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Abstract

Learning knowledge or skills usually is considered to be based on the formation of an ade-

quate internal mental model as a specific type of mental network. The learning process for

such a mental model conceptualised as a mental network, is a form of (first-order) mental

network adaptation. Such learning often integrates learning by observation and learning by

instruction. For an effective learning process, an appropriate timing of these different ele-

ments is crucial. By controlling the timing of them, the mental network adaptation process

becomes adaptive itself, which is called second-order mental network adaptation. In this

paper, a second-order adaptive mental network model is proposed addressing this. The

first-order adaptation process models the learning process of mental models and the sec-

ond-order adaptation process controls the timing of the elements of this learning process. It

is illustrated by a case study for the learner-controlled mental model learning in the context

of driving a car. Here the learner is in control of the integration of learning by observation

and learning by instruction.

1 Introduction

To describe the mental processes involving learning and problem solving in humans, often

mental models are used, e.g., [1–16]. As a specific case, mental models of devices and their

usage are formed to be able to adequately use these devices, e.g., [17, 18]. It is an interesting

challenge to determine how mental models are formed or learnt, and how to control such

learning processes. Computational models which represent such processes are almost absent,

e.g., [19–21]. One exception is [8] in which a production rule modeling format is used to simu-

late students’ construction of energy models for learning physics. In general, however, research

into how mental models develop or are learnt and how that is controlled, is hard to find.

The current paper proposes such a computational model for mental model learning and its

control, based on multi-order adaptive network-oriented modeling [22, 23]. It is illustrated by

a case study for learning how a car works and how to drive it. A driver’s mental model and
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how it can be learnt in an effective manner can be a basis for the designing virtual pedagogical

agents, and for support of a driver by adaptive automation in a car.

Network-oriented modeling for adaptive networks [22–24] is an effective approach to

model the adaptive mental processes as an adaptive interplay of mental states. Here the con-

nections between the mental states change based on specific adaptation principles such as

Hebbian learning [25]. Learning mental models involves such adaptation, but it also involves

controlling this learning; the latter is a form of second-order adaptation. The network-oriented

modeling approach from [22–24] covers such multi-order adaptive processes.

Then the picture is that a mental model can be modeled as a base network and learning the

mental model can be modeled as (first-order) adaptation of this base network. In addition, the

controlling of this learning process can be modeled as second-order adaptation, which adapts

the first-order adaptation. In this way, a three-level second-order adaptive network architec-

ture for mental model development is obtained. It is illustrated here for learning a mental

model, by a learner-controlled interplay of observational and instructional learning in a case

study for learning how a car works and how to drive it.

Part of this work was addressed in a preliminary form in [26]. However, the current paper

extends this by more than 110%. In the current paper, in particular, (1) the description of the

computational model and its background (Sections 2 and 4) has been extended much so that

now a much more detailed design description is provided and (2) also an extensive analysis of

equilibria of the model is now described (Section 6) which has been conducted to obtain a

more solid basis for the implemented model by verification (Section 6 on equilibrium analysis

of the model in the current paper is completely new). All this was not addressed in [26].

In the paper, Section 2 presents a brief literature overview. In Section 3, the design of the

proposed second-order adaptive network architecture is presented, addressing the controlled

interplay between observational and instructional learning of mental models. Section 4 pres-

ents a refinement of this architecture, addressing the case study of learner-controlled integra-

tion of observational and instructional learning. Simulation results for an example scenario

can be found in Section 5. In Section 6, a detailed analysis of equilibria is addressed by which

verification of the model was performed. Section 7 is for discussion.

2 Overview of background knowledge on mental models

Mental models are being studied in Cognitive and Social Sciences, as well as in Educational Sci-

ences for a long time, e.g., [1–16, 27–35]. A famous quote of Craik from his 1943 book mentions:

‘If the organism carries a “small-scale model” of external reality and of its own possible

actions within its head, it is able to try out various alternatives, conclude which is the best

of them, react to future situations before they arise, utilise the knowledge of past events in

dealing with the present and future, and in every way to react in a much fuller, safer, and

more competent manner to the emergencies which face it.’

(Craik [2], p. 61)

He writes that such internal models use a certain relation-structure that makes the mental

model work in a way similar to how the real world works:

‘By “relation-structure” I do not mean some obscure non-physical entity which attends the

model, but the fact that it is a physical working model which works in the same way as the

process it parallels. . .

(Craik [2], p. 51).
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Within educational science, the term model-based learning is used for learning based on

constructing coherent mental models [1, 9, 36–38]. Buckley formulates this as:

‘Model-based learning is a dynamic, recursive process of learning by building mental

models.’

(Buckley [1])

More specifically, the following elements play an important role in such learning.

2.1 Learning by observation

Observational learning occurs when observation of others is the main source for the formation

of a mental model. For example, the trainees see someone else perform a target behavior and

then attempt to imitate or reenact it; e.g., [36, 39]. Demonstration is an often applied method

to let others learn a specific motor task. This type is called observational motor learning.

Empirical research has found that observational motor learning improves action perception

and motor execution. From a neuroscientific perspective, mirror neurons are considered

responsible for the ability to learn by observing and imitating others, e.g., [40–42].

2.2 Learning by instruction

Instructional learning assumes that instructions from an expert instructor are supportive for

learning. For a beginner, only learning by discovery or observation often involves much trial

and error; e.g., [14, 15]. Hence, instructions from an expert are considered a useful addition to

build effective mental models. This is supported by a format of scaffolded model-based learn-

ing in which many supporting actions such as prompts, questions, hints, stories, conceptual

models, visualizations are performed to facilitate a learner’s progress during learning tasks,

e.g., [43].

2.3 Learner-controlled learning

For the integration of observational and instructional learning, control is a crucial element. It

is discussed, for example, by Gibbons and Gray [44] that instructions serve learning processes

best when the learner has control over them. The scaffolded model-based learning format

mentioned above supports this. Kozma [28] suggested that individuals actively use external

information sources for mental model formation. Learners are sensitive to characteristics of

the learning environment such as the availability of certain information at a given time, the

structure of the information and the ease with which it can be accessed. Thus, the learner’s

need for instruction and the ease acquiring it are crucial for building effective mental models.

In learning methods based on guided discovery, the learner seeks for information to complete

the initial mental model. This requires the learner to be proactive and in control of the learning

process. In contrast, in expository teaching methods, an instructor aims at directing the mental

model formation by providing adequate information according to some temporal sequence

[33]. Meela, and Yuenyong [29] demonstrated in their study that Model-Based Inquiry (MBI)

can support a student’s mental model formation in scientific learning. MBI focuses on stu-

dents’ formulations of questions and procedures [31]. Feedback on performance are a signifi-

cant factor in learning [1, 45]; many studies support that feedback is crucial in skill acquisition

[46].

