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Aim: To assess the ablative margin (AM) after microwave ablation (MWA) for

hepatocellular carcinoma (HCC) with a deep learning-based deformable image

registration (DIR) technique and analyze the relation between the AM and local tumor

progression (LTP).

Patients and Methods: From November 2012 to April 2019, 141 consecutive patients

with single HCC (diameter ≤ 5 cm) who underwent MWA were reviewed. Baseline

characteristics were collected to identify the risk factors for the determination of LTP after

MWA. Contrast-enhanced magnetic resonance imaging scans were performed within 1

month before and 3 months after treatment. Complete ablation was confirmed for all

lesions. The AM was measured based on the margin size between the tumor region and

the deformed ablative region. To correct the misalignment, DIR between images before

and after ablation was achieved by an unsupervised landmark-constrained convolutional

neural network. The patients were classified into two groups according to their AMs:

group A (AM ≤ 5mm) and group B (AM > 5mm). The cumulative LTP rates were

compared between the two groups using Kaplan–Meier curves and the log-rank test.

Multivariate analyses were performed on clinicopathological variables to identify factors

affecting LTP.

Results: After a median follow-up period of 28.9 months, LTP was found in 19

patients. The mean tumor and ablation zone sizes were 2.3 ± 0.9 cm and 3.8 ± 1.2 cm,

respectively. The mean minimum ablation margin was 3.4 ± 0.7mm (range, 0–16mm).

The DIR technique had higher AUC for 2-year LTP without a significant difference

compared with the registration assessment without DL (P = 0.325). The 6-, 12-, and 24-

month LTP rates were 9.9, 20.6, and 24.8%, respectively, in group A, and 4.0, 8.4, and

8.4%, respectively, in group B. There were significant differences between the two groups

(P= 0.011). Multivariate analysis showed that being >65 years of age (P= 0.032, hazard

ratio (HR): 2.463, 95% confidence interval (CI), 1.028–6.152) and AM≤ 5mm (P= 0.010,

HR: 3.195, 95% CI, 1.324–7.752) were independent risk factors for LTP after MWA.
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Conclusion: The novel technology of unsupervised landmark-constrained convolutional

neural network-based DIR is feasible and useful in evaluating the ablative effect of MWA

for HCC.

Keywords: microwave ablation, deep learning-based deformable image registration, ablative margin,

hepatocellular carcinoma, local tumor progression

INTRODUCTION

Image-guided percutaneous thermal ablation (PTA) is a
widely prevalent minimally invasive therapy for early-stage
hepatocellular carcinoma (HCC) (1–3). Both microwave ablation
(MWA) and radiofrequency ablation (RFA) offer a shorter
operative duration, less bleeding, and fewer complications than
surgery (4–6). Despite many advantages, the therapeutic effect
of PTA is still hampered by local tumor progression (LTP) (7).
Accumulating data shows that untreated micrometastases from
the primary tumor, the ensuing spread along intrasegmental
branches, and vascular invasion can lead to LTP. Previous
studies have reported that the LTP rate ranged from 5.1 to
20.7% in patients with a liver malignancy who underwent
different ablation modalities (8, 9). Numerous clinical studies
have found that a minimum ablation margin (AM) is an
independent predictor of LTP after ablation for HCC (10–12).
Most micrometastases in previous reports were found to be
more than 5mm away from the boundary of target lesions, and a
thermal field range that extends outside the tumor border with a
5–10-mm safe margin should be developed. To improve ablative
efficacy, accurate AM assessment would deliver important
feedback to the operator during the procedure.

