidium and Giardia in dogs and cats in the
United States ranges between 2–10% and 8%, respectively [5,6]. Other parasites commonly harbored
by dogs can produce clinical illness in people who may come into contact with dog and cat feces or
contaminated environments. Toxocara canis can induce visceral larva migrans and Ancylostoma spp.
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can cause cutaneous larva migrans [2]. In the USA, control of these pathogens in domestic animal
populations is largely due to prophylactic deworming. However, in economically depressed areas,
such as Native American reservations, this practice is not as common. Some prevalence data regarding
vector-borne agents in dogs in Native American reservations is available. One survey reported
a seroprevalence of 0.1% (1 of 962) and 0.3% (1 of 358) for D. immitis and B. burgdorferi in dogs of South
Dakota [7]. A subsequent study described a similar seroprevalence of D. immitis of 1.3% (3 of 234) in
dogs from the reservations of South Dakota [8]. However, information regarding vector-borne agents in
dogs and cats of the reservation is still limited. The objective of this study was to estimate the prevalence
of intestinal parasites and vector-borne agents of dogs and cats in the Pine Ridge Reservation.

2. Materials and Methods

Samples from dogs (84 fecal, 82 sera, 92 blood) and cats (9 feces, 32 sera, 39 blood) attending
a spay-neutering clinic in Pine Ridge Reservation, South Dakota were included in the study. Pine Ridge
Reservation has a steppe climate with cold winters and warm summers. The annual high temperature
is 62.1◦F and the annual low temperature is 32.1◦F. Steppes are semi-arid (the average annual
precipitation is 18 inches) and most of the precipitation falls during the summer [9].

Animals were entered into the study regardless of their health status. Use of anthelmintic,
D. immitis preventatives, and vector control was unknown but believed by the organizers to be unlikely.

Fecal samples were examined for parasites by microscopic examination after Sheather’s sugar
centrifugation and for Giardia and Cryptosporidium by a commercial immunofluorescence assay
(Merifluor Crypto/Giardia kit, Meridian Diagnostic Corporation, Cincinnati, OH, USA). Prior to
immunofluorescence assay (FA) and DNA extraction, all fecal samples were concentrated using
sugar concentrating techniques as previously described [10]. Total DNA was extracted from the
Cryptosporidium spp. and G. duodenalis FA positive samples as described [11]. PCR amplification
was performed in the FA positive samples as published using the beta-giardin (bg), triose
phosphate isomerase (tpi), and glutamate dehydrogenase (gdh) genes for Giardia and the heat
shock protein-70 (hsp) gene for Cryptosporidium [12–16]. The DNA sequences were examined in
forward and reverse direction with an ABI3100 Genetic Analyzer (Applied Biosystems, Foster City,
CA, USA). The sequence data were compared with those in the Genbank® database by BLAST analysis
(http://blast.ncbi.nlm.nih.gov/) to determine the Cryptosporidium and Giardia species.

Serum from dogs was assayed by a commercially available ELISA (SNAP® 4Dx test; IDEXX
Laboratories, Westbrook, ME, USA) for simultaneous qualitative detection of Dirofilaria immitis antigen,
and antibodies against Borrelia burgdorferi, Ehrlichia canis, and Anaplasma phagocytophilum. Additionally,
dog serum was evaluated for Toxoplasma gondii-specific antibodies by ELISA (Veterinary Diagnostic
Laboratory, Colorado State University, Fort Collins, CO, USA). Serum from the cats was tested for
specific antibodies by ELISA (Bartonella henselae, and Toxoplasma gondii) [17,18]. Cats were screened
for D. immitis antigen, feline immunodeficiency virus antibody, and feline leukemia virus antigen by
a commercially available ELISA (SNAP Feline Triple Test, IDEXX Laboratories, Westbrook, ME, USA).
Total DNA was extracted from blood samples of cats and dogs for PCR assays for Rickettsia spp.,
Bartonella spp., Ehrlichia/Anaplasma/and Hemoplasma spp. [19–22]. Additionally, dogs were also
screened for the presence of Babesia canis DNA by PCR [23]. Overall prevalence for parasite infections
in dogs and cats was defined as the percentage of fecal samples that tested positive for any parasite by
any of the diagnostic tests. Specific parasite prevalence rates were also included.

3. Results

Prevalence for internal parasites is displayed in Table 1. Sixteen of 84 dogs (19%) had dual
infections and six had triple infections (7.1%). No enteric parasites were detected in cats.