Thus, in the adaptive network model introduced in the current paper, the learner can seek

for instructions whenever it is useful or needed or as a feedback about what she/he has learnt
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by observation. The control for this was modeled by control states for instructions on a sepa-

rate level within the adaptive network model. Using this, the learner controls timing and con-

tent of incoming information by seeking it only when it seems appropriate to her/him. More

specifically, in Section 3 it is shown how a learning process based on mental models can be

modeled by a generic three-level adaptive network architecture. In this architecture, the mental

models themselves can be modeled at the base level as networks. In addition, during learning

the mental models change; this can be modeled by (first-order) network adaptation at a second

level. Control of the learning process is a form of adaptation of the learning process; this can

be modeled at the third level addressing adaptation of the first-order adaptive network for the

learning process: second-order network adaptation.

3 Network architecture for controlled mental model learning

In this section a global view on the architecture of the introduced network model for learner-

controlled mental model learning is discussed. Following with what was concluded in Section

2, this architecture must cover the following three types of processes in an integrated manner:

1. The mental models themselves described by base networks

2. Learning as change of mental models described by first-order network adaptation

3. Control of learning processes described by second-order network adaptation.

Using the notion of self-modeling network (also called reified network) [22–24], these three

description levels indeed can be modeled adequately by a three-level second-order adaptive

network architecture as depicted in Fig 1.

Here, for any specific application each plane contains a specific network and the specific

upward and downward connections define the interactions between the different levels.

More specifically, adding a self-model to a network model is done in the way that for some

of the network structure characteristics additional network states (self-model states) are added.

In the network-oriented modeling approach [23] applied here, in particular for nodes (also

called states) X and Y, the following network structure characteristics are used:

• ωX,Y for connectivity (connections X! Y with their connection weights)

• γi,Y and πi,j,Y for aggregation (combination function choices and their parameters for each

node Y)

• ηY for timing (speed factors for each node Y)

Then to obtain adaptive networks, self-model nodes can be added to the network for any of

these characteristics to make it adaptive:

• Connectivity self-model

Self-model nodes WX,Y are added representing connection weights ωX,Y

• Aggregation self-model

Self-model nodes Cj,Y are added representing combination function weights γi,Y and/or self-

model states Pi,j,Y representing combination function parameters πi,j,Y

• Timing self-model

Self-model nodes HY are added representing speed factors ηY

The notations WX,Y, Ci,Y, Pi,j,Y, HY for the self-model states indicate the referencing relation

with respect to the characteristics ωX,Y, γi,Y, πi,j,Y, ηY: here W refers to ω, C refers to γ, P refers

to π, and H refers to η, respectively. These W, C, P and H notations are considered to indicate
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the roles these W-, C-, P- and H-states play in the network, so that at the base level the values

of them are used for the intended characteristics. Sometimes slightly different notations are

used, for example, by adding the letter R for representation to emphasize that it represents

some characteristic of the network: RWX,Y, RCi,Y, RPi,j,Y, RHY. This construction can easily be

applied iteratively to obtain multiple levels of self-models. For example, by adding a second-

order self-model state HWX,Y for WX,Y, the adaptation speed ηWX,Y of WX,Y can be made adap-

tive. Therefore second-order adaptation plays an important role here to control adaptive pro-

cesses which can be easily modelled as well.

The more specific adaptive network model described in Section 4 will be a refinement of

the overall network architecture depicted in Fig 1. Tables 1 and 2 summaries the generic types

of states and connections used at and between the three levels within this architecture. Note

that the colours used in these tables indicate to which level the states belong, as they corre-

spond to the colours of the planes in the 3D figures such as Fig 1.

At the base level, the learner’s (subjective) mental model is defined by connections between

base states BSX! BSY; in addition, the connections between observation states OSX!OSY

define the (objective) relations in the real world. Note that, following the quote of Craik [6],

p. 51 in Section 2, the causal relations BSX! BSY defining the mental model, are in a one-to-

one correspondence with the causal relations OSX!OSY between the (observed) world states.

Therefore, as can be seen in Figs 2 and 3, within the base plane the subnetwork for the BS-

states has a connectivity structure that is isomorphic to the connectivity structure of the sub-

network for the OS-states.

Moreover, the connections from observation state to base state OSY! BSY define the mir-

roring process by which the observations affect the learner’s own states.

Fig 1. Overview of the introduced second-order adaptive network architecture.

https://doi.org/10.1371/journal.pone.0255503.g001

Table 1. Types of states in the introduced three level network architecture.

BSY Base states for the considered mental model of the learner

OSY The corresponding observation states in the real world

ISX,Y Representation for the connection weights of the mental model of the instructor

LWX,Y Representation for the connection weights for the mental model as learnt from observation (using the

Hebbian learning principle)

IWX,Y Representation for the connection weights for the mental model as learnt from instruction (using the

instructor)

RWX,Y Representation for the connection weights for the learner’s mental model integrating observational (via

LWX,Y) and instructional (via IWX,Y) learning

CIWX,Y Initiation of instruction: control state for requesting the weight of the connection from X to Y for the

mental model from the instructor

https://doi.org/10.1371/journal.pone.0255503.t001
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At the first-order self-model level, the self-model of the mental model from the base level is

modeled by states RWX,Y that explicitly represent the connection weights of the mental model

as used in the processing of this mental model at the base level. At first sight, this may seem a

double (and therefore redundant) representation of the same mental model, but to handle the

process of learning of this mental model well, this explicit ‘additional’ representation in the

form of the mental model’s self-model is crucial, because when adaptivity is addressed, the net-

work characteristic (in this case connection weight) is no longer one static parameter value but

becomes a variable with values that change over time (as happens for every dynamical system

model for which some of its parameters are made adaptive). The way of conceptualization

applied here is used more often within neuroscience as a distinction between (1) activation

propagation through a network of neurons, (2) plasticity of this network, and (3) metaplasti-

city as control over this plasticity; e.g., [25, 47–50]. Inspired by this, in the current paper, (1)

and (2) of this form of conceptualization are used to model use and adaptation of a mental

Table 2. Types of connections in the introduced adaptive network architecture.

Intralevel connections

BSX! BSY The learner’s (subjective) connections between the base states, indicating the current

mental model of the learner

OSX! OSY The real world’s (objective) connections between the observation states, indicating the real-

world process

OSY! BSY Mirroring connections defining the mirroring process for the base states. These

connections model the effect of observations on the learner.

