
DOI: 10.1002/minf.201900107

iQSPR in XenonPy: A Bayesian Molecular Design Algorithm
Stephen Wu+,*[a, b] Guillaume Lambard+,[c] Chang Liu+,[a] Hironao Yamada,[a, d] and Ryo Yoshida*[a, b, c]

Abstract: iQSPR is an inverse molecular design algorithm
based on Bayesian inference that was developed in our
previous study. Here, the algorithm is integrated in Python
as a new module called iQSPR-X in the all-in-one materials
informatics platform XenonPy. Our new software provides a
flexible, easy-to-use, and extensible platform for users to

build customized molecular design algorithms using pre-set
modules and a pre-trained model library in XenonPy. In this
paper, we describe key features of iQSPR-X and provide
guidance on its use, illustrated by an application to a
polymer design that targets a specific range of bandgap
and dielectric constant.

Keywords: molecular design · machine learning · Bayesian inference · open source · polymer

1 Introduction

Inverse molecular design is the process of computationally
creating new chemical structures that exhibit desired
properties, and this approach has been one of the most
important research subjects in materials science. For
decades, scientists have searched for efficient methods of
discovering novel materials for a wide variety of industrial
and engineering applications. Conventional approaches
have often relied on expert knowledge to investigate new
structures by trial and error, starting from known materials
and considering a relatively small sub-region in the whole
search space. Although the chemical space of small organic
molecules consists of approximately 1060 candidates,[1] the
total number of currently known compounds is at most on
the order of 108.[2] Hence, most of the chemical space
remains unexplored, and the concept of computer-aided
molecular design (CAMD) has emerged to accelerate this
extremely slow discovery process.[3]

An early attempt by Joback and Stephanopoulos framed
CAMD as an optimization problem with rule-based mole-
cule enumeration.[4] In many subsequent works, materials
properties were optimized within a search space that was
pre-constrained to a small subspace built from expert-
selected molecular fragments or chemical rules, using
heuristic optimization algorithms such as genetic
algorithms[5,6] and Monte Carlo based stochastic
optimization.[7] For example, Miyao et al.[8,9] used a set of
chemically favorable fragments and designed templates of
specific molecular graphs that were combined with some
mixture models for property predictions to generate a
desired class of candidate molecules. Although these
methods were a major step forward in the history of CAMD,
they still suffered from a lack of capability to handle the
large and highly diverse discrete spaces of candidate
molecules.

In recent years, a new family of CAMD algorithms has
emerged, inspired by the great success of modern machine
learning (ML) methods. In particular, to broaden the search

space, ML methods that use probabilistic language models
based on deep neural networks (DNNs) have proliferated
intensively since 2017.[10] In these methods, a language
model is trained on a given set of existing molecules, the
chemical structures of which are translated into a set of
strings according to the simplified molecular-input line-
entry system (SMILES) chemical language.[11] Models trained
to recognize chemically realistic structures are then used to
refine chemical strings in the molecular design calculation.
Promising examples have included various types of varia-

[a] S. Wu,+ C. Liu,+ H. Yamada, R. Yoshida
The Institute of Statistical Mathematics, Research Organization of
Information and Systems
10-3 Midori-cho, Tachikawa, Tokyo 190-8562, Japan
phone/fax+81 (0) 50–5533-8534
E-mail: stewu@ism.ac.jp

yoshidar@ism.ac.jp
[b] S. Wu,+ R. Yoshida

The Graduate University for Advanced Studies, SOKENDAI,
10-3 Midori-cho, Tachikawa, Tokyo 190-8562, Japan

[c] G. Lambard,+ R. Yoshida
Center for Materials Research by Information Integration (CMI2),
Research and Services Division of Materials Data and Integrated
System (MaDIS), National Institute for Materials Science (NIMS)
1-2-1 Sengen, Tsukuba, Ibaraki 305-0047, Japan

[d] H. Yamada
School of Pharmacy, Tokyo University of Pharmacy and Life Sci-
ences
1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan

[+] Equally contributed to this work
Supporting information for this article is available on the WWW
under https://doi.org/10.1002/minf.201900107
© 2019 The Authors. Published by Wiley-VCH Verlag GmbH & Co.
KGaA. This is an open access article under the terms of the
Creative Commons Attribution Non-Commercial License, which
permits use, distribution and reproduction in any medium,
provided the original work is properly cited and is not used for
commercial purposes.
The copyright line for this article was changed on December 16,
2019 after original online publication.

Full Paper www.molinf.com

© 2019 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA Mol. Inf. 2020, 39, 1900107 (1 of 9) 1900107

http://orcid.org/0000-0002-7847-8106
https://doi.org/10.1002/minf.201900107
www.molinf.com


tional autoencoders,[12–15] generative adversarial networks,[16]

recurrent neural networks,[17,18] and so on. These methods
have been able to produce diverse chemical structures;
however, they often require large training datasets to
obtain a DNN-based generator that can produce chemically
realistic molecules with grammatically valid SMILES. Data-
sets this large are unavailable in many applications.
Furthermore, many of these methods generate chemically
or grammatically invalid representations of molecules at
relatively high rates, unless their hyperparameters are
carefully tuned.[19–21]

Some previous works considered simpler generative
models to avoid the need to train the model with large
dataset. Yoshikawa et al.[22] exploited a grammatical evolu-
tion method with parallel computation to generate a
diverse set of candidate molecules conditional on arbitrarily
given design targets. Ikebata et al.[23] combined a simple
probabilistic language model based on an n-gram represen-
tation of SMILES sequences with a Bayesian inference
framework to sequentially modify a population of mole-
cules into promising candidate molecules that would
exhibit desired properties. For a more complete review of
the above methods, Schwalbe-Koda and Gómez-
Bombarelli[24] have provided a detailed overview of recent
developments in inverse molecular design.