For the assessment of the surgical margin, the margin size
refers to the distance from the edge of the neoplasm to the
transected tissue (13). Similarly, the AM was measured by the
distance among the radiographic borders of the tumor and the
ablation zone based on 2D pre- and post-ablative images (14).
Traditionally, radiologists typically assess the AM by comparison
of the pre- and post-ablation images side by side based on
anatomical markers. However, this method fails to measure
the AM conveniently and accurately. Instead, pre- and post-
ablative images can be registered, and the AM can be measured
immediately. However, these registration techniques still have
two major issues: first, due to the breathing motion of the
liver and heating-stimulated tissue deformation (15, 16), the
registration error between the pre- and post-ablation images
is augmented; second, there is no specific cutoff value for the
optimal safety boundary value. Therefore, precise assessment in
the AM and image registration play a vital role in improving the
predictive accuracy of LTP after PTA.

Deep learning (DL) is a subspecialty of machine learning that
has achieved impressive performance in diagnosis, prediction,
and decision-making. In recent years, DL has been applied to
image registration and DL-based registration methods can be
divided into two categories: one method is to utilize a deep
neural network to estimate the similarity between the two images
of pre- and post-ablation and drive iterative optimization, and
the other method utilizes a deep regression network to predict

the transformation parameters. The former methods only use
deep learning for the similarity measurement, but they still need
the traditional registration method for iterative optimization
and cannot perform real-time registration. The latter methods
take advantage of DL and address the challenges of non-rigid
registration. Balakrishnan et al. (17) proposed an unsupervised
learning-based deformable image registration method for MR
brain registration. They used a convolutional neural network-
based framework, VoxelMorph, to map an input image pair to
a deformation field that aligns these images. Zhao et al. (18)
presented recursive cascaded networks for deformable image
registration. They warped the moving image successively by
each cascade recursively in an unsupervised manner and finally
aligned to the fixed image.

The goal of this study was to develop and explore AMs using
registration between pre- and post-ablationMRI images based on
DL, which overcomes the limitations of the current techniques
and increases the AM accuracy assessment post-MWA in early-
stage HCC.

MATERIALS AND METHODS

Patient Selection
The protocol was reviewed and granted approval through
the institutional review board. The necessity to acquire
informed consent was waived. For our cohort study, 289
treatment-naïve patients with HCC (tumor diameter ≤ 5 cm)
who subsequently were administered computed tomography-
guided percutaneous microwave ablation (CT-PMWA) from
November 2012 to April 2019 were reviewed. The patients were
monitored from time of treatment until death or April 2020.
A diagnosis of HCC was established as per recommendations
of the European Association for the Study of the Liver
(EASL) (19). To avoid any confounding factors that might
cause LTP, we designed strict inclusion and exclusion criteria
(Figure 1). The inclusion and exclusion criteria are described
in Supplementary Material A1. The ablation area covering
the tumor focus was examined by comparing the real-time
images that were acquired after the procedure with the
enhanced scan image that were acquired prior to treatment to
confirm complete ablation. The AM is defined as the shortest
distance from the edge of the tumor to the edge of the
ablation zone. These patients had undergone necessary follow-
up examinations.

Pre- and Post-ablative MRI and Follow-Up
All pre-ablation magnetic resonance image (MRI) scans were
performed within 1 month (mean, 12.8 ± 2.2 days; range, 1–
29 days) before the MWA procedure. The post-ablation MRI
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FIGURE 1 | Flow diagram shows the study patient accrual process.

scans were also performed within 3 months (mean, 34.5 ± 10.5
days; range, 25–82 days) following theMWA procedure. Two GE
750w 3.0T MRI scanners were used (GE Healthcare, Waukesha,
WI). MRI image parameters used for registration are shown
in Supplementary Material A2. Contrast-enhanced MR images
were obtained through the use of a T1-weighted 3D gradient-
echo sequence prior to and 30, 60, and 90 s post-intravenous
administration of 0.1 mmol/kg gadopentetate dimeglumine
(Bayer HealthCare Pharmaceuticals, Berlin, Germany). The
patients were monitored using a contrast-enhanced imaging
(i.e., MRI or CT) at 3-month intervals within 1 year and 6-
month intervals beyond 1 year, and the follow-up period was not
<1 year.