ISX,Y! IWX,Y Being informed by the instructor: the communicated instruction concerning the

connection from X to Y. These connections ISX,Y! IWX,Y can be controlled by control

states CIWX,Y at the second reification level

IWX,Y! RWX,Y Integration of knowledge obtained by instructional learning

LWX,Y! RWX,Y Integration of knowledge obtained by observational learning

Interlevel connections

BSX! LWX,Y BSY!

LWX,Y

Connections supporting observational learning Upward from base level to first

reification level

RWX,Y! BSY Effectuation of base connection weights in the

mental model

Downward from first reification level to

base level

LWX,Y! CIWX,Y Observational learning monitoring connections Upward from first to second reification

level

CIWX,Y! IWX,Y Effectuation of instructional learning control Downward from second to first

reification level

https://doi.org/10.1371/journal.pone.0255503.t002

Fig 2. Connectivity for part of the second-order adaptive network model.

https://doi.org/10.1371/journal.pone.0255503.g002

PLOS ONE Modeling learner-controlled mental model learning processes by a second-order adaptive network model

PLOS ONE | https://doi.org/10.1371/journal.pone.0255503 August 24, 2021 6 / 21

https://doi.org/10.1371/journal.pone.0255503.t002
https://doi.org/10.1371/journal.pone.0255503.g002
https://doi.org/10.1371/journal.pone.0255503


model, respectively, and (3) for the control over this adaptation, as will be explained in more

detail below.

In addition to the states RWX,Y, also self-model states LWX,Y and IWX,Y are used as part of

the mental model’s self-model. Here, LWX,Y represents what has been learnt about the connec-

tion from X to Y within the mental model by observational learning and IWX,Y represents

what has been acquired from instructional learning.

The intra-level connections LWX,Y! RWX,Y and IWX,Y! RWX,Y model the integration

within RWX,Y of what is learnt by observational learning and what is learnt by instructional

learning. The connections ISX,Y! IWX,Y model the instruction itself: the communication

actions from instructor to learner.

These communication actions from the instructor to the learner depend on control. To

this end, in the second-order self-model, states CIWX,Y are included. Such a state indicates

that the learner wants to hear the instructor’s knowledge about the connection from X to Y.

It is assumed that the instructor will respond accordingly. This happens by giving CIWX,Y

the role of connection weight representation WISX,Y,IWX,Y for the intended connection ISX,Y

! IWX,Y from the instructor to the learner. This works by the processing of the first-order

self-model for the connection weight ωISX,Y,IWX,Y the value of CIWX,Y is used. Therefore, as

long as the value of CIWX,Y is 0, no communication takes place, while as soon as this value of

CIWX,Y is 1, this communication does take place. This represents the way in which that com-

munication becomes controlled. The effect of activation of CIWX,Y can be interpreted in the

sense that the communication channel from the instructor state ISX,Y to the learner state

IWX,Y is opened, so that this information is transferred from the instructor state ISX,Y to the

learner state IWX,Y. This opening of the channel ISX,Y! IWX,Y is modeled by the downward

connections CIWX,Y! IWX,Y, where CIWX,Y represents the role of connection weight from

ISX,Y to IWX,Y.

The only remaining piece then is to determine when exactly CIWX,Y should become active.

This is done via its incoming observational learning monitoring connection LWX,Y! CIWX,Y

which makes that the control state CIWX,Y will become active depending on the corresponding

LW-state LWX,Y. This models that the part where the learner asks the instructor for verifica-

tion and confirmation of what was just learnt by observation (and the learner does not ask any-

thing about what not yet has been observed). A more detailed explanation of the network’s

connectivity for a specific case study can be found in Section 4.

Fig 3. Connectivity for the complete adaptive network model.

https://doi.org/10.1371/journal.pone.0255503.g003
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4 Detailed description of the second-order adaptive network model

for a case study

In this section, a more detailed description can be found of the designed second-order adaptive

network model for a realistic case study, that was created for illustrative purposes. It is

described by the following scenario:

Person A has almost no knowledge about a car’s components and their interplay and how

to drive a car. This person’s mental model of the car and driving it has to be learned during

driving lessons. During person A’s first driving lesson, instructor B demonstrates how to

start a car and get it moving. The observation of B makes that A learns an initial mental

model of the car and how it can be operated it (observational learning). During A’s further

learning, an iterative process of extending and/or modifying the mental model takes place,

leading to a more accurate and complete mental model. Besides observational learning, also

learning from instruction plays an important role (instructional learning). This instruc-

tional learning takes place by incorporating incoming information communicated by B.

In this scenario this instructional learning only takes place upon request of the learner

(learner-controlled instructional learning), as a form of verification and consolidation after

A learnt about it by observational learning.

The network-oriented modeling approach for adaptive networks [22–24] used here has

been briefly introduced in Section 3. Some more details will follow here. Recall that for adap-

tive networks the notion of self-modeling network is used. For example, for adaptive connectiv-

ity characteristics, states RWX,Y are added representing adaptive connection weights ωX,Y.

They form a self-model of the network’s own structure in the form of a subnetwork within the

network. To graphically distinguish them from states at the level of X and Y, these self-model

states are depicted at one level higher (e.g., see the blue planes in Figs 1–3 with representations

of weights of adaptive connections from the base planes).

As in this case the learning is controlled, it is adaptive itself, which is depicted by the third

level (purple plane) for second-order adaptation in Figs 1–3, which include second-order reifica-
tion states CIWX,Y that represent the weight of the connection ISX,Y! IWX,Y of the middle

level (see Section 3). The structure formed by the lowest two (interacting) levels distinguish the

two types of processes (and their interaction): using the mental model by changing the BS-

states represented at the base level (used for internal simulation of the mental model) versus

adjusting the mental model by changing the representations at the self-model level. The differ-

ent types of states for the detailed model are explained in Tables 4, 5, 6. Fig 2 depicts the con-

nectivity for only a part for a small number of the states for better understanding. Fig 3 shows

the connectivity for the complete network model. The second-order self-model level (the pur-

ple plane) enables to control the learning process by changing some of the intra-level connec-

tions within the first-order self-model (which in turn affects the dynamics of these first-order

self-model states), based on the second-level reification CIW-states (control states); this is

used to model learner-controlled instruction, as discussed in Section 3.