In this paper, we introduce iQSPR-X, a flexible software
constructed to implement the Bayesian molecular design
algorithm iQSPR, which was developed in our previous
work.[23] The algorithm was implemented in XenonPy, a
Python package with an integrated platform of materials
informatics.[25] In contrast to the original iQSPR algorithm
developed in R, the new version allows users to exploit
various features of XenonPy as described below. The basic
computational workflow consists of a two-step iteration: (1)
current chemical structures are modified to new ones using
a generator and (2) candidate molecules that show promise
for desired properties are selected using an evaluator,
which is a set of ML models for predicting material
properties. The generator and the evaluator can be pre-
trained separately with given training instances. Users can
either train new models from scratch or reuse relevant pre-
trained models from a model library in XenonPy, which
covers a broad array of material properties for small
molecules and polymers. In addition, when the available
data on the structure-property relationship for a target task
are limited, directly obtaining a reliable prediction model is
difficult. However, an ML technique called transfer learning
can be used to extract knowledge relevant to the target
task from a large set of pre-trained models to help training
new models more efficiently.[26] Successful application of
the iQSPR method, in conjunction with transfer learning to
overcome limited polymeric properties data, was demon-
strated in our previous study, which achieved the discovery
of new polymers with high thermal conductivity.[27] A set of
tutorials distributed as Jupyter notebooks are available at
the website of XenonPy,[25] and these include detailed

explanations and sample codes for building customized
generators and evaluators, performing the inverse design
calculations, and using some of the convenient modules in
XenonPy. In this paper, we highlight some key features of
iQSPR-X and describe its application to the task of design-
ing polymers using data from Polymer Genome (PG).[28,29]

2 Computational Methods

2.1 Bayesian Molecular Design

The primary task of the Bayesian molecular design is to
draw a set of samples from the posterior distribution P(S j
Y2U), which represents the conditional probability of
observing a chemical structure S, given material properties
Y= {Yi j i=1,…,m}, that lies in a target region U. In the
iQSPR-X implementation, S is encoded as a SMILES string;
i. e., S= s1s2…sn, where si is any valid character in SMILES.
For example, phenol (C6H6O) can be represented by the
SMILES string “C1=CC=C(C=C1)O”, where C and O denote
the carbon and oxygen atoms, respectively; “= ” denotes a
double bond; the two “1” digits denote the opening and
closing of the ring structure; and the parentheses denote
the beginning and ending of the branching component.

According to Bayes’ theorem, a posterior distribution is
proportional to the product of a likelihood function and a
prior distribution:

PðSjY 2 UÞ / PðY 2 UjSÞPðSÞ

where P(Y2U jS) represents the likelihood function that
evaluates the goodness-of-fit of S with respect to the given
property requirement Y2U, and P(S) represents the prior
probability that S belongs to a predefined search space of
SMILES strings. Thus, P(S) will deliver a small or even zero
probability when presented with an unfavorable or chemi-
cally unrealistic structure, thereby acting as a filter for such
out-of-scope or invalid structures. In iQSPR-X, a sequential
Monte Carlo algorithm proposed by Ikebata et al.[23] is
implemented. This algorithm is somewhat similar to a
genetic algorithm. With a given set of initial samples S0=
{Si

0 j i=1,…,N} of size N, the pre-trained prior is used as a
generator to propose a new set of samples S0’. A fitness
score is then assigned to each sample in S0’ using the
likelihood, which is the evaluator in iQSPR-X. By resampling
N samples from S0’ in proportion to the fitness scores, a
refined set S1 is obtained and once again modified by the
generator. This cycle is repeated T times to obtain a final
sample set ST.

There are three important building blocks in this
algorithm: the generator (prior), the evaluator (likelihood),
and the descriptor φ(S). When building models for the
evaluator, we encode a chemical structure into a descriptor
vector φ(S) using, for example, a molecular fingerprinting
algorithm. Using training instances {(Yk, Sk) jk=1,…,Ndata} on

Full Paper www.molinf.com

© 2019 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA Mol. Inf. 2020, 39, 1900107 (2 of 9) 1900107

www.molinf.com


the structure-property relationships, we then derive a
model that describes the materials properties Y as a
function of the descriptor φ(S), defining Ŷ=μ(φ(S)) with the
trained model μ. Although iQSPR-X allows users to plug in
customized functions for each building block, we also
provide some commonly used functions internally, and
these can be directly called from the package. For the
descriptor, all available fingerprint types in RDKit[30] and the
Python descriptor package Mordred[31] are available by
default. Users can alternatively use a set of features
extracted from pre-trained neural networks in the XenonPy
model library, as described in the next section. For the
evaluator, a Gaussian likelihood is given as a choice with
any user-defined model μi(φ(S)) and the standard deviation
σi(S), which represents the uncertainty of predicted proper-
ties:

where U is the target region in the m dimensional space,
and μi(φ(S)) and σi(φ(S)) are the mean and standard
deviation for the ith property, respectively, obtained from
ML models with input φ(S). For the generator, the extended
n-gram model developed by Ikebata et al.[23] can be used by
training it with any chemical structures given in SMILES.
The model takes the form P(S)=P(s1)

Q n
i=2 P(si j si-1,…,s1).