MWA Procedures
Ablation was conducted through three interventional
radiologists (JH, ZH, and CA, with 25, 10, and 5 years of
experience with MWA, respectively). All MWA procedures were
carried out under CT guidance, the microwave antenna was
localized into the tumor, and the deployment degree scale was
established based on the tumor size and shape. Patients were
asked to lie in a supine or prone position on the scanning bed
based on the location of their lesions. Every MWA procedure
was carried out using local and intravenous anesthesia. Post-
anesthesia, a 15-gauge, 18-cmMWA antenna (MTC-3C, Nanjing
Qinghai Research Institute of Microwave Electric, China)
was introduced into the tumor at a pre-set angle. In order
to make sure that the position of the ablation electrode was
adequate, CT image scanning was carried out once more before
the ablation surgery. The settings for the power and ablation
times were established as per the standard guidelines that
were recommended by the manufacturer. Each MWA session
utilized an overlapping technique to make sure the entire tumor
was eliminated.

Definition of Local Tumor Progression and
Technique Effectiveness
LTP was characterized based on the imaging results of the
abnormal nodular, disseminated, and/or atypical patterns of
peripheral enhancement around the ablation site in MWA-
treated patients. The efficacy of the technique was described as
comprehensive local necrosis at 1 month post-treatment (20).

Image Registration Procedure
The MRI–MRI image fusion was carried out utilizing a
commercial image fusion system (MyLab Twice, Esoate, Genoa,
Italy) (11). One set of MRI images prior to MWA that
demonstrated hepatic vessels clearly and HCC lesions within
the portal vein or delay phase were chosen. Next, the images
in DICOM format were imported into the image fusion system.
An additional set of MRI images post-MWA with clear hepatic
vessels and ablative zones in DICOM format were also imported
within the image fusion system. HCC lesions in the MRI scans
before MWA were manually outlined, and a 5-mm AM was
automatically established. The system labeled the HCC lesion and
AM through the use of various colors (Figure 2).

Deep Learning-Based Deformable Image
Registration
To reduce the registration errors due to breathing motion
and heating-induced tissue deformation, we present a deep
learning-based deformable image registration (DIR) algorithm
based on an unsupervised end-to-end deep spatial transformed
similarity network (STS-net) for the ablation images. The
architecture of our proposed registration method is given in
Figure 3. The registration network, STS-net, contains a spatial
transformer network (ST-net) and a similarity network (S-net).
The ST-net performs explicit spatial transformations of moving
images according to fixed images, and the S-net calculates the
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FIGURE 2 | An example of margin assessment based on MR-MR fusion. (A) Co-registered pre-ablation MR images show the tumor zone (orange arrow); (B)

Co-registered post-ablation MR images show the ablation zone (orange arrow). (C) Achievement of registration between the tumor and ablation zones (blue arrow).

(D–F). Segmented tumor (red) and theoretical 5mm (blue) margin contours overlaid on the ablation zone on the axial, sagittal, and coronal MR images.

FIGURE 3 | The non-rigid DIR STS-net. Two neural network (left: spatial transformer network and right: similarity network). The orange frame is a non-rigid

transformation parameter generation framework in which there are three parts: The localization network specified by a Siamese network, grid generator, and sampler.

The blue frame is a similarity calculation framework where the deep multiscale features from the transformed pre-operative image and ablation image are extracted by

a convolutional neural network, and their similarity is backpropagated to the orange frame for more accurate registration.

similarity between pairs of transformed moving images and
fixed images. By backpropagating the similarity from the S-Net,
the ST-net can achieve the optimized spatial transformation for
unsupervised registration.