The conceptual representation of a network model as mentioned above can easily be trans-

formed in an automated manner into a numerical representation using a dedicated modeling

environment; within the software, this results in difference equations ([22, 23], Chapter 9):

Yðt þ DtÞ ¼ YðtÞ þ ηY aggimpactYðtÞ � YðtÞ½ � Dt

or dY tð Þ=dt ¼ ηY aggimpactYðtÞ � YðtÞ½ �

where aggimpactYðtÞ ¼ cYðωX1 ;Y
X1 tð Þ; . . . ;ωX

k
;YXk tð ÞÞ

ð1Þ
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Here the overall combination function cY(‥) for state Y is the weighted average of available

basic combination functions cj(‥) (in the Combination Function Library) by specified weights

γj,Y and parameters π1,j,Y, π2,j,Y of cj(‥) for Y:

cYðV1; . . . ;VkÞ ¼
g1;Yc1 V1; . . . ; Vkð Þ þ . . .þ gm;Ycm V1; . . . ; Vkð Þ

g1;Y þ . . .þ gm;Y
ð2Þ

In case of self-models, the self-model states define the dynamics of state Y in a canonical

manner according to (1), whereby the adaptive characteristics among ωX,Y, γi,Y, πi,j,Y, ηY are

replaced by the state values of self-model states WX,Y, Ci,Y, Pi,j,Y, HY at time t, respectively (for

more details, see [22, 23]).

In the model presented here, for the states the following combination functions were used,

all generating values in [0, 1] (assuming that their arguments are in [0, 1]). The Euclidean com-
bination function eucln,λ(V1, . . ., Vk) where n is the order (any positive number), and λ the

scaling factor is defined by:

eucln;λðV1; . . . ;VkÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Vn

1
þ � � � þ Vn

k

λ
n

r

ð3Þ

where V1, . . ., Vk 2 [0, 1] indicate the impacts ωXi,Y Xi (t) from the states X1, . . ., Xk from

which Y has an incoming connection. In addition, the advanced logistic sum combination func-
tion alogisticσ,τ(. . .) is used:

alogisticσ;τðV1; . . . ;VkÞ ¼
1

1þ e� σ V1 þ � � � þ Vk � τð Þ
�

1

1þ eστÞ

� �

1þ e� σtð Þ ð4Þ

with steepness σ and threshold τ (with similar V1, . . ., Vk as above)

Table 3 provides an overview of the base states used to model the mental model (the BS-

states) and the base states for the observations (the OS-states). Table 4 summarises the first-

order self-model states for the learner’s learning (the RW-, LW- and IW-states) and Table 5

addresses the instructor’s Information States (the IS-states).

The Hebbian learning combination function hebbμ(‥) for learning of the connection from

state X to state Y, and used in particular for the LW-states is defined by

hebbmðV1;V2;WÞ ¼ V1V2 1 � Wð Þ þ μW ð5Þ

where μ is the persistence parameter, V1 stands for state value X(t), V2 for Y(t), and W for the

learnt connection weight reification state value LWX,Y(t), which all are in the [0, 1] interval.

Hebbian learning is a well-known adaptation principle addressing adaptive connectivity,

which can be explained by:

‘When an axon of cell A is near enough to excite B and repeatedly or persistently takes part

in firing it, some growth process or metabolic change takes place in one or both cells such

that A’s efficiency, as one of the cells firing B, is increased.’

[25], p. 62

This is sometimes simplified (neglecting the phrase ‘one of the cells firing B’) to:

‘What fires together, wires together’

[51, 52]
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In formula (5), the condition ‘what fires together’ is modeled by the part with the product

V1V2, as that is high if both states X and Y have a high value and low otherwise. The factor

(1-W) provides a kind of normalisation that makes that the value for W = LWX,Y(t) does not

exceed 1. The term μW in (5) models persistency, where μ indicates the fraction of the previ-

ously learnt value W that persists per time unit; for example if μ = 0.9, then every time unit

10% is lost (also called extinction).

In Table 6 an overview can be found of the second-order self-model states. They all are

CIW-states for the control of the instructional learning of certain connection weights. For

these CIW-states the logistic sum combination function alogisticσ,τ(V1, . . .,Vk) is used.

5 Simulation results for an example scenario

The second-order adaptive network model was simulated using the dedicated software envi-

ronment implemented in Matlab as described in [23], Ch 9, to study the learning of a mental

model for a car’s functioning and driving it; see Fig 4 and further. For the simulation Δt = 0.5

was chosen, the total time is 800 (so 1600 simulation steps); the time scale is left abstract here.

In the S1 Appendix section the full specification of the network characteristics can be found.

The speed factors for the BS-states were set at 0.4, for OS-states at 0.05, for IW-states at 0.1,

Table 3. Explanation of the base level states for the mental model within the network model.

Base States Explanation

X1 BSSwitch Learner’s representation state for Switch

X2 BSTurnSwitch Learner’s representation state for TurnSwitch

X3 BSEngine-0n Learner’s representation state for Engine-On

X4 BSFeelEngine-On Learner’s representation state for FeelEngine-On

X5 BSPresClutch Learner’s representation state for PressClutch

X6 BSClutch-On Learner’s representation state for Clutch-On

X7 BSGearbox-Neutral Learner’s representation state for Gearbox-Neutral

X8 BSPressGear 1 Learner’s representation state for PressGear1

X9 BSGear1-On Learner’s representation state for Gear1-On

X10 BSPressAccelerator Learner’s representation state for PressAccelerator

X11 BSAccelerator-On Learner’s representation state for Accelerator-On

X12 BSRevMeter-On Learner’s representation state for Rev-Meter-On

X13 BSeBiteState Learner’s representation state for BiteState

X14 BSMovingState Learner’s representation state for MovingState

X15 OSSwitch Observation State for Switch

X16 OSTurnSwitch Observation State for TurnSwitch

X17 OSEngine-0n Observation State for Engine-On

X18 OSFeelEngine-On Observation State for FeelEngine-On

X19 OSPressClutch Observation State for PressClutch

X20 OSClutch-On Observation State for Clutch-On

X21 OSGearbox-Neutral Observation State for Gearbox-Neutral

X22 OSPressGear 1 Observation State for PressGear1

X23 OSGear1 Observation State for Gear1-On

X24 OSPressAccelerator Observation State for PressAccelerator

X25 OSAccelerator-On Observation State for Accelerator-On

X26 OSRevMeter-On Observation State for Rev-Meter-On

X27 OSBiteState Observation State for BiteState

X28 OSMovingState Observation State for MovingState

https://doi.org/10.1371/journal.pone.0255503.t003
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Table 4. Explanation of the first-order self-model states for the mental model learning in the network model.