Figure 1 summarizes the computational workflow of iQSPR-
X.

2.2 Generator: Extended n-gram Model

The role of the generator is to propose new candidate
molecules modified from a set of initial molecules. We
implemented the extended n-gram model as an internally

available function in iQSPR-X. This model consists of two
components: (1) a table that records the probability of
observing a subsequent character given a substring and (2)
a function that modifies a given SMILES string based on the
stored n-gram probability table. The table can be trained by
supplying a set of SMILES strings sampled from the desired
search space. The maximum length of a substring to be
considered and stored in the table is controlled by the
“order” parameter. In the extended n-gram model, SMILES
strings are internally tokenized into a list of characters. For
example, “=O” and “%10” are considered as one character,
and a terminal character is automatically added at the end
of each string. When proposing a new candidate molecule,
the modifier function deletes a random number of charac-
ters from the end of the SMILES string, and then elongates
the shortened string based on the n-gram table. Because
the representation of a molecule in SMILES is not unique, a
reordering of the SMILES string is probabilistically per-
formed to avoid constantly modifying the same part of the
chemical structure.

In short, the most important parameters in modelling
the generator include the probability required to trigger
reordering, the range of the number of letters to be
deleted, and the order parameter controlling the maximum
length of a substring in training and sampling the n-gram
model. Users can adjust these parameters based on the
expected molecule size in the targeted search space.
Although SMILES is a powerful representation of chemical
structures, as exemplified by its ability to handle chirality
using the “@” symbol, the non-uniqueness of SMILES
representations may lead to subtle effects in certain usages.
For example, the aromatic ring in phenol can be repre-
sented as “C1=CC=CC=C1” or “c1ccccc1.” We recommend
that users not mix different representations of the same
molecular structure when training the extended n-gram
model.

2.3 Evaluator: Likelihood Function

The role of the evaluator is to provide a fitness score for a
candidate molecule to estimate how likely the candidate
possesses the desired properties. iQSPR-X allows users to
write their own evaluator, which receives a list of molecules,
converts them to a set of descriptors using a pre-set
descriptor conversion function, and returns a list of
corresponding log-likelihood values. A Gaussian likelihood
function can also be used if users select a desired descriptor
and provide an ML model that returns the mean and
standard deviation for a given set of descriptors as input.

2.4 Pre-trained Neural Descriptors in XenonPy

One of the most distinctive features of our software is the
availability in XenonPy of a comprehensive set of pre-

Figure 1. Computational workflow in iQSPR-X with three main
building blocks that users can flexibly construct: the generator, the
evaluator, and the converter that translates an input chemical
structure into a descriptor vector.

Full Paper www.molinf.com

© 2019 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA Mol. Inf. 2020, 39, 1900107 (3 of 9) 1900107

www.molinf.com


trained neural features for use as the descriptor φ(S). The
sampling efficiency of iQSPR-X is highly influenced by the
reliability of the evaluator that predicts the material proper-
ties for any given chemical structure. Building such models
from scratch is often time-consuming and requires a large
set of training data, which is not available in many
applications. XenonPy currently provides 140,000 pre-
trained neural networks for the prediction of physical,
chemical, electronic, thermodynamic, and mechanical prop-
erties of small organic molecules, polymers, and inorganic
crystalline materials, with models for 15, 18, and 12 proper-
ties of these material types, respectively. The models are
distributed as MXNet[32] (R) and/or PyTorch[33] (Python)
model objects. The distributed API (application program-
ming interface) allows users to query the XenonPy.MDL
database. Users can directly use a retrieved model relevant
to the target task, if available, or can re-train a pre-trained
model on the target task using a transfer learning
technique as described below. Transfer learning has signifi-
cant potential to overcome the problem of limited materials
property data, as demonstrated in our previous study,[26] for
various materials science tasks. Other studies have also
shown promising applications of transfer learning in
materials informatics.[18,34–41]

In this study, we applied a specific type of transfer
learning using pre-trained neural networks. For a target
property, a neural network pre-trained on proxy properties
is available in the library, where the source datasets are
sufficiently large. If the two properties are physically or
chemically interrelated, the pre-trained models can be
expected to autonomously acquire common features
relevant to the proxy properties. The features learned by
solving the related tasks are partially transferable to the
descriptor φ(S) in a model constructed for the target task.

