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Innate immunity is the front line for antiviral immune responses and bridges adaptive
immunity against viral infections. However, various viruses have evolved many strategies
to evade host innate immunity. A typical virus is the porcine reproductive and
respiratory syndrome virus (PRRSV), one of the most globally devastating viruses
threatening the swine industry worldwide. PRRSV engages several strategies to evade
the porcine innate immune responses. This review focus on the underlying mechanisms
employed by PRRSV to evade pattern recognition receptors signaling pathways, type
I interferon (IFN-α/β) receptor (IFNAR)-JAK-STAT signaling pathway, and interferon-
stimulated genes. Deciphering the antiviral immune evasion mechanisms by PRRSV
will enhance our understanding of PRRSV’s pathogenesis and help us to develop more
effective methods to control and eliminate PRRSV.
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INTRODUCTION

Since its discovery in the late 1980s, porcine reproductive and respiratory syndrome (PRRS)
has become one of the most serious swine diseases in the world. PRRS virus (PRRSV), which
causes PRRS, is an enveloped RNA virus belonging to the Arteriviridae family (Meulenberg, 2000).
PRRSV is divided into two distinct genotypes: Type 1, or European-like (prototype Lelystad), and
Type 2, or North American-like (prototype VR-2332) (Nan et al., 2017). PRRSV Types 1 and
2 were reclassified as two species belonging to the genus Porartevirus, PRRSV-1, and PRRSV-2,
respectively, according to the current taxonomy (Adams et al., 2016). PRRSV-1 was first reported in
Europe (Wensvoort et al., 1991) and then became epidemic in continental Europe and is currently
in China (Chen et al., 2011), the United States (Fang et al., 2007), Canada (Dewey et al., 2000),
South Korea (Lee et al., 2010), Thailand (Thanawongnuwech et al., 2004), and other countries.
PRRSV-2 was first reported in the United States and then spread in some countries in Asia and
Europe (Madsen et al., 1998; An et al., 2007; Shi et al., 2010b). PRRSV-1 is divided into Western
Europe subtype I, Russia subtype I, subtype II, and subtype III (Shi et al., 2010a). PRRSV-2 is divided
into nine lineages, lineag1∼9 (Shi et al., 2010a). PRRSV poses a threat to the global pig industry.

PRRSV encodes RNA replicates (ORF1a and ORF1b), four membrane-associated glycoproteins
(GP2, GP3, GP4, and GP5), two unglycosylated membrane proteins (E and M), and a nucleocapsid
(N) (Meulenberg, 2000; Music and Gagnon, 2010). ORF1a and ORF1b encode polyproteins that are
processed into smaller protein products named non-structural proteins (Nsps), which are involved
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in viral RNA synthesis (Kroese et al., 2008; Li et al., 2014; Tang
et al., 2016; Wang T. Y. et al., 2019), inducing replication-
associated membrane rearrangement (Snijder et al., 2001;
Posthuma et al., 2008), and modulating host immune responses
(Fang and Snijder, 2010; Yoo et al., 2010; Sun et al., 2012; Ke
and Yoo, 2017; An et al., 2020). Briefly, Nsp1 is involved in
modulating subgenomic mRNA synthesis (Kroese et al., 2008),
and Nsp2 and Nsp3 play an important role in replication-
associated membrane rearrangement (Snijder et al., 2001;
Posthuma et al., 2008). Nsp4 is the main protease responsible
for the processing of viral polyproteins (Fang and Snijder, 2010).
Nsp9 is an RNA polymerase, and Nsp10 is a helicase; both are
key enzymes for arterivirus RNA synthesis and are reported
as two key components for the virulence of highly pathogenic
PRRSV (Li et al., 2014). Nsp11 is an endoribonuclease; however,
its natural substrate is not identified yet (Fang and Snijder, 2010).