First-order self-model states for the learning Explanation

X29 IWSwitch,TurnSwitch Representation state for Informed Connection Weight Switch!TurnSwitch

X30 LWSwitch,TurnSwitch Representation state for Learnt Connection Weight Switch!TurnSwitch

X31 RWSwitch,TurnSwitch Representation state for overall Connection Weight Switch!TurnSwitch

X32 IWTurnSwitch,Engine-On Representation state for Informed Connection Weight TurnSwitch!Engine-On

X33 LWTurnSwitch,Engine-On Representation state for Learnt Connection Weight TurnSwitch!Engine-On

X34 RWTurnSwitch,Engine-On Representation state for overall Connection Weight TurnSwitch!Engine-On

X35 IWEngine-On,FeelEngine-On Representation state for Informed Connection Weight Engine-On!FeelEngine-On

X36 LWEngine-On,FeelEngine-On Representation state for Learnt Connection Weight Engine-On!FeelEngine-On

X37 RWEngine-On,FeelEngine-On Representation state for overall Connection Weight Engine-On!FeelEngine-On

X38 IWFeelEngine-On,PressClutch Representation state for Informed Connection Weight FeelEngine-On!PressClutch

X39 LWeelEngine-On,PressClutch Representation state for Learnt Connection Weight FeelEngine-On!PressClutch

X40 RWFeelEngine-On,PressClutch Representation state for overall Connection Weight FeelEngine-On!PressClutch

X41 IWPressClutch,Clutch-On Representation state for Informed Connection Weight PressClutch!Clutch-On

X42 LWPressClutch,Clutch-On Representation state for Learnt Connection Weight PressClutch!Clutch-On

X43 RWPressClutch,Clutch-On Representation state for overall Connection Weight PressClutch!Clutch-On

X44 IWClutch-On,Gearbox-Neutral Representation state for Informed Connection Weight Clutch-On!Gearbox-Neutral

X45 LWClutch-On,Gearbox-Neutral Representation state for Learnt Connection Weight Clutch-On!Gearbox-Neutral

X46 RWClutch-On,Gearbox-Neutral Representation state for overall Connection Weight Clutch-On!Gearbox-Neutral

X47 IWGearbox-Neutral,PressGear1 Representation state for Informed Connection Weight Gearbox-Neutral!PressGear1

X48 LWGearbox-Neutral,PressGear1 Representation state for Learnt Connection Weight Gearbox-Neutral!PressGear1

X49 RWGearbox-Neutral,PressGear1 Representation state for overall Connection Weight Gearbox-Neutral!PressGear1

X50 IWPressGear1,Gear1-On Representation state for Informed Connection Weight PressGear1!Gear1-On

X51 LWPressGear1,Gear1-On Representation state for Learnt Connection Weight PressGear1!Gear1-On

X52 RWPressGear1,Gear1-On Representation state for overall Connection Weight PressGear1!Gear1-On

X53 IWGear1-On,PressAccelerator Representation state for Informed Connection Weight Gear1-On!PressAccelerator

X54 LWGear1-On,PressAccelerator Representation state for Learnt Connection Weight Gear1-On!PressAccelerator

X55 RWGear1-On,PressAccelerator Representation state for overall Connection Weight Gear1!On,PressAccelerator

X56 IWPressAccelerator,Accelerator-On Representation state for Informed Connection Weight PressAccelerator!Accelerator-On

X57 LWPressAccelerator,Accelerator-On Representation state for Learnt Connection Weight PressAccelerator!Accelerator-On

X58 RWPressAccelerator,Accelerator-On Representation state for Connection Weight PressAccelerator!Accelerator-On

X59 IWAccelerator-On,Engine-On Representation state for Informed Connection Weight Accelerator-On!Engine-On

X60 LWAccelerator-On,Engine-On Representation state for Learnt Connection Weight Accelerator-On!Engine-On

X61 RWAccelerator-On,Engine-On Representation state for overall Connection Weight Accelerator-On!Engine-On

X62 IWEngine-On,Rev-Meter-On Representation state for Informed Connection Weight Engine-On!Rev-Meter-On

X63 LWEngine-On,Rev-Meter-On Representation state for Learnt Connection Weight Engine-On!Rev-Meter-On

X64 RWEngine-On,Rev-Meter-On Representation state for overall Connection Weight Engine-On!Rev-Meter-On

X65 IWRevMeter-On,BiteState Representation state for Informed Connection Weight RevMeter-On!BiteState

X66 LWRevMeter-On,BiteState Representation state for Learnt Connection Weight RevMeter-On!BiteState

X67 RWRevMeter-On,BiteState Representation state for overall Connection Weight RevMeter-On!BiteState

X68 IWClutch-On,BiteState Representation state for Informed Connection Weight Clutch-On!BiteState

X69 LWClutch-On,BiteState Representation state for Learnt Connection Weight Clutch-On!BiteState

X70 RWClutch-On,BiteState Representation state for overall Connection Weight Clutch-On!BiteState

X71 IWBiteState,PressAccelerator Representation state for Informed Connection Weight BiteState!PressAccelerator

X72 LWBiteState,PressAccelerator Representation state for Learnt Connection Weight BiteState!PressAccelerator

X73 RWBiteState,PressAccelerator Representation state for overall Connection Weight BiteState!PressAccelerator

X74 IWEngine-On,MovingState Representation state for Informed Connection Weight Engine-On!MovingState

X75 LWEngine-On,MovingState Representation state for Learnt Connection Weight Engine-On!MovingState

(Continued)

PLOS ONE Modeling learner-controlled mental model learning processes by a second-order adaptive network model

PLOS ONE | https://doi.org/10.1371/journal.pone.0255503 August 24, 2021 11 / 21

https://doi.org/10.1371/journal.pone.0255503


and for LW-states and RW-states at 0.4. For the second-order CIW-states, their speed factors

were set at 0.4. All BS- and OS-states use either the Euclidean function (3) or the logistic sum

function (4), all LW-states the Hebbian learning function (5), the IW-states the logistic sum

function (4), the RW-states the first-order Euclidean function (3), and the CIW-states the

logistic sum function (4). All BS-states have initial value 0. All OS-States have initial value 0,

except the first OS-State X15 which has an initial value of 1. For all the IW-, LW-, and RW-

states, the initial value was set at 0.1.

The IS-states have constant value 1, as they refer to the knowledge of the instructor (see also

Fig 5). Note that it has been specified in such a way that only one of the IW-state or LW-state

is not enough to get a related RW-state with a high value close to 1. A typical pattern is that

first, based on a learnt LW-state only, the RW-state gets a value somewhere in the middle of

the 0–1 interval, and only after instructional learning making the IW-state high, the RW-state

value increases to a high value close to 1. This makes that first based on the value of LW-state

(i.e., by observational learning), the second-order CIW-state is activated (Fig 6) which in turn

makes the IW-state getting a value close to 1 (Fig 7). Only after the learner seeks instructional

information making the IW-state high, the RW-state value increases to 1. This shows that the

learner actively engages seeking more information to confirm the accuracy of what he/she has

learnt by observation.