In general, earlier or shallower layers in a neural network
tend to acquire general features to form the basis of the
material descriptions, and only the last one or two layers
identify specific features for the prediction of a source
property. In iQSPR-X, we freeze the shallower layers for use
as a feature extractor. A subnetwork φ(S) of such a pre-
trained model can be reused in the supervised learning of
the target property. To simplify the implementation of the
repetitious tasks of neural descriptor extraction, XenonPy
provides users with an internal function to extract values
from any hidden layer in a pre-trained neural network. With
its large library of pre-trained models and wide range of
built-in descriptors, XenonPy provides a strong foundation
for flexibly arranging the necessary building blocks of the
iQSPR algorithm.

3 Results and Discussion

3.1 Data

We used data from PG to illustrate the use of iQSPR-X based
on an example motivated from a previous study on polymer
design.[28] PG is an open database for polymeric properties
that currently contains 854 polymers composed of nine
types of atoms (H, C, O, N, S, F, Cl, Br, and I) with
experimental data for three material properties (glass
transition temperature, density, and solubility parameter)
and computational data from density functional theory
(DFT) for four material properties (bandgap (Egap), refractive
index, dielectric constant (ɛtot), and atomization energy).
Using a subset of the data (4-block polymers composed of
CH2, NH, CO, C6H4, C4H2S, CS, and O), Mannodi-Kanakkithodi
et al.[28] designed 6- to 12-block polymers with high ɛtot for
insulator applications using ML models and a genetic
algorithm. They were specifically interested in polymers
with higher ɛtot and Egap, and this goal was adopted in our
example. The given data of the chemical structures S and
their materials properties were used to train the generator
and the evaluator. Here, we considered S to be the SMILES
strings of the repeating polymer units. The connection
points, i. e., the head and tail of a monomer, were denoted
as “*”.

In PG, the lowest-energy crystal structures of the
polymers were used for the DFT calculation. For each
polymer, Egap was computed using a hybrid Heyd-Scuseria-
Ernzerhof (HSE06) electronic exchange-correlation func-
tional, and ɛtot, which is the sum of the electronic and ionic
dielectric constants, was computed using density functional
perturbation theory (DFPT). Mannodi-Kanakkithodi et al.[28]

have detailed this computational procedure. As shown in
Figure 2a, we observed an inverse relation between ɛtot and
Egap. Polymers containing thiophene (C4H2S) tended to reach
high ɛtot, but generally had low Egap. In contrast, polymers
containing fluorine (F) atoms tended to reach high Egap, but
generally had low ɛtot. However, in contrast to the enrich-
ment offered by either C4H2S or F atoms, polymers
exhibiting high ɛtot and high Egap tended to be composed of
CH2, NH, CO, C6H4 and O.

[28] The design objective was to
solve this nontrivial trade-off problem.

3.2 Training the Generator

In this study, we considered two ways to train the extended
n-gram model. First, we used all 854 polymers in PG as a
training set, which covered a wide variety of polymers.
Second, we focused only on specific types of chemical
structures that shared some common features, taken from
other data sources. In practice, users may often be
interested in designing a specific class of molecules. Here,
we explored F-containing polymers with high ɛtot and Egap.
In particular, we focused on a training set containing the

Full Paper www.molinf.com

© 2019 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA Mol. Inf. 2020, 39, 1900107 (4 of 9) 1900107

www.molinf.com


fragment “C(F)(F)N,” which was taken from PubChem.[2,42]

Because of the extremely high diversity of chemical
structures in PubChem, we used multiple steps to extract
training molecules: (1) we screened molecules in PubChem
continuously until 5,000 molecules having the desired frag-
ment were found (screening a total of over 36,940,000 mol-
ecules); (2) we reduced the number of molecules to 3,860
that consisted only of C, O, N, F, and/or S atoms; (3) we
finally extracted 2,485 molecules by filtering out those that
had more than six F atoms or included more than one
molecule in a single SMILES string (SMILES string with “.”).
The final training set was formed by the union of these
selected PubChem molecules and the set of PG polymers.
The order parameter controlling the length of a substring
for training and sampling the n-gram tables was set to be
20 for both cases, after examining the distribution of the
SMILES lengths of the molecules in PG (see Figure 2b). In
the construction of a training set, duplicates of each SMILES
string were generated by performing random reordering of
the string for at most 15 times. This step is important to
avoid the occurrence of unseen substring patterns during
the generation of new molecules, considering that we set
the reorder probability to be 0.5 during the molecular
generation. Figure 3 illustrates how the two different
generators modified molecules step-by-step starting from
the same initial chemical structures. The generator trained
on the PubChem molecules showed a stronger tendency to
include F-containing fragments during the modification
process.

3.3 Training the Evaluator

We conducted a series of experiments to obtain a model for
the Gaussian likelihood function. As a descriptor, we used
pre-trained neural network models in XenonPy that were
trained with 10 different types of fingerprints available in
RDKit: atom pair and topological torsion fingerprints,
Morgan fingerprints (both feature-based and not feature-
based), basic fingerprints in RDKit, and five more that were
obtained by adding the MACCS keys to the five listed
fingerprints. With each of the 10 fingerprints, 100 randomly

Figure 2. Summary of observed data in PG. (a) Joint distribution of
ɛtot and Egap. Red dots denote all polymers containing F atoms,
green dots denote those having C4H2S as fragments, and blue dots
denote all other polymers. (b) Histogram of the lengths of SMILES
strings in PG.