PRRSV infection damages innate and adaptive immune
response in porcine. Cells of monocyte-macrophage lineage
and monocyte-derived dendritic cells are susceptible to PRRSV
infection (Loving et al., 2007). PRRSV dramatically destroys
porcine immune organs, such as the thymus and bone marrow,
which are very important for adaptive immune response (Butler
et al., 2019; Wang G. et al., 2019; Wang et al., 2020).
Furthermore, it is well recognized that cytokines regulate and
participate in innate and adaptive immune responses (Banyer
et al., 2000; Belardelli and Ferrantini, 2002; Kabelitz and
Medzhitov, 2007). However, PRRSV infection induces alterations
of immunoregulatory cytokines, which cause a prolonged delay
in the activation of CTL and neutralizing antibody production.
Thus, PRRSV infection always causes severe host immune
response disorders, such as prolonged viremia, transiently
diminishing T-cell immunity, and delayed protective antibody
response (Molitor et al., 1997; Labarque et al., 2000; Lopez and
Osorio, 2004; Xiao et al., 2004; Wu et al., 2020).

Innate immunity is the first-line host defense that limits
the viral spread and regulates the adaptive immune responses.
Viral pathogen-associated molecular patterns (PAMPs) are first
recognized by host-pathogen recognition receptors (PRRs) and
then triggers the associated signaling pathways, such as the
interferon (IFN) regulatory factor (IRF) family members and
the nuclear factor kappa-light-chain-enhancer of activated B
cells (NF-κB) (Zheng, 2018; Zhu and Zheng, 2020). These
transcription factors cooperate to modulate the expression of type
I interferons (IFN-I) and, subsequently, evoke the downstream
expression of IFN-stimulated genes (ISGs). However, PRRSV has
evolved numerous strategies to evade innate antiviral immunity.

Evasion of PRR Signaling Pathways
The PAMPs of incoming viruses are first recognized by PRRs
and activate an IFN response and proinflammatory cytokine
responses during viral infection (Chow et al., 2015; Liu and
Gack, 2020). Toll-like receptors (TLRs) and RIG-I-like receptors
(RLRs) are two major PRRs in mammals that sense the RNA
virus (Chow et al., 2015). Among all TLRs, TLR3 recognizes
viral double-stranded RNA; TLR7 and TLR8 recognize viral
single-stranded RNA (Alexopoulou et al., 2001; Heil et al.,
2004). Porcine TLR3 and TLR7 are the best investigated TLRs

in porcine cells. For PRRSV infection, expression of porcine
TLR3, and TLR7 are upregulated and harbor the ability to
elicit activation of IFN (Sang et al., 2008a,b; Liu et al., 2009;
Miller et al., 2009). Activation of TLR3 by dsRNA results
in the recruitment of Toll-interleukin 1 receptor domain-
containing adapter inducing interferon-β (TRIF) through the
adaptor protein myeloid differentiation factor 88 (MyD88)
independent pathway (Fitzgerald et al., 2003). However, TLRs
are limited in detecting viruses because they are expressed in a
limited range of cell types (Chow et al., 2015). In contrast, the
RLRs, RIG-I, and melanoma differentiation-associated protein
5 (MDA5) expressed in almost all cell types are cytoplasmic
RNA helicases that recognize non-self RNA (Chow et al., 2015,
2018; Rehwinkel and Gack, 2020). Porcine RIG-I, MDA5, and
mitochondrial antiviral signaling protein (MAVS, also known as
IPS-1/VISA/Cardif) are important sensors/adaptors to produce
type I IFN in the porcine innate immune system (Wang
et al., 2008; Husser et al., 2011; Dong et al., 2013). RIG-I or
MDA5 recognize intracellular dsRNA via DExD/H-box helicase
domains. Caspase recruitment domains (CARDs) of RIG-I or
MDA5 interact with the counterpart domains of MAVS (Kawai
et al., 2005). Although different adaptors are utilized, both
pathways converge to stimulate the two downstream kinases,
Tank-binding kinase 1 (TBK1), and inhibitor of κB kinase
ε (IKKε), resulting in the phosphorylation and activation of
transcription factors, such as IFN regulatory factor 3 (IRF3),
NF-κB, and AP-1 (Fitzgerald et al., 2003). These transcription
factors coordinate in forming a transcriptionally competent
enhanceosome that produces type I IFN and proinflammatory
cytokine responses (Thanos and Maniatis, 1995). Type I IFNs are
produced upon infection of animal cells with viruses, and they
are responsible for the first line of defense during virus infection
(De Maeyer and De Maeyer-Guignard, 1998; Bogdan, 2000).
Type I IFNs have a broad and diverse impact on the priming
of expansion and maturation of adaptive immunity (Bogdan,
2000; Theofilopoulos et al., 2005). PRRSV has evolved complex
strategies to evade type I IFN restriction as illustrated in Figure 1,
which is discussed in detail.