The ST-net forms a spatial transformer. First, a Siamese
network, which includes two identical convolutional neural
networks that share the same set of weights with a final regression
layer, is designed to create the non-rigid transformation
parameters that minimize the difference between the pair of
images. Next, the predicted spatial transformation parameters
are utilized to generate a sampling grid to obtain the rigid
and non-rigid transformations. Finally, the sampler achieves the
warped image sampled from the original moving image at the

grid points. For a better transformation, we use the differentiable
image sampler, which takes the set of sampling points, and an
input image U to produce a transformed moving image V. The
transformed image V can be determined using

Vi =
H

∑

n

W
∑

m

Unmmax (0, 1− |xi −m|)max
(

0, 1−
∣

∣yi − n
∣

∣

)

,(1)

where H and W are the height and width of the image,
respectively; the (xi, yi) coordinates define the spatial location of
pixel i in the input image, and max(a, b) is a function returning
the larger value between value a and value b. The bilinear
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sampling kernel is used to obtain the value at a particular pixel
in image V.

The S-net measures the similarity metric between the paired
images. For a more accurate measurement, the whole images
are divided into regions, and the similarities between the paired
regions are calculated and combined. First, the deep feature
is extracted by a convolutional neural network. The regions
are passed through a stack of convolutional layers to capture
the notion of left, right, up, down, and center, are linearly
transformed, and are passed through five max-pooling layers
to maintain the local translation invariance property, for a set
of feature maps. Then, the multiscale features are fused to
form a fully connected layer. Finally, the similarity of deep
features from the paired images is calculated in the sum of the
similarity between the paired deep features of regions with the
normalized cross-correlation. The similarity as the loss function
is backpropagated to the ST-net for more accurate registration of
ablation images. The loss function can be defined by

LOSS = −
N

∑

i=1

D(Fwi, Fai)√
D(Fwi, Fwi)× D(Fai, Fai)

, (2)

where Fwi and Fai are the features of the ith block of the warped
image and ablation image, respectively, which are extracted from
the fully connected layer, D (a, b) is a function returning the dot
product of vector a and vector b, and N is the number of blocks
in the warped image.

The proposed network can learn changes in the position
and deformation of the liver according to the pair of the
pre- and post-ablation images and apply the transformation on
the pre-operative image to obtain the warped image with the
deformation. By backpropagating the similarity and correcting
the deformation iteratively until the minimum dissimilarity
is reached, the pre-operative image is finally aligned to the
ablation image.

Statistical Analysis
Continuous variables were evaluated through the Mann–
Whitney U-tests, while categorical variables were assessed
through the Pearson χ2 or Fisher’s exact tests. LTP was then
determined utilizing the Kaplan–Meier method using a log-rank
test. Univariate and multivariate analyses of independent risk
factors for LTP were evaluated using a forward stepwise Cox
regression model. The variation in prediction power among
the metrics was determined by comparing the area under
the receiver operating characteristic curve utilizing DeLong’s
method. SPSS 22.0 (SPSS, Chicago, IL) and RMS package for the
R environment 3.5.1 (http://www.r-project.org/) were utilized for
all statistical analyses. A two-sided P < 0.05 was the threshold for
statistical significance.

RESULTS

Baseline Characteristics
After layer-by-layer screening according to the above exclusion
criteria, 141 patients (17 females and 124 males; mean age, 55.2

TABLE 1 | Baseline characteristics of patients undergoing CT-PMWA.

Characteristics No. of patients (n = 141)

Age (y)a 55.2 ± 10.8 (26–82)

Gender

Female 17 (12.1)

Male 124 (87.9)

Comorbid disease

Absence 41 (29.1)

Presence 100 (70.9)

Maximum tumor diameter (cm)a 2.3 ± 0.9

Maximum ablation zone diameter (cm)a 3.8 ± 1.2

Tumor volume (ml)* 47.8 (16.3–352.8)

Ablation zone volume (ml)* 102.6 (76.5–892.6)

Child–Pugh class

A 140 (99.3)

B 1(0.7)

Location of tumor

Left S1/S2/S3/S4 2/2/3/6

Right S5/S6/S7/S8 35/34/24/35

Abutting major vessels

Presence 25 (17.7)

Absence 116 (82.3)

Biochemical tests

AFP (ng/ml)* 32.7 (6.3–22352.8)

ALP (U/L)* 86.1 (49.0–241.6)

AST (U/L)a 36.1 ± 10.8

ALT(U/L)a 37.7 ± 11.6

TBIL (µmol/l)a 15.6 ± 3.9

Ablation margin

≤5mm 61 (43.3)

>5mm 80 (56.7)

Ablation duration (min)a 8.7 ± 1.6

Ablation power (W) a 58.2 ± 1.2

Unless otherwise indicated, numbers in parentheses are the range.
aValues are mean value ± standard deviation (range).