Figure 3. Modification of molecules using extended n-gram models
trained with different datasets. The same five chemical structures in
PG were successively modified five times according to generators
that were trained on 854 polymers from PG (top) and with the 854
polymers from PG and 2,485 F-containing molecules from PubChem
(bottom).

Full Paper www.molinf.com

© 2019 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA Mol. Inf. 2020, 39, 1900107 (5 of 9) 1900107

www.molinf.com


constructed neural networks, each having six fully con-
nected layers, were trained with either the ɛtot or Egap

datasets; the number of epochs was 2,000 and the dropout
rate was 0.1. The dataset was randomly separated into
training and validation sets at a ratio of 8 :2. Figure 4 shows

a comparison of the validated mean absolute errors (MAEs)
across the different fingerprint descriptors. The atom pair
fingerprints with the MACCS keys showed consistently high
performance on both ɛtot and Egap, and was therefore
selected for use in the Bayesian molecular design.

The default model in the Gaussian likelihood function is
set to be a Bayesian linear regression model. Users can
directly train the model with their input data using a one-
line Python script. In this paper, we considered three more
approaches to constructing models that return μ and σ: (1)
bagging to calculate a bootstrap variance σ for any
deterministic model, (2) random forests combined with a
jackknife method,[43] and (3) Bayesian linear models with
neural descriptors extracted from pre-trained models.[26] In
our example, we tested these different methods to select
the best prediction model. Five-fold cross validation (CV)
was performed on both ɛtot and Egap and the model with the
best prediction performance was selected.

For the bagging approach, the gradient boosting
method in scikit-learn[44] was used and the training data in
each fold of the 5-fold CV were further divided into 10 non-
overlapping bags. Each bag produced a gradient boosting

regressor under the default setting in scikit-learn. The mean
and standard deviation of the predicted values from the 10
trained models were taken as μ and σ, respectively.

For the random forest approach, the forestci package
was used along with the random forest method in scikit-
learn to calculate μ and σ. The number of trees was set to
be 500 and the “max_feature” option was selected to be
“sqrt.”

For the Bayesian linear regression with neural descrip-
tors, we began by selecting pre-trained model from the
model library in XenonPy for each of the two target
properties. The 100 pre-trained neural networks of ɛtot and
Egap were modified such that the last hidden layers were
connected to Bayesian linear regressors, and the prediction
performances of the models were then evaluated by the
10-fold CV applied to the training data within each fold of
the 5-fold CV. Each of the models of ɛtot and Egap that
achieved the overall lowest MAE was selected, and their last
hidden layers were concatenated to form a new neural
descriptor. This descriptor was used to replace the originally
selected descriptor in the default Gaussian likelihood
function. Finally, this evaluator was trained with the full
training data within each fold of the five-fold CV.

Figure 5 shows the performance of each model on the
five-fold CV for the ɛtot and Egap datasets. The bagging
approach with the gradient boosting model achieved the
best overall performance and was therefore selected for the
inverse design calculation.

Figure 4. Box-plots of the MAEs across different fingerprint descrip-
tors evaluated on the validation datasets of either ɛtot or Egap. APFP
denotes the atom pair fingerprints, ECFP denotes the non-feature-
based radius-3 Morgan fingerprints, FCFP denotes the feature-
based radius-3 Morgan fingerprints, TTFP denotes the topological
torsion fingerprints, RDKit denotes the basic fingerprints in RDKit,
and +M denotes the addition of the MACCS keys.

Figure 5. Prediction performance of different models on the five-
fold CV for the ɛtot and Egap datasets. GB denotes bagging with
gradient boosting, RF denotes random forests with jackknife-based
uncertainty quantification, and NN denotes pre-trained neural
networks with their last hidden layers connected to Bayesian linear
regressors.

Full Paper www.molinf.com

© 2019 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA Mol. Inf. 2020, 39, 1900107 (6 of 9) 1900107

www.molinf.com


3.4 Design Results

In this example, we set the target property region to be
ɛtot>4.5 and Egap>5 eV. Three rounds of iQSPR-X were
executed using different setups to compare the effect of
various components of the algorithm. The first run used the
generator trained with molecules in PG, and in the inverse
design calculation, 100 initial samples were randomly
selected from the 854 molecules in PG. The second run
used the same generator, but the 100 initial samples were
randomly selected from a subset of the molecules in PG
that had a relatively low ɛtot or Egap (ɛtot<4 or Egap<4.5 eV).
The third run used the same initial samples as in the first
run, but the generator was trained with the PG and
PubChem molecules, as detailed in the previous section.