Table 4. (Continued)

First-order self-model states for the learning Explanation

X76 RWEngine-On,MovingState Representation state for overall Connection Weight Engine-On!MovingState

X77 IWGear1-On,MovingState Representation state for Informed Connection Weight Gear1-On!MovingState

X78 LWGear1-On,MovingState Representation state for Learnt Connection Weight Gear1-On!MovingState

X79 RWGear1-On,MovingState Representation state for overall Connection Weight Gear1-On!MovingState

https://doi.org/10.1371/journal.pone.0255503.t004

Table 5. Explanation of the first-order self-model states for the instructor’s Information States in the network model.

First-order self-model states for the instructor’s

information

Explanation

X80 ISSwitch,TurnSwitch Representation state for Information State for Switch!TurnSwitch

X81 ISTurnSwitch,Engine-On Representation state for instructor’s Information State for TurnSwitch!Engine-On

X82 ISEngine-On,FeelEngine-On Representation state for instructor’s Information State for Engine-On!FeelEngine-On

X83 ISFeelEngineOn,PressClutch Representation state for instructor’s Information State for FeelEngineOn!PressClutch

X84 ISPressClutch,Clutch-On Representation state for instructor’s Information State for PressClutch!Clutch-On

X85 ISClutch-On,Gear-BoxNeutral Representation state for instructor’s Information State for Clutch-On!Gear-BoxNeutral

X86 ISGearBox-Neutral,PressGear1 Representation state for instructor’s Information State for GearBox-Neutral,PressGear1

X87 ISPressGear1,Gear1-On Representation state for instructor’s Information State for PressGear1!Gear1-On

X88 ISGear1-On, PressAccelerator Representation state for instructor’s Information State for Gear1-On!PressAccelerator

X89 ISPressAccelerator, Accelerator-On Representation state for instructor’s Information State for PressAccelerator!Accelerator-On

X90 ISAccelerator-On, Engine-On Representation state for instructor’s Information State for Accelerator-On!Engine-On

X91 ISEngine-On,Rev-Meter-On Representation state for instructor’s Information State for Engine-On!Rev-Meter-On

X92 ISRevMeter-On,BiteState Representation state for instructor’s Information State for RevMeter-On!BiteState

X93 ISClutch-On,BiteState Representation state for instructor’s Information State for Clutch-On!BiteState

X94 ISBiteState,PressAccelerator Representation state for instructor’s Information State for BiteState!PressAccelerator

X95 ISEngine-On,MovingState Representation state for instructor’s Information State for Engine-On!MovingState

X96 ISGear-On1,MovingState Representation state for instructor’s Information State for Gear-On1!MovingState

https://doi.org/10.1371/journal.pone.0255503.t005
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Table 6. Explanation of the second-order self-model states for control of the mental model learning in the network model.

Second-order self-model states for the control of the

learning

Explanation

X97 CIWSwitch,TurnSwitch Representation state for Control of Information Weight for Switch!TurnSwitch

X98 CIWTurnSwitch,Engine-On Representation state for Control of Information Weight for TurnSwitch!EngineOn

X99 CIWEngine-On,FeelEngine-On Representation state for Control of Information Weight for Engine-On!FeelEngineOn

X100 CIWFeelEngineOn,PressClutch Representation state for Control of Information Weight for FeelEngineOn!PressClutch

X101 CIWPressClutch,Clutch-On Representation state for Control of Information Weight for PressClutch!Clutch-On

X102 CIWClutch-On,Gear-BoxNeutral Representation state for Control of Information Weight for Clutch-On!Gear-BoxNeutral

X103 CIWGearBox-Neutral,PressGear1 Representation state for Control of Information Weight for GearBox-Neutral,PressGear1

X104 CIWPressGear1,Gear1-On Representation state for Control of Information Weight for PressGear1!Gear1-On

X105 CIWGear1-On, PressAccelerator Representation state for Control of Information Weight for Gear1-On!PressAccelerator

X106 CIWPressAccelerator, Accelerator-On Representation state for Control of Information Weight for PressAccelerator!Accelerator-On

X107 CIWAccelerator-On, Engine-On Representation state for Control of Information Weight for Accelerator-On!Engine-On

X108 CIWEngine-On,Rev-Meter-On Representation state for Control of Information Weight for Engine-On!Rev-Meter-On

X109 CIWRevMeter-On,BiteState Representation state for Control of Information Weight for RevMeter-On!BiteState

X110 CIWClutch-On,BiteState Representation state for Control of Information Weight for Clutch-On!BiteState

X111 CIWBiteState,PressAccelerator Representation state for Control of Information Weight for BiteState!PressAccelerator

X112 CIWEngine-On,MovingState Representation state for Control of Information Weight for Engine-On!MovingState

X113 CIWGear-On1,MovingState Representation state for Control of Information Weight for Gear-On1!MovingState

https://doi.org/10.1371/journal.pone.0255503.t006

Fig 4. Dynamics of the base states X1-X14 showing internal simulation of the mental model.

https://doi.org/10.1371/journal.pone.0255503.g004

Fig 5. Base states X6 (Clutch-on) and X7 (Gearbox-neutral) with impact from OS-states X20, X21 and LW-state

X45, RW-state X46 and learner IW-state X44 and instructor IS-state X85 with control by CIW-state X102.

https://doi.org/10.1371/journal.pone.0255503.g005
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The learner hence controls the amount of information (s)he needs in addition to complete

her/his learning based on her/his current level of understanding by own observation (see also

Section 3). The results indicated in Fig 5 display the connection between two BS-states X6 and

X7. Here it can be seen that, together with the value of X6 becoming 1 at time 210, the OS-state

X21 affects the value of X7 together with RW-state X46, which combines the weights of the

related LW-and IW-states. The CIW-state controls the weight of IW-state according to the

LW-state’s weight. State X7 reaches value 1 at time 250 by an S-curve. The IS-state representing

knowledge of the instructor remains at 1 all the time (a knowledgeable instructor).

As a form of evaluation, in Figs 6 and 7 it is displayed how the activation of each CIW-state

indeed follows the activation of the corresponding LW-state, and how in turn the activation of

the CIW-state indeed is followed by the corresponding IW-state. This confirms that the model

displays the intended behavior that first observational learning takes place, after which there

is a learner initiative to request corresponding instructional information, and appropriate

instructional learning indeed takes place after that.

The simulation results presented by these figures are in accordance with and illustrate the

educational science literature such as [28, 44] (as discussed in Section 2) on the use of learner-

control of the timing of instruction.