*Values are median (range); AFP, alpha-fetoprotein; AST, aspartate aminotransferase;

ALT, alanine transaminase; ALB, serum albumin; TBIL, total bilirubin; MWA,

microwave ablation.

± 10.8 years) using single HCC (mean diameter, 2.3 ± 0.9 cm)
were enrolled. All HCC lesions underwent deep learning-based
deformable image registration (DIR), and the success rate of
registration was 100% (141/141). The median image registration
time cost was 183.5 s, and the mean registration error was 1.6 ±
0.8mm, which is significantly lower than that of the registration
method without DL (2.8 ± 1.1mm, P = 0.003). The patient and
tumor characteristics are demonstrated in Table 1. The mean
maximum tumor and ablation zone sizes were 2.3 ± 0.9 cm and
3.8 ± 1.2 cm, respectively. The median maximum tumor and
ablation zone volumes were 47.8 and 102.6ml, respectively. The
mean minimum ablation margin was 3.4 ± 0.7mm (range, 0–
16mm). In total, 80 patients successfully achieved a 5-mm safe
margin, and 61 patients failed to achieve 5-mm safe margins.
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TABLE 2 | Comparison between DIR and conventional registration assessment.

Conventional registration

DIR AM ≤ 5 mm AM > 5 mm Total

LTP Non-LTP LTP Non-LTP

AM ≤ 5mm 8 34 8 11 61

AM > 5mm 3 26 0 51 80

Total 11 60 8 62 141

AM, ablative margin; DIR, deep learning-based deformable image registration; LTP, local

tumor progression.

Comparison Between DIR and
Conventional Registration Assessment
Using the conventional registration technique without DL,
after registration based on the intrahepatic structure landmark,
in three of these cases, significant deviations were visible
due to heating-induced tissue deformation. However, 11 cases
were misaligned due to breathing motion. If these incorrect
registrations were followed, seven patients were considered not
to reach the ablation margin. As there is only a limited amount
of cases in categories “AM > 10 mm” and “AM = 0mm,” we
divided these patients into two groups for statistical analysis and
comparison between DIR and conventional registration without
DL. Table 2 shows the comparative results. Compared with
registration without DL, DIR was classified into a proportion
of ablations as AM ≤ 5mm (61 vs. 70), and others as margin
>5mm (80 vs. 71). The statistical analysis results demonstrated
that the minimum AM calculated utilizing the DIR technique
had increased discrimination power for 2-year LTP without a
significant difference compared with the registration assessment
without DL (AUC, 0.728 vs. 0.705, respectively; P = 0.325).

Ablative Margin and Tumor Size
According to tumor size, we divided these patients into two
groups: the <3-cm and 3–5-cm groups. The mean AM size was
similar to that in the 3–5-cm group, demonstrating no significant
differences (P= 0.403). The correlation between theminimal AM
(average of the measured margins by the observers) and tumor
size is demonstrated in Figure 4.