Other components of iQSPR-X were set to be the same
for all three runs. The n-gram order parameter was set to be
20, with the range of the number of letters to be deleted
set to be 1–10. The reordering probability was set to be 0.5.
The descriptor was selected to be a concatenation of the
atom pair fingerprints and the MACCS keys in RDKit. The
evaluator was selected to be the Gaussian likelihood with
10 “bags” of gradient boosting models trained on 10-fold
CV of the full PG datasets for ɛtot and Egap. The mean
function μ was given by the mean of the predictions from
the 10 models. For practical purposes, the variance function
σ2 was composed of the bootstrap variance plus a tiny pre-
set constant (0.04 for ɛtot and 0.09 for Egap). To avoid
trapping at a local region of the entire search space, an
annealing schedule was applied: the likelihood scores were
powered by a sequence of factors from 0 to 1, which
corresponds to a sequential transformation of a distribution
from a uniform distribution to the actual posterior distribu-
tion. From empirical evidence, a slow cooling schedule is
recommended. We started with 20 steps of powers linearly
increasing from 0 to 0.2, 10 additional steps linearly
increasing from 0.2 to 0.4, and another 10 steps linearly
increasing from 0.4 to 1. Finally, we performed another
60 steps with the power fixed at 1, and these samples were
recorded as candidate molecules.

Movies S1, S2, and S3 in the supplementary materials
demonstrate how the candidate molecules proposed in
each step of the sequential Monte Carlo approach the
target region. In the first run, one of the initial samples was
observed to reach the target region, and a number of the
samples continued to explore structures similar to that
molecule, whereas other samples pursued alternative
possibilities. In the end, the best proposed candidate
molecules converged to molecules similar to those found in
the previous study[28] (see Figure 6).

In contrast, with a significantly different set of initial
samples, the second run struggled to converge to candi-
date molecules similar to the first run. Instead, it became
trapped at molecules with complex ring structures (see
Figure 7). For an intractable trade-off problem such as this
example, a small finite set of samples cannot support full

Figure 6. Comparison of the best candidate molecules from a
previous study[28] and the top 25 candidate molecules generated
from iQSPR-X. The optimal combinations of 8 to 12 building blocks
that were proposed in the previous study are shown as a
comparison.

Figure 7. Comparison of the top 25 candidate molecules generated
from iQSPR-X with initial samples randomly drawn from polymers
in PG with ɛtot<4 or Egap<4.5 eV and the top 25 candidate
molecules generated using an extended n-gram model trained with
samples from both PG and PubChem.

Full Paper www.molinf.com

© 2019 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA Mol. Inf. 2020, 39, 1900107 (7 of 9) 1900107

www.molinf.com


exploration of the search space. Increasing the number of
samples is an intuitive yet computationally intensive
solution. An alternative is to adjust parameters in the
iQSPR-X algorithm, such as the initial samples, the n-gram
order, the number of letters to be deleted, and so on.

iQSPR-X can also be used to search intensively for a
specific molecular subspace. In the third run, the generator
showed a clear tendency to attach F-containing fragments
to chemical structures after being trained with thousands
more samples from PubChem. As a result, we observed the
frequent appearance of molecules with relatively higher Egap

during the sequential Monte Carlo iterations. The best
candidate molecules were composed of the F-containing
fragments with different combinations of the CH2, NH, and
CO blocks (see Figure 7).

4 Conclusions

iQSPR-X is an ML engine for generating a target-specific
molecular library. XenonPy provides an all-in-one ML-based
materials design platform, in which descriptor calculations,
property prediction models for high throughput screening,
molecular library generators, and inverse design algorithms
are all present as independent modules that users can
either take as pre-existing functions in XenonPy or build
flexibly to accommodate their own needs in conjunction
with other major ML and materials informatics Python
packages. Moreover, transfer learning offers further capa-
bility and convenience to the ML technique. By implement-
ing the iQSPR algorithm with the XenonPy platform, users
can fully enjoy the benefits of a wide range of pre-existing
functions and models that will greatly simplify the process
of establishing the Bayesian inverse design algorithm.
Detailed tutorials for each component are available at the
website of XenonPy.[25]

In this paper, we demonstrated some basic function-
alities of iQSPR-X by applying it to the task of designing
polymers exhibiting high ɛtot and Egap. We showed how
changes to the setup of iQSPR-X, such as the initial sample
sets and the generator, might influence the outcome of the
computational workflow. One of our runs identified chem-
ical structures that were similar to the best candidate
molecules proposed in the original study. Furthermore, we
demonstrated that by including a focused set of molecules
in the training process of the generator, we were able to
guide the algorithm to search a particular subspace in the
large molecule space. Moreover, although users can quickly
start the inverse design process using the default functions
and setups, the true potential of the algorithm can be
realized by building customized modules for a variety of
tasks in materials science. The XenonPy project aims to
gather contributions from various users in diverse fields of
materials and data science. Contributors are highly wel-
come to share and implement their own codes in XenonPy
as off-the-shelf modules.

5 Supplementary Materials

1) Movie S1-PG_basic.avi: This video shows the evolution
of the material property values of the proposed
candidate molecules in each step of the XenonPy-iQSPR
iterations for the first run of our example. Blue dots
denote the original data from PG, and red dots denote
the proposed candidate molecules, with the radius of
the dots proportional to the sum of the predicted
variances of ɛtot and Egap. Beta refers to the power value
used in the annealing schedule.

2) Movie S2-PG_lowVal.avi: This video is the same type as
Movie S1, for the second run of our example.

3) Movie S3-PG_Pubchem.avi: This video is the same type
as Movie S1, for the third run of our example.

Conflict of Interest

None declared.

Acknowledgements

This work was supported in part by the Materials Research
by Information Integration Initiative (MI2I) of the Support
Program for Starting Up Innovation Hub from the Japan
Science and Technology Agency (JST). R.Y. acknowledges
financial support from a Grant-in-Aid for Scientific Research
(B) 15H02672, a Grant-in-Aid for Scientific Research (A)
19H01132 from the Japan Society for the Promotion of
Science (JSPS), JST CREST Grant Number JPMJCR19I1, Japan,
and JSPS KAKENHI Grant Number JP19H05820. S.W. grate-
fully acknowledges financial support from JSPS KAKENHI
Grant Number JP18 K18017.

References

[1] R. S. Bohacek, C. McMartin, W. C. Guida, Med. Res. Rev. 1996,
16, 3–50.

[2] S. Kim, P. A. Thiessen, E. E. Bolton, J. Chen, G. Fu, A. Gindulyte,
L. Han, J. He, S. He, B. A. Shoemaker, J. Wang, B. Yu, J. Zhang,
S. H. Bryant, Nucleic Acids Res. 2016, 44(D1), D1202–1213.

[3] N. D. Austin, N. V. Sahinidis, D. W. Trahan, Chem. Eng. Res. Des.
2016, 116, 2–26.

[4] K. G. Joback, G. Stephanopoulos, Proc. FOCAPD, Snowmass, CO,
1989, 363–387.

[5] D. J. Wales, H. A. Scheraga, Science 1999, 285, 1368–1372.
[6] D. Douguet, E. Thoreau, G. Grassy, J. Comput.-Aided Mol. Des.

2000, 14, 449–466.
[7] X. Hu, D. N. Beratan, W. Yang, J. Chem. Phys. 2008, 129, 064102.
[8] T. Miyao, H. Kaneko, K. Funatsu, J. Comput.-Aided Mol. Des.

2016, 30, 425–446.
[9] T. Miyao, H. Kaneko, K. Funatsu, J. Chem. Inf. Model. 2016, 56,

286–299.

Full Paper www.molinf.com

© 2019 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA Mol. Inf. 2020, 39, 1900107 (8 of 9) 1900107

https://doi.org/10.1002/(SICI)1098-1128(199601)16:1%3C3::AID-MED1%3E3.0.CO;2-6
https://doi.org/10.1002/(SICI)1098-1128(199601)16:1%3C3::AID-MED1%3E3.0.CO;2-6
https://doi.org/10.1016/j.cherd.2016.10.014
https://doi.org/10.1016/j.cherd.2016.10.014
https://doi.org/10.1126/science.285.5432.1368
https://doi.org/10.1023/A:1008108423895
https://doi.org/10.1023/A:1008108423895
https://doi.org/10.1063/1.2958255
https://doi.org/10.1007/s10822-016-9916-1
https://doi.org/10.1007/s10822-016-9916-1
https://doi.org/10.1021/acs.jcim.5b00628
https://doi.org/10.1021/acs.jcim.5b00628
www.molinf.com


[10] B. Sanchez-Lengeling, A. Aspuru-Guzik, Science 2018, 361, 360–
365.

[11] D. Weininger, J. Chem. Inf. Comput. Sci. 1988, 28, 31–36.
[12] M. J. Kusner, B. Paige, J. M. Hernández-Lobato, PMLR 2017, 70,

1945–1954.
[13] A. Kadurin, S. Nikolenko, K. Khrabrov, A. Aliper, A. Zhavor-

onkov, Mol. Pharmaceutics 2017, 14, 3098–3104.
[14] J. Lim, S. Ryu, J. W. Kim, W. Y. Kim, J. Cheminf. 2018, 10, 31.
[15] R. Gómez-Bombarelli, J. N. Wei, D. Duvenaud, J. M. Hernández-

Lobato, B. Sánchez-Lengeling, D. Sheberla, J. Aguilera-Iparra-
guirre, T. D. Hirzel, R. P. Adams, A. Aspuru-Guzik, ACS Cent. Sci.
2018, 4, 268–276.

[16] B. Sanchez-Lengeling, C. Outeiral, G. L. Guimaraes, A. Aspuru-
Guzik, ChemRxiv 2017, 10.26434/chemrxiv. 5309668.v3.

[17] X. Yang, J. Zhang, K. Yoshizoe, K. Terayama, K. Tsuda, Sci.
Technol. Adv. Mater. 2017, 18, 972–976.

[18] M. H. S. Segler, T. Kogej, C. Tyrchan, M. P. Waller, ACS Cent. Sci.
2018, 4, 120–131.

[19] W. Jin, R. Barzilay, T. Jaakkola, PMLR 2018, 80, 2323–2332.
[20] H. Kajino, arXiv 2018, 1809.02745.
[21] N. Brown, M. Fiscato, M. H. S. Segler, A. C. Vaucher, J. Chem. Inf.

Model. 2019, 59, 1096–1108.
[22] N. Yoshikawa, K. Terayama, M. Sumita, T. Homma, K. Oono, K.