Targeting RIG-I and MAVS
RIG-I and MDA5 are well-conserved cytoplasmic PRRs that
detect viral RNAs and interact with the downstream adaptor
MAVS and activate the antiviral signaling pathway (Wu and
Hur, 2015). Both RIG-I and MAVS are critical for Type I
IFN signaling. A previous study shows that PRRSV infection
inhibits IFNβ production primarily by interfering with the MAVS
activation in the RIG-I signaling pathway (Luo et al., 2008).
Further studies demonstrate that Nsp4 and Nsp11 target RIG-
I and/or MAVS. PRRSV Nsp4 is a 3C-like protease (3CLSP),
cleaves MAVS at Glu268 and, thus, inhibits Type I IFN signaling
(Dong et al., 2015). PRRSV Nsp11 decreases MAVS and RIG-
I mRNA, and an endoribonuclease activity is critical for the
antagonism (Sun et al., 2016).

Targeting IFN Regulatory Factor 3 (IRF3)
IRF3 is a key node in the IFN signaling pathway, and it
remains in the cytoplasm of unstimulated cells; however, when
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FIGURE 1 | Evasion of the PRR-mediated IFN-I signal pathway by PRRSV. Cytosolic RNA sensors, such as TLR3, TLR7, RIG-1, and MDA-5, recognize PRRSV RNA
in the cytosol and trigger IFN-I production by transmitting a series of signals. PRRSV proteins can target multiple steps in the RLR-mediated IFN-I signal pathway.
CBP, CREB-binding protein; P, phosphate; Ub, ubiquitin.

cells are infected by viruses, IRF3 is phosphorylated at various
serine and threonine residues at the C terminus, and then
phosphorylated IRF3 homodimerizes and translocates into the
nucleus (Yoneyama et al., 2002; Hiscott et al., 2003). In addition,
IRF3 C-terminal phosphorylation is required for association with
the histone acetyltransferase nuclear proteins CBP [CREB (cyclic
AMP responsive element binding)-binding protein] and p300
causing IRF3 to shuttle into the nucleus to induce transcription
through distinct positive regulatory domains in the type I
IFN promoters (Yoneyama et al., 1998; Hiscott et al., 1999).
PRRSV antagonizes IRF3 by following strategies. First, PRRSV
Nsp1β significantly blocks dsRNA-induced phosphorylation and
nuclear translocation of IRF3 (Beura et al., 2010). Furthermore,

PRRSV Nsp2 also antagonizes activation of IRF3 by inhibiting
its phosphorylation and nuclear translocation, and the cysteine
protease domain (PL2) of Nsp2 is required to antagonize
IRF3 (Li et al., 2010). PRRSV Nsp11 is demonstrated to have
an inhibitory effect on IRF3 activation, and this activity is
endoribonuclease dependent (Shi et al., 2011). Last, PRRSV
N protein similarly antagonizes IRF3 activation as Nsp1β

and Nsp2, and it significantly abrogates dsRNA-induced IRF3
phosphorylation and nuclear translocation (Sagong and Lee,
2011). However, the underlying mechanisms to antagonize IRF3
activation by the above viral proteins are unclear because there
is no report on whether these viral proteins interact directly or
indirectly with IRF3.
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Targeting IFN Regulatory Factor 7 (IRF7)
Interferon regulatory factor 7 (IRF7) is a multifunctional
transcription factor that was originally discovered during
Epstein–Barr virus (EBV) infection, and it has been recognized
as one of the major players in virally induced IFN signaling
(Zhang and Pagano, 2002). Posttranslational modifications of
IRF7 have important roles in regulating IRF7 activity, including
phosphorylation and ubiquitination (Zhang and Pagano, 2002).
PRRSV could downregulate the expression of IRF7 in pulmonary
alveolar macrophages, and this activity is attributed to Nsp7
(Liu et al., 2019). However, the mechanism that PRRSV Nsp7
inhibits the expression of IRF7 is unclear, and this needs
further investigation.