Fig 6. All control CIW-states showing impact from the corresponding observational learning LW-states.

https://doi.org/10.1371/journal.pone.0255503.g006

Fig 7. All control CIW-states showing their impact on the corresponding instructional learning IW-states.

https://doi.org/10.1371/journal.pone.0255503.g007
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6 Verification of the network model by equilibrium analysis

To verify whether the introduced and implemented self-modeling network model behaves as

expected from its design specification, a number of network states equilibrium values were

analyzed for the example simulation.

6.1 Criterion for equilibria of self-modeling network models

A stationary point for a state Y occurs at time t if dY(t)/dt = 0. An equilibrium occurs when all

states have a stationary point simultaneously. From Eq (1) in Section 4, for any state Y for

being stationary the following general criterion in terms of the network characteristics can be

derived:

ηY ¼ 0 or aggimpactY tð Þ ¼ Y tð Þ ð6Þ

where

aggimpactY tð Þ ¼ cYðωX1 ;Y
X1 tð Þ; . . . ;ωXk;Y

Xk tð ÞÞ

with X1 to Xk the states from which Y gets its incoming connections.

The equation in (6) is also called an equilibrium equation. As a test, using the example simu-

lation presented above for the apparent equilibrium at time 800, for 68 of the 113 network

states it has been verified (independent of the implemented model) that the aggregated impact

aggimpactXi (t) matches the state value for equilibrium values observed in the example simula-

tion. In particular, this has been done for all 4x17 = 68 LW-, IW-, RW-, and CIW-states. The

results are discussed in Sections 6.2 to 6.4.

6.2 Equilibrium analysis of the LW-states and the CIW-states

The LW-states use the Hebbian learning function hebbμ (V1, V2,W) as combination function.

Using this function, by (5) for any LW-state Y holds

aggimpactY tð Þ ¼ hebbμðVX1
;VX2

;VLWÞ ¼ VX1
VX2

1 � VLWð Þ þ μVLW ð7Þ

where VX1, VX2 are the state values of the connected base states X1 and X2 and VLW the state

value of LW-state Y. So, for this case the equilibrium equation in (6) becomes

VX1
VX2

1 � VLWð Þ þ μVLW ¼ VLW ð8Þ

Assuming the denominator nonzero, this can also be rewritten into (also see [40], Section

3.6.1):

VLW ¼
VX1

VX2

1 � μþ VX1
VX2

ð9Þ

For the example simulation, it was set μ = 1; therefore (8) is equivalent to

VX1
¼ 0 orVX2

¼ 0 orVLW ¼ 1 ð10Þ

In the simulation, at t = 800 all LW-states have value 1 in a precision of 15 digits (and the

values VX1, and VX2 are always nonzero). Therefore, for all LW-states criterion (6) is fulfilled

with deviations < 10−15. This provides one piece of evidence that the implemented network

model is correct with respect to its design specification.
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The 17 CIW-states use the combination function alogistic10,0.4(‥) described by (4) and the

weight of the connection from the related LW-state to the CIW-state is 1 so

aggimpactCIW ¼ alogistic10;0:4 VLWð Þ ð11Þ

where VLW is the value of the LW

Therefore, for this case the equilibrium equation from criterion (6) is

alogistic10;0:4 VLWð Þ ¼ VCIW ð12Þ

where VCIW is the value of the CIW-state.

Now, as already found above at t = 800, for all LW-states VLW = 1 in a precision of 15 digits,

and alogistic10,0.4(1) = 0.997482089170521. Moreover, at t = 800 it is found that VCIW =

0.997482089170520 for all CIW-states. This makes a deviation of 0.997482089170520–

0.997482089170521 = -10−15. This very small deviation provides a second piece of evidence

that the implemented network model is correct with respect to its design specification.

6.3 Equilibrium analysis of the IW-states

The IW-states use the combination function alogistic10,0.7(‥) described by (4) and has incom-

ing connections from themselves (with weight 1), and from the related IS-state. Moreover, the

connection from this IS-state to the IW-state has weight represented by the related CIW-state,

whereas the state values of the IS-states are constant 1. Therefore, it holds

aggimpactIW ¼ alogistic10;0:7 VIW;VCIWð Þ ð13Þ

where VIW is the value of the IW-state itself and VCIW is the value of the CIW-state.

So, for this case the equilibrium equation from criterion (6) is

alogistic10;0:7 VIW;VCIWð Þ ¼ VIW ð14Þ

These values have been computed (independent of the implemented model), as shown in

Table 7. Here the second and fifth column display the values for the CIW- and IW-state from

the simulation at t = 800, and the values in the third and fourth columns were calculated based

on that. The fourth column indicates the left hand side of the above Eq (14), the fifth column

the right hand side and the sixth column the difference between the two. It turns out that all

deviations are< 10−7, which is a third piece of evidence that the implemented network model

is correct with respect to its design specification.

6.4 Equilibrium analysis of the RW-states

The RW-states use the combination function eucl1,2(.,.) described by (3), which makes the

average of its two arguments. They have incoming connections with weight 1 from the related

LW-state and IW-state. Therefore it holds

aggimpactRW ¼
VLW þ VIW

2
ð15Þ

where VLW is the value of the LW-state and VIW is the value of the IW-state.

Then for this case the equilibrium equation from criterion (6) is

VLW þ VIW

2
¼ VRW ð16Þ

where VRW is the value of the RW-state. Like above, these values have been computed
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(independent of the implemented model) from the simulation values at t = 800 for the IW and

LW-states, and compared to the simulation values of the RW-states as shown in Table 8. It

turns out that all deviations are < 10−8, which is a fourth piece of evidence that the imple-

mented network model is correct with respect to its design specification.