Four of the six Cryptosporidium spp. FA positive isolates typed as Cryptosporidium canis.
Twenty-seven samples were positive for Giardia spp. by FA: nine (33.3%), eight (29.6%), and three

(11.1%) samples were amplified by the bg, gdh and tpi genes respectively (Table 2). The positive
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amplicons have been deposited in the Genbank®. The G. duodenalis accession numbers are included in
a larger study that genotyped G. duodenalis isolates from dogs from the United Stated [24].

Antibodies against T. gondii were detected in 12 of the 82 (14.6%) dog sera but all sera were
negative for other antibodies as well as D. immitis antigen. Three of the twelve samples that tested
positive for T. gondii tested positive for gastrointestinal parasites including G. duodenalis and Taenia.
Antibodies against Bartonella henselae and T. gondii were detected in 12 of 32 (37.5%) and in 2 of 32 (6%)
of the cat sera respectively. FeLV antigen was detected in four of 39 (10.2%) of the cats but all were
negative for D. immitis antigen and FIV antibodies. None of the 92 dog blood samples and 39 cat blood
samples was PCR positive for DNA of the target agents. Two of the 12 samples that tested positive for
Bartonella antibodies tested also positive for FeLV antigen.

Table 1. Prevalence of gastrointestinal parasites in dogs (n = 84) of Pine Ridge Reservation,
South Dakota by fecal flotation and by immunofluorescence assay (FA) for Giardia spp. and
Cryptosporidium spp.

Parasites No of Positives Prevalence (%)

Overall 40 47.6
Taenidae spp. 15 17.9

Giardia spp. 10 a 11.9 a

27 b 32.1 b

Cryptosporidium spp. 6 b 7.1 b

Toxascaris leonina 8 9.5
Toxocara canis 6 7.1
Hookworms 3 3.6

Cystoisospora canis 2 2.3
a Fecal flotation microscopic examination after Sheather’s sugar centrifugation; b Merifluor Crypto/Giardia kit,
Meridian Diagnostic Corporation, Cincinnati, OH, USA.

Table 2. Giardia duodenalis assemblages in dogs in Pine Ridge Reservation, South Dakota by GDH, TPI,
and BG genes.

# of Genes Amplified # Dogs GDH TPI b BG

1 (11) a

1 - - D
3 - - C
2 C - -
2 D - -

2 (2) a

2 D - C
1 C D -
1 - D C
1 - D D
1 C - D

a Number of animals that tested positive for that number of genes tested; b includes TPI-generic and
dog-specific primers.

4. Discussion

Overall enteric parasites in dogs and Bartonella spp. antibodies in cats were common on the Pine
Ridge Reservation. These results are expected since most of these animals are free roaming and do
not have regular access to veterinary care and most of them consume raw meat diets. The prevalence
of Giardia spp. among the dogs in the reservation is higher than the average in the U.S. Prevalence
estimates in domestic dogs in the U.S. range anywhere from 4% to 29% depending on the type of test
used and on the study population [2,25]. The high prevalence detected by FA (32%) in comparison to
fecal flotation (11.9%) is due to the higher sensitivity and specificity of the FA assay for Giardia and
Cryptosporidium in dogs [26]. All the Giardia isolates that were successfully genotyped were dog-specific
assemblages C or D. This finding is consistent with previous reports; a review article described that
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67% (1049 of 1563) isolates from dogs worldwide were either Assemblage C or D [27]. Other studies
also reported that Assemblages C and D mostly prevail in dogs from Cambodia, Croatia, Germany,
Italy and the United States [24,25,28–31]. However, a study from the western U.S. in reported that
multiple infections with zoonotic assemblages were most commonly detected [32]. It was also expected
that most of the dogs harbor dog-specific assemblages since intensive contact between large numbers
of dogs favours the transmission of dog-specific isolates [25,31,33,34]. Different amplification rates
among the genes are expected since the PCR assays used in the study do not have the same analytical
sensitivity and specificity [24,28,31,32]. The prevalence of Cryptosporidium in dogs in the United States
could be as high as 17% so the prevalence detected in this study was under the expected range [5].
Dogs are usually infected with C. canis and humans are usually infected with C. hominis and C. parvum
senso stricto. Occasionally, C. canis have been also detected in human feces; of a total of 22,505 samples
from humans from 40 countries, only 4 were C. canis (0.02%) [4,35].