CREB (Cyclic AMP Responsive Element
Binding)-Binding Protein (CBP)
The CBP coactivator is a histone acetyltransferase; p300
and CBP are partners that cooperatively play a key role
in transcriptional responses to disparate extracellular and
intracellular signals (Giordano and Avantaggiati, 1999). CBP
and p300 play multifunctional roles of the coactivator in
transcriptional regulation, and in fact, many transcription factors
have been reported to bind CBP (Goldman et al., 1997). PRRSV
Nsp1α could degrade CBP in a proteasome-dependent manner,
and its degradation prevents CBP recruitment for enhanceosome
assembly, resulting in a blockage of IFN response (Kim et al.,
2010). The Nsp1α contains three distinct functional motifs; a
papain-like cysteine protease alpha (PCPα) motif, an N-terminal
zinc finger motif (ZF1), and a recently discovered C-terminal
zinc finger motif (ZF2). ZF1 is a required component of Nsp1α

to suppress IFN production. Wild-type Nsp1α localizes in both
the nucleus and the cytoplasm, but the ZF1 mutants lose
their IFN suppression by inhibiting Nsp1α shuttling from the
cytoplasm to the nucleus (Han et al., 2013; Han and Yoo,
2014). CBP degradation is most likely the primary mechanism
for IFN suppression mediated by PRRSV (Han et al., 2013;
Han and Yoo, 2014).

NF-κB
Targeting NF-κB Essential Modulator (NEMO/IKKγ)
Nuclear factor-κB (NF-κB) essential modulator (NEMO), a
component of the inhibitor of κB kinase (IKK) complex (which
includes two kinases, IKKα and IKKβ), regulates NF-κB signaling
by binding to ubiquitin chains (Kensche et al., 2012). IKK
complex is a critical regulator for its downstream signaling by
phosphorylating IκBα, leading to its subsequent degradation by
the ubiquitin-proteasome system (Hayden and Ghosh, 2008). To
activate the IKK complex, NEMO binding to ubiquitin chains
is a critical step in linking upstream ubiquitin signals (Kensche
et al., 2012). PRRSV nsp4 is an antagonist of NEMO, which cleave
NEMO at multiple sites (Huang et al., 2014; Chen et al., 2019).
Further study demonstrates that aspartic acid at residue 185
modulates Nsp4 catalytic activity, and this activity is responsible
for NEMO cleavage (Wei et al., 2020). Linear ubiquitination
targeting NEMO plays a critical role in the regulation of
NF-κB signaling. PRRSV Nsp11 cooperates with swine linear

ubiquitination-specific deubiquitinase, ovarian tumor domain
deubiquitinase with linear linkage specificity (OTULIN) to
remove linear ubiquitination of NEMO, which subsequently
blocks the activation of NF-κB signaling (Su et al., 2018).

Targeting I-Kappa-B-Alpha (IκBα)
NF-κB plays a critical role in coordinating the expression of
numerous genes that regulate immune responses (Li and Verma,
2002). NF-κB proteins are present in the cytoplasm in association
with inhibitory proteins known as inhibitors of NF-κB (IκBα).
After activation by upstream signals, the IκB proteins become
phosphorylated, ubiquitylated, and subsequently degraded by
the K48-linked ubiquitin-proteasome pathway (Li and Verma,
2002). The degradation of IκB, thus, relives NF-κB proteins
to translocate to the nucleus and regulate the transcription
of many genes, including the production of IFN-I and
inflammatory chemokines.

IκBα is an inhibitor of NF-κB, blocking nuclear translocation
and DNA binding. For NF-κB activation, IκBα is phosphorylated
by upstream kinases and then is ubiquitinated, leading to
proteosome-mediated degradation. NF-κB is then released into
the nucleus, where it activates a slew of genes involved in
immune and inflammatory responses (Jacobs and Harrison,
1998; Seth et al., 2005). Nsp1α has been reported to counteract
IκBα by inhibiting its phosphorylation, which is a key step for
NF-κB activation, and a further study indicates that Met180
and C-terminal 14 amino acids of the Nsp1α are crucial for
inhibitory activities (Song et al., 2010). PRRSV nsp2 has a
cysteine protease domain at its N terminus that belongs to
the ovarian tumor (OTU) protease family. The PRRSV Nsp2
OTU domain has ubiquitin-deconjugating activity, and this
domain potently inhibits NF-κB activation by interfering with the
polyubiquitination process of IκBα, preventing IκBα degradation
(Sun et al., 2010). Except for Nsp2, PRRSV Nsp11 encodes
a unique and conserved endoribonuclease (nidovirus-specific
endoribonuclease, NendoU) with DUB activity that specifically
removes Lysine 48 (K48)-linked polyubiquitin chains of IκBα