Tsuda, Chem. Lett. 2018, 47, 1431–1434.
[23] H. Ikebata, K. Hongo, T. Isomura, R. Maezono, R. Yoshida, J.

Comput.-Aided Mol. Des. 2017, 31, 379–391.
[24] D. Schwalbe-Koda, R. Gómez-Bombarelli, arXiv 2019,

1907.01632.
[25] XenonPy, https://xenonpy.readthedocs.io/en/latest/, last accessed

on July 20, 2019.
[26] H. Yamada, C. Liu, S. Wu, Y. Koyama, S. Ju, J. Shiomi, J.

Morikawa, R. Yoshida, ACS Cent. Sci. 2019, online pre-release.
[27] S. Wu, Y. Kondo, M.-A. Kakimoto, B. Yan, H. Yamada, I.

Kuwajima, G. Lambard, K. Hongo, Y. Xu, J. Shiomi, C. Schick, J.
Morikawa, R. Yoshida, npj Comput. Mater. 2019, 5, 66.

[28] A. Mannodi-Kanakkithodi, G. Pilania, T. D. Huan, T. Lookman, R.
Ramprasad, Sci. Rep. 2016, 6, 20952.

[29] C. Kim, A. Chandrasekaran, T. D. Huan, D. Das, R. Ramprasad, J.
Phys. Chem. C 2018, 122, 17575–17585.

[30] G. Landrum, http://www.rdkit.org, last accessed on July 20,
2019.

[31] H. Moriwaki, Y.-S. Tian, N. Kawashita, T. Takagi, J. Cheminf.
2018, 10, 4.

[32] T. Chen, M. Li, Y. Li, M. Lin, N. Wang, M. Wang, T. Xiao, B. Xu, C.
Zhang, Z. Zhang, arXiv 2015, 1512.01274.

[33] PyTorch, https://pytorch.org/, last accessed on July 20, 2019.
[34] M. L. Hutchinson, E. Antono, B. M. Gibbons, S. Paradiso, J. Ling,

B. Meredig, arXiv 2017, 1711.05099.
[35] H. Oda, S. Kiyohara, K. Tsuda, T. Mizoguchi, J. Phys. Soc. Jpn.

2017, 86, 123601.
[36] R. Jalem, K. Kanamori, I. Takeuchi, M. Nakayama, H. Yamasaki,

T. Saito, Sci. Rep. 2018, 8, 5845.
[37] T. Yonezu, T. Tamura, I. Takeuchi, M. Karasuyama, Phys. Rev.

Mater. 2018, 2, 113802.
[38] B. Kailkhura, B. Gallagher, S. Kim, A. Hiszpanski, T. Y.-J. Han,

arXiv 2019, 1901.02717.
[39] E. D. Cubuk, A. D. Sendek, E. J. Reed, J. Chem. Phys. 2019, 150,

214701.
[40] X. Li, Y. Zhang, H. Zhao, C. Burkhart, L. C. Brinson, W. Chen, Sci.

Rep. 2018, 8, 13461.
[41] M. Kaya, S. Hajimirza, Sci. Rep. 2019, 9, 5034.
[42] S. Kim, J. Chen, T. Cheng, A. Gindulyte, J. He, S. He, Q. Li, B. A.

Shoemaker, P. A. Thiessen, B. Yu, L. Zaslavsky, J. Zhang, E. E.
Bolton, Nucleic Acids Res. 2019, 47, D1102–1109.

[43] S. Wager, T. Hastie, B. Efron, J. Mach. Learn. Res. 2014, 15,
1625–1651.

[44] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J.
Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, E.
Duchesnay, J. Mach. Learn. Res. 2011, 12, 2825–2830.

Received: August 16, 2019
Accepted: October 14, 2019

Published online on November 5, 2019

Full Paper www.molinf.com

© 2019 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA Mol. Inf. 2020, 39, 1900107 (9 of 9) 1900107

https://doi.org/10.1126/science.aat2663
https://doi.org/10.1126/science.aat2663
https://doi.org/10.1021/ci00057a005
https://doi.org/10.1021/acs.molpharmaceut.7b00346
https://doi.org/10.1021/acscentsci.7b00572
https://doi.org/10.1021/acscentsci.7b00572
https://doi.org/10.1080/14686996.2017.1401424
https://doi.org/10.1080/14686996.2017.1401424
https://doi.org/10.1021/acscentsci.7b00512
https://doi.org/10.1021/acscentsci.7b00512
https://doi.org/10.1021/acs.jcim.8b00839
https://doi.org/10.1021/acs.jcim.8b00839
https://doi.org/10.1246/cl.180665
https://doi.org/10.1007/s10822-016-0008-z
https://doi.org/10.1007/s10822-016-0008-z
https://doi.org/10.1021/acs.jpcc.8b02913
https://doi.org/10.1021/acs.jpcc.8b02913
https://doi.org/10.7566/JPSJ.86.123601
https://doi.org/10.7566/JPSJ.86.123601
https://doi.org/10.1063/1.5093220
https://doi.org/10.1063/1.5093220
https://doi.org/10.1093/nar/gky1033
www.molinf.com