The Taenidae spp. infection in the dogs was high and expected since the diet of dogs in the
reservation is based on raw meat. Toxoplasma gondii is also commonly transmitted in the tissues
of intermediate hosts. Approximately 30% of cats and dogs in the United States have T. gondii
antibodies [36]. Rural and stray dogs can act as sentinels of T. gondii because they are carnivores and
they can mechanically transmit oocysts to humans after ingesting sporulated oocysts in feline feces [37].
The seroprevalence in dogs worldwide ranges anywhere from 5% up to 45.3% [37–40].

We believe that no enteric parasites were detected in cat fecal samples due to the very small
number of samples tested in the study. However, results might also be false negatives due to shedding
of parasites below the detection limit of the test.

The seroprevalence of T. gondii in cats and dogs on the reservation was 6% and 15% respectively,
which was lower than expected considering that these animals are fed a raw meat diet. Thus, cats and
dogs in this reservation do not appear to be more likely to shed or mechanically transmit T. gondii
into the human environment than pet dogs in other environments. It was demonstrated that dogs
can transmit T. gondii oocysts after eating cat feces, but dogs skin temperatures are not suitable for
non-sporulated oocysts to sporulate [41]. However, the effect of sporulated oocyst in the skin of dogs
has not been studied [42]. Previous studies reported that cystic echinococcosis has been endemic
among the Navajo, Zuni and Santo Domingo Indians due to an enzootic dog–sheep cycle on the
reservations [43–45]. However, Echinococcus spp. eggs cannot be differentiated morphologically from
those of Taenia spp. [46]. Therefore, it may be possible that some of the Taenia spp. identified could be
Echinococcus spp. eggs.

The average seroprevalence of Bartonella henselae in cats in the United States and in the Rocky
Mountain-Great Plains regions are 27.9% and 4%, respectively [47]. However, cats of the Pine Ridge
reservation were not included in the previous study [47]. In the current study, 37.5% of the cats had
antibodies reacting to B. henselae and all of the cats were negative for Bartonella spp. by PCR, suggesting
the bacteremia had been limited by the time of sample collection. This finding is similar to the one seen
in cats in California where 43.5% have antibodies to B. henselae but were not bacteremic [48]. Exposure
to B. henselae is most prevalent in temperate regions; Pine Ridge reservation has a humid continental
climate with hot summers and no dry season that can favor the presence of Ctenocephalides felis, the
vector of B. henselae. While data on C. felis infestation rates were not available, these data suggest
infestation was common and that flea control is indicated if possible.

In contrast, all the dogs were negative for the select vector-borne agents. The most important
tick-borne rickettsial diseases of dogs and people in the United States are anaplasmosis, ehrlichiosis
and Rocky Mountain Spotted Fever. The tick vectors responsible for the transmission of these diseases
are Amblyomma americanum, Dermacentor variabilis, Ixodes spp. and Rhiphicephalus sanguineus. The most
common tick vector present in South Dakota is R. sanguineus, which can be a vector for Babesia vogeli,
E. canis, and Rickettsia rickettsii. A larger serological survey in the USA reported that none of the
358 dogs tested in South Dakota had antibody titers against Ehrlichia spp. (E. canis and E. chaffeensis)
but no information regarding anaplasmosis was reported [48]. Unfortunately we were not able to
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collect ticks from the dogs of the study to confirm the presence of these pathogens. In addition, we only
screened for Rickettsia spp. and B. vogeli infections by PCR assay which is generally only positive
during the acute stages of infection and so prevalence rates for these agents could be underestimated.

The D. immitis negative results observed in this study correlate with previous findings; two studies
reported prevalence rates of 0.013% and 0.1% [8,49]. FeLV and FIV are retroviruses that cause
immunosuppression in cats; prevalence ranged from 2% to 18% [50]. In this study, FeLV was detected
in 10% of the cats and FIV was not detected. The prevalence of FIV is low in indoor cats or in rural
regions where the cat population density is low. Therefore, cats in the reservation do not appear to be
at a high risk of infection.

5. Conclusions

Although the sample set was relatively small, enteric parasites in dogs and Bartonella spp.
antibodies in cats were common. To our knowledge, this is the first study that assesses the prevalence
of enteric zoonotic parasites and vector-borne agents in dogs and cats from the Pine Ridge Reservation.
This information should be used to develop a preventive medicine plan that could be implemented for
the dogs and cats on this, and similar reservations.
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