(Wang et al., 2015). Overall, PRRSV engages Nsp1α, Nsp2,
and Nsp11 to interfere with the polyubiquitination process
of IκBα.

Evasion of IFNAR-JAK-STAT Pathway
A typical PRRSV infection in pigs is characterized by delayed
production and low titer of virus-neutralizing antibodies as
well as weak cell-mediated immune response. One possible
explanation for PRRSV-induced weak protective immune
responses is that PRRSV may disrupt cytokine-mediated JAK-
STAT signaling (Yang and Zhang, 2017). Various cytokines
activate a JAK-STAT signaling pathway; nearly 40 cytokine
receptors signal through combinations of four JAK (JAK1, JAK2,
JAK 3, and Tyk2) and seven STAT (STAT1–STAT7) family
members, which are involved in the regulation of cell growth,
proliferation, differentiation, apoptosis, angiogenesis, immunity,
and inflammatory response (Rawlings et al., 2004; Murray,
2007). Cytokines first bind their receptors, which cytoplasmic
domains are associated with JAK tyrosine kinases, and then two
JAKs are brought into proximity allowing trans-phosphorylation,
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which further induces the multimerization (homodimers or
heteromultimers depend on the type of cytokine) of receptor
subunits. The activated JAKs subsequently phosphorylate the
major substrates, STATs, which are latent transcription factors.
STATs contain a conserved tyrosine residue near the C-terminus
that is responsible for phosphorylation by JAKs. STATs
form dimers by interacting with a conserved SH2 domain.
Phosphorylated STATs dimers enter the nucleus mediated by
importin α-5 (also known as karyopherin-α1, KPNA1) and
the Ran nuclear import pathway allows phosphorylated STATs
dimers to enter the nucleus and bind specific regulatory
sequences to modulate target gene expression (Imada and
Leonard, 2000; Rawlings et al., 2004). Negative regulators of
the JAK/STAT pathway fall into three categories: suppressors of
cytokine signaling (SOCS), protein inhibitors of activated stats
(PIAS), and protein tyrosine phosphatases (PTPs) (Starr and
Hilton, 1999; Greenhalgh and Hilton, 2001).

PRRSV uses multiple strategies to antagonize the JAK-STAT
signaling pathway (Yang and Zhang, 2017). PRRSV infection is
shown to disrupt the activation and signaling pathway of type I
IFNs by inhibiting ISGF3 nuclear translocation (Patel et al., 2010).
PRRSV Nsp1β induces karyopherin-α1 (KPNA1) degradation,
which is a critical factor responsible for ISGF3 nuclear
translocation; therefore, Nsp1 prevents IFN-induced ISGF3
complex nuclear translocation (Chen et al., 2010; Patel et al.,
2010). Further study illustrates that Nsp1β Valine-19 is essential
for inducing degradation of KPNA1 (Wang et al., 2013b). N
protein expression leads to inhibition of IFN-induced elevation
of STAT2 levels and ISGF3 nuclear translocation. However, the
detailed mechanism was not well established (Wang et al., 2013a).
PRRSV infection-induced STAT2 degradation through the
ubiquitin-proteasome degradation pathway and Nsp11 is shown
to interact with STAT2 directly and be responsible for STAT2
degradation (Yang et al., 2019). Interestingly, Nsp11 mediated
STAT2 degradation is not dependent on the endoribonuclease
activity, and amino acid residue K59 in nsp11 is required for
STAT2 degradation (Yang et al., 2019). A recent study also
demonstrates that Nsp11 interacts with interferon regulatory
factor 9 (IRF9), which impairs the formation and nuclear
translocation of ISGF3, and this activity is also independent of
endoribonuclease activity (Wang D. et al., 2019).