Midterm Local Tumor Progression After
CT-PMWA
The median follow-up period was 28.9 months (range, 12.3–89.2
months). In total, 13.5% of patients (19/141) had experienced
confirmed LTP. Based on follow-up imaging, the efficacy rate
of this technique was 98.6%. These patients were separated into
two groups including (1) patients with an ablation area that fully
covers the tumor but fails to attain the 5-mm safe margin (group
A) and (2) patients with an ablation area that completely covers
the tumor and effectively achieves the 5-mm safe margin (group
B). With the DIR technique, of the 61 HCC patients in group
A, 16 experienced LTP, whereas three patients experienced LTP
in group B. In the conventional registration technique, of the 70
HCC patients in group A, 11 were found to have LTP, whereas

FIGURE 4 | The correlation between the minimal (ablative margin) AM and

tumor size. The histogram shows that there is no statistical difference in the

AM between the <3-cm group and 3–5-cm group.

eight were found to have LTP in group B. According to DIR,
the cumulative 6-, 12-, and 24-month LTP rates of group A were
9.9, 20.6, and 24.8%, respectively, for group A and 4.0, 8.4, and
8.4%, respectively (Figure 5A), showing a significant difference
(P = 0.011) between the groups. According to conventional
registration without DL, the cumulative 6-, 12-, and 24-month
LTP rates were 7.7, 18.8, and 23.1%, respectively, for group A and
4.0, 8.4, and 8.4%, respectively, for group B (Figure 5B), showing
a significant difference (P = 0.025) among the two groups.

Univariate and Multivariate Analyses for
LTP
Eight potential risk factors (sex, age, comorbidities, cirrhosis,
AFP, tumor size, location abutting major vessels, and AM)
for LTP were examined through univariate and multivariate
analyses (Table 3). Univariate analysis demonstrated statistical
significance between the LTP rates dependent on age [hazard
ratio (HR) = 2.891; 95% confidence interval (CI): 1.298, 6.439;
P = 0.009] and AM (HR = 2.426; 95% CI: 1.081, 5.444; P =
0.027). The multivariate analysis showed that older age (HR =
2.463; 95% CI: 1.028, 6.152; P = 0.032) and an AM ≤ 5mm (HR
= 3.195; 95% CI: 1.324, 7.752; P = 0.010) were significant LTP
risk factors.

DISCUSSION

Registering the pre- and post-ablation images has been a
promising alternative to conventional side-by-side assessment
for AMs, which has many advantages as follows (21–23): (1)
faster and more accurate measurement of safety boundaries
and (2) clearer observation of the spatial relationship between
the tumor and ablation zone. Therefore, an increasing number
of registration methods have emerged for evaluating AMs.
Soichiro Tani et al. (24) reported that a non-rigid intensity-
based registration was used to develop a 3D distance map
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TABLE 3 | Factors associated with LTP according to univariate and multivariate analysis.

Factors No. of patients Univariate analysis multivariate analysis

HR (95% CI) P-value HR (95% CI) P-value*

Age (years) 2.891 (1.298, 6.439) 0.009 2.463 (1.028, 6.152) 0.032

<65 113

≥65 29

Gender 2.839 (0.462, 4.524) 0.513 … …

Male 124

Female 17

Comorbidities 2.129 (0.651, 6.961) 0.211 … …

Absence 41

Presence 100

Cirrhosis 2.129 (0.651, 6.961) 0.211 … …

Absence 51

Presence 90

Tumor size(cm) 1.864 (0.824, 4.219) 0.135 … …

<3 108

3–5 33

Abutting major vessels 1.018 (0.501, 2.068) 0.960 … …

Absence 116

Presence 25

AFP (ng/mL) 1.585 (0.667, 3.830) 0.292 … …

≤200 112

>200 29

Ablative margin (mm) 2.426 (1.081, 5.444) 0.011 3.195 (1.324, 7.752) 0.010

≤5 61

>5 80

Data in parentheses are 95% confidence intervals. *P-values were determined with Cox proportional hazards regression models. P < 0.05 indicated a significant difference.

LTP, local tumor progression; HR, hazard ratio; CI, confidence intervals; AFP, α-fetoprotein.