7 Discussion

In this paper, a computational network model was presented for controlled learning of a men-

tal model. Learning of a mental model often involves observational learning and instructional

Table 7. Equilibrium analysis results for the IW-states.

nr VCIW VCIW + VIW aggimpactIW VIW deviation

X29 0.997482089170520 1.997479769043310 0.999997679872790 0.999997679872789 -1.11022 10−15

X32 0.997482089170520 1.997479769043310 0.999997679872790 0.999997679872789 -1.11022 10−15

X35 0.997482089170520 1.997479769043310 0.999997679872790 0.999997679872789 -1.11022 10−15

X38 0.997482089170520 1.997479769043310 0.999997679872790 0.999997679872789 -1.11022 10−15

X41 0.997482089170520 1.997479769043310 0.999997679872790 0.999997679872789 -1.11022 10−15

X44 0.997482089170520 1.997479769043310 0.999997679872790 0.999997679872789 -1.11022 10−15

X47 0.997482089170520 1.997479769043310 0.999997679872790 0.999997679872789 -1.11022 10−15

X50 0.997482089170520 1.997479769043310 0.999997679872790 0.999997679872789 -1.11022 10−15

X53 0.997482089170520 1.997479769043310 0.999997679872790 0.999997679872789 -1.11022 10−15

X56 0.997482089170520 1.997479769043310 0.999997679872790 0.999997679872789 -1.11022 10−15

X59 0.997482089170520 1.997479769043310 0.999997679872790 0.999997679872789 -1.11022 10−15

X62 0.997482089170520 1.997479769043310 0.999997679872790 0.999997679872789 -1.11022 10−15

X65 0.997482089170520 1.997479769026860 0.999997679872790 0.999997679856344 -1.64454 10−11

X68 0.997482089170520 1.997479769036000 0.999997679872790 0.999997679865477 -7.31293 10−12

X71 0.997482089170520 1.997479769029510 0.999997679872790 0.999997679858985 -1.38045 10−11

X74 0.997482089170520 1.997479763727770 0.999997679872667 0.999997674557245 -5.31542 10−9

X77 0.997482089170520 1.997479758743110 0.999997679872551 0.999997669572591 -1.03 10−8

https://doi.org/10.1371/journal.pone.0255503.t007

Table 8. Equilibrium analysis results for the RW-states.

nr VIW VLW aggimpactRW VRW deviation

X31 0.999997679872789 1.000000000000000 0.999998839936394 0.999998839936394 <10−15

X34 0.999997679872789 1.000000000000000 0.999998839936394 0.999998839936394 <10−15

X37 0.999997679872789 1.000000000000000 0.999998839936394 0.999998839936394 <10−15

X40 0.999997679872789 1.000000000000000 0.999998839936394 0.999998839936394 <10−15

X43 0.999997679872789 1.000000000000000 0.999998839936394 0.999998839936394 <10−15

X46 0.999997679872789 1.000000000000000 0.999998839936394 0.999998839936394 <10−15

X49 0.999997679872789 1.000000000000000 0.999998839936394 0.999998839936394 <10−15

X52 0.999997679872789 1.000000000000000 0.999998839936394 0.999998839936394 <10−15

X55 0.999997679872789 1.000000000000000 0.999998839936394 0.999998839936394 <10−15

X58 0.999997679872789 1.000000000000000 0.999998839936394 0.999998839936394 <10−15

X61 0.999997679872789 1.000000000000000 0.999998839936394 0.999998839936394 <10−15

X64 0.999997679872789 1.000000000000000 0.999998839936394 0.999998839936394 <10−15

X67 0.999997679856344 1.000000000000000 0.999998839928172 0.999998839925431 -2.74081 10−12

X70 0.999997679865477 1.000000000000000 0.999998839932738 0.999998839931520 -1.21869 10−12

X73 0.999997679858985 1.000000000000000 0.999998839929493 0.999998839927192 -2.30072 10−12

X76 0.999997674557245 1.000000000000000 0.999998837278622 0.999998836392726 -8.85897 10−10

X79 0.999997669572591 1.000000000000000 0.999998834786295 0.999998833069649 -1.71665 10−9

https://doi.org/10.1371/journal.pone.0255503.t008
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learning. To obtain an effective learning process, appropriate timing of these types of learning

is needed, which requires some form of control. For such control, a mental model adaptation

process itself has to be made adaptive as well, which is a form of second-order adaptation for

this mental model. So, all in all, a mental model can be used in three different manners: (1) it is

executed to draw conclusions from it, (2) it is adapted to learn and improve it, and (3) these

adaptation processes are controlled. These three properties, and their interplay require three

different types of modeling that interact with each other. In this paper, the network-oriented

modeling approach for self-modeling adaptive networks described in [23] was applied to

address these processes for mental models. A generic three-level self-modeling network archi-

tecture introduced in [26] was applied to support this. Based on this general architecture, a sec-

ond-order adaptive mental network model was presented, in which the base level includes a

mental model as it can be used, the second level models a first-order adaptation process for the

learning process of this mental model and the third level models a second-order adaptation

process that controls the focus and timing of the types of learning.

It has turned out that the network self-modeling mechanism (also called network reifica-

tion) fits very well to what is needed for (1), (2) and (3) for mental models. The idea of self-

modeling networks was originally (in [22, 23]) mainly inspired by the extensive neuroscience

literature on plasticity versus metaplasticity in the brain; e.g., [47–50]. Paper [26] was the first

paper that demonstrated the usefulness of the same conceptualisation for the social domain of

teaching and learning. As far as the authors know, there is no other computational model cov-

ering (1), (2) and (3).

The introduced network model was illustrated for a case study of learner-controlled mental

model learning for how a car works, and driving it. Here the learner is in control of the use

and timing of observational learning and instructional learning. Using the dedicated software

environment described in [40], Ch. 9 the network model was implemented and simulated. By

this it was shown to work as expected from the literature. Moreover, by verification of the

implemented model based on equilibrium analysis (for a representative test set of 68 of the 113

network states), it was found that all deviations are <10−7 (see Section 6). This provides strong

evidence that the implemented model is correct with respect to its design specification. Further

validation by comparison to empirical data would be interesting for future research; currently,

such data are not available to the authors.

Much literature exists which describes the learning of mental models and was discussed in

the paper. However, computational models addressing it are very rare; a few exceptions are

[13, 19, 20, 53]. For example [20], addresses simulation of students’ construction of energy

models in physics in a production rule modeling format and in [13] the PDP modeling format

was applied to model mental models. In [53] a mental God model was addressed, and in [19]

the focus is on model-based learning to drive a car. In all four cases [13, 19, 20, 53] no control

of the learning processes is modeled, which is a main difference with the current paper, where

the focus is on the control and this is addressed by designing a second-order adaptive mental

network model.

In the meantime, the self-modeling network modeling perspective [22, 23] and the general

three-level second-order adaptive network architecture introduced in [26] and also described

in more detail in the current paper to model dynamics, adaptation of control for mental mod-

els, has been found to be very general and applicable for handling mental models in many

other application cases where mental models are used. For example, in [54] this architecture

and also the learning mechanisms contributed by [26] have been applied successfully to model

how shared mental models are used in hospital teamwork. A more detailed overview of this

general approach to mental models originating to a large extent in [26] and many of its appli-

cations will be presented in the forthcoming book [55].
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However, note that the literature on mental models is very diverse. Therefore, although

having turned out applicable in many cases, it cannot be claimed that the way in which mental

models are addressed from a network-oriented perspective here, would be applicable for all

forms of mental models addressed in the literature.
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