Interestingly, PRRSV also modulates the JAK/STAT pathway
by other strategies, such as microRNA and SOCS. PRRSV
infection upregulates a host microRNA, miR-30 c, to target JAK1
and, subsequently, promotes PRRSV replication (Zhang et al.,
2016). PRRSV also upregulates SOCS1, a negative regulator for
the JAK/STAT pathway (Wysocki et al., 2012). The PRRSV N
protein can increase SOCS1 activity, and nuclear localization
signal-2 (NLS-2) is required for SOCS1 induction (Luo et al.,
2020a). The evasion of the IFNAR-JAK-STAT signaling pathway
by PRRSV is illustrated in Figure 2. With the continuous
exploration in this field, we think more and more strategies by
which PRRSV evades the JAK-STAT pathway will be uncovered.

Evasion of ISGs and Intrinsic Antiviral Proteins
Many intrinsic antiviral proteins can inhibit PRRSV replication,
but we only discuss several proteins antagonized by PRRSV. The

evasion of ISGs and intrinsic antiviral proteins by PRRSV is
illustrated in Figure 3.

Proprotein Convertase Subtilisin/Kexin Type 9
(PCSK9)
Proprotein convertase subtilisin/Kexin type 9 (PCSK9) is an
enzyme that belongs to the subtilisin-like serine proteases family
that participates in the proteolytic maturation of various proteins,
such as hormones and cytokines (Seidah and Chretien, 1999).
PCSK9 is a key component for plasma cholesterol metabolism,
which controls low-density lipoprotein receptor (LDLR) levels
by increasing LDLR degradation (Cohen et al., 2005; Maxwell
et al., 2005). It is reported that PCSK9 can impede the replication
of several viruses through different mechanisms. Dengue virus
(DENV) infection induces the expression of PCSK9, which
inhibits the recycling of LDL receptors and reduces uptake
of LDL cholesterol in cells, compensatively; this cholesterol-
deprived cell then activates and increases cholesterol synthesis
in the endoplasmic reticulum, which subsequently decreases
the expression of antiviral type I interferon genes (Gan et al.,
2020). Hepatitis C virus (HCV) infection modulates the HCV
receptors LDLR and CD81 on the liver cell surface, and PCSK9
modulates CD81 cell surface expression in an LDLR-independent
manner (Labonte et al., 2009). For PRRSV, PCSK9 is induced
by PRRSV infection in porcine alveolar macrophages at an early
stage, and PCSK9 protein suppresses the replication of PRRSV
by targeting the virus receptor CD163, which is important for
PRRSV infection (Wang et al., 2018; Zhang et al., 2020). Nsp11
could antagonize PCSK9’s antiviral activity, and this activity is
endoribonuclease activity-dependent (Zhang et al., 2020).

The Tripartite Motif-Containing 25 (TRIM25)
TRIM25 is an E3 ubiquitin ligase that is thought to be a
crucial component in the activation of RIG-1 signaling. Recently,
TRIM25 was identified as an RNA binding protein that may
be essential for its function in innate immunity (Choudhury
et al., 2020). The K63-linked ubiquitination of RIG-I by
TRIM25 is needed to initiate the intracellular antiviral responses
(Gack et al., 2007; Martin-Vicente et al., 2017). Influenza
A virus NS1 interacts with TRIM25, thus blocking TRIM25
multimerization and RIG-I CARD domain ubiquitination
(Gack et al., 2009). The severe acute respiratory syndrome
coronavirus (SARS), and Middle East respiratory syndrome
CoV (MERS-CoV) N protein inhibit TRIM25-mediated RIG-
I ubiquitination, resulting in the inhibition of IFN production
(Hu et al., 2017). PRRSV also uses N protein to interfere
with TRIM25-RIG-I interaction by competitively interacting
with TRIM25. N protein suppresses IFN-β production by
inhibiting TRIM25 expression and TRIM25-mediated RIG-I
ubiquitination (Zhao et al., 2019a). It seems like there is a
common mechanism for nidoviruses to antagonize TRIM25.
It is reported that a specific DENV lineage encodes sgRNA
antagonizing TRIM25. DENV-2 produces subgenomic RNA
during replication, which shows sequence-dependent binding
to and prevention of TRIM25 deubiquitylation, which is a
specific viral RNA-host protein interaction to suppress the innate
immune responses (Manokaran et al., 2015); however, whether
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FIGURE 2 | Evasion of the IFNAR-JAK-STAT signaling pathway by PRRSV. The antiviral activities of IFN-I and other cytokines are initiated by binding to their
receptors to trigger a signaling cascade. Viral proteins from PRRSV interact with indicated adaptors to block signal transduction. P, phosphate.

PRRSV has a similar mechanism to antagonize TRIM25 needs
further exploration.

Zinc Finger Antiviral Protein, ZAP
Zinc-finger antiviral protein (ZAP), also known as zinc finger
CCCH-type containing antiviral 1 (ZC3HAV1), is another
ISG that was originally discovered as an antiretroviral factor
(inhibition of retroviral RNA production by ZAP, a CCCH-type
zinc finger protein) (Gao et al., 2002). ZAP in antiviral immunity
is mainly based on its RNA binding property; in most known
cases, ZAP recognizes viral RNA and recruits both the 5′ and 3′
mRNA RNA decay machinery to degrade the target RNAs, which
is considered to be the principal antiviral mechanism mediated
by ZAP (Zhu et al., 2011; Luo et al., 2020b; Wang and Zheng,
2020). Viral RNAs harbor the ZAP-responsive element (ZRE),
a characteristic ZAP binding site; however, the corresponding

ZRE position in each virus RNA sequence varies (Wang and
Zheng, 2020). In PRRSV infection, ZAP is upregulated and then
suppresses PRRSV replication at the early stage of replication;
Nsp9 is reported to interact with ZAP (Zhao et al., 2019b).
However, the mechanism that ZAP inhibits PRRSV replication
is not well illustrated. Whether PRRSV harbors the ZRE or viral
RNA degrades by ZAP is unclear. Interestingly, PRRSV could
escape ZAP restriction by Nsp4, which cleaves ZAP dependent
on its protease activity (Zhao et al., 2020). Further study reveals
that serine 180 of Nsp4 is necessary for efficient degradation of
ZAP, and the mutation at residue 180 is crucial for degradation of
ZAP (Zhao et al., 2020).

IFITM1 and Tetherin
Interferon-inducible transmembrane proteins (IFITMs) are
critical antiviral factors that belong to a family of small
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FIGURE 3 | Evasion of ISGs and intrinsic antiviral proteins by PRRSV. Viral proteins from PRRSV engage multiple strategies to evade the restriction of ISGs or
intrinsic antiviral proteins.

transmembrane proteins. IFITM proteins can impair broad-
spectrum viral infection through multiple mechanisms, including
limiting the viral entry, decreasing viral gene expression and
viral protein synthesis, restricting viral assembly, and reducing
viral infectivity (Liao et al., 2019). IFITM1 is one of the IFITMs.
The potency and breadth of viruses restricted by IFITM1 are
determined by its C-terminal non-canonical dibasic sorting
signal KRXX, which suppresses certain viruses by regulating their
intracellular dissemination (Li et al., 2015). PRRSV Nsp3 could
counteract the restriction of IFITM1 by interaction with IFITM1
and then inducing the proteasome-dependent degradation of
IFITM1 (Wang et al., 2014).

Tetherin is a type II single-pass transmembrane
protein known as BST-2, CD317, or HM1.24. It has a
cytoplasmic N-terminal region, followed by a transmembrane

domain, a coiled-coil extracellular domain, and a
glycosylphosphatidylinositol (GPI) anchor at the C-terminus
(Kupzig et al., 2003). Tetherin inhibits viral replication by
preventing newly formed virions from the host cell surface
(Malim and Emerman, 2008; Neil and Bieniasz, 2009). PRRSV
E protein could antagonize tetherin by interaction with tetherin
and further partially remove tetherin away from the cell surface
(Wang et al., 2014).

mRNA-Decapping Enzyme 1a (DCP1a)
The mRNA-decapping enzyme 1a (DCP1a) is a cofactor involved
in the removal of the 5’-methylguanosine cap from eukaryotic
mRNA in the granules known as processing bodies (P-bodies)
(Sheth and Parker, 2003; Franks and Lykke-Andersen, 