FIGURE 5 | Kaplan–Meier curves comparing local tumor recurrence between the AM ≤ 5-mm and AM > 5-mm groups. (A) Comparison of LTP based on deep

learning-based deformable image registration (DIR) technique. (B) Comparison of LTP based on registration without deep learning.

encompassing the tumor and computed the ablation volume to
identify the area with insufficient margins. Elena A. Kaye et al.
(25) suggested that the generation of new 3D assessment metrics
can easily measure the volume of tissue at-risk post-ablation

and predicted LTP. However, a crucial issue remains unresolved.
The pre- and post-image misalignment of the liver due to the
breathing motion and heating-stimulated tissue deformation
may result in incorrect AMmeasurements (26, 27). To effectively
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reduce this measurement error, we use DL methods for optimal
registration in this study.

In this study, we introduced the MRI registration method,
which is semi-automated and interactive, utilizing a commercial
image-processing software that is utilized in clinic in radiology
and interventional oncology. An additional 5-mm boundary
beyond the tumor can be automatically calculated and depicted.
Although this method can effectively shorten the AM assessment
time and decrease the evaluation bias of different radiologists,
it is still unable to achieve the most accurate registration
between the tumor and ablation zone. The difficulty of traditional
registration methods is the design of similarity measures and
the selection and matching of features. The unsupervised DL-
based registration method proposed in this paper can use the
derivable spatial transformer to optimize the image similarity
between pre- and post-ablative MRI images. Our method does
not avoid the extraction of handcrafted features, the matching
design, and the similarity measure, and it also uses extensive
clinical data that has not been annotated by medical experts. In
addition, our DIR method uses the Siamese spatial transformer
network to obtain the non-rigid transformation parameters more
accurately than other methods and uses backpropagation to
continuously optimize the similarity of the paired pre- and post-
ablative images to minimize the distance between them (28–
30). The proposed registration method can make full use of the
advantages of deep neural networks to achieve better registration
performance than previous methods.

The obtained AM in patients with solitary HCC from CT-
PMWA were analyzed. Of the 144 patients, 7.8% of patients
(11/141) patients had suboptimal co-registration results from
differences in liver position and/or shape. Interestingly, all
the suboptimal co-registrations were improved by DL and
eventually reached sufficient integration. Because several patients
had inaccurate AMs when using the conventional registration
technique, the predictive power of the AM for LTP may weaken.
However, the DIR technique hasmore powerful prediction ability
than conventional registration techniques based on better AUC
values for the prediction of LTP.

In this study, there were three major findings. First, using
DL-based registration can improve the predictive power. The
higher AUC value compared with the conventional registration
technique and the cumulative LTP rate of patients in the≤5-mm
AM group being significantly increased compared to the >5-mm
AM group can explain the advantage of DL-based registration;
second, the minimal AM size was not affected as the tumor
diameter increased when patients underwent CT-PMWA, and
the reason may be that MWA can generate a larger ablative zone
easily; third, in addition to the AM, older age (>65 years old)
was also a risk factor for LTP and deserved our attention before
ablation treatment.

Our study has several limitations. First, assessment of the
technique utilizing the diagnostic pre- and post-ablation MRI
images with a 5-mm slice thickness limits the accuracy of the
slice direction assessment. Optimally, further studies should try
to acquire thinner slices. Secondly, the DIR of potential value

for intra-ablation use would require a prospective study in an
HCC patient cohort with similar characteristics. In fact, post-
ablation imaging will possibly be obtained using the ablation
applicator that remains in the tissue, which introduces a degree of
beam hardening artifact that impacts segmentation performance.
Third, our study design is a limitation, as the person evaluating
the novel technique was not blinded to the LTP-associated
outcomes and may be subjected to bias. Future studies will be
focused on the assessment and adjustment of this technique for
intraprocedural utilization. Final, no blinded valued method may
cause biases and the larger sample and further perspective studies
can be needed.

In conclusion, non-rigid DIR permits us to quantitatively
assess the adequacy of the AMpost-CT-PMWA. Thismethod can
help predict LTP at an earlier time point, including immediately
after the ablation procedure and lead to an improvement in
patient care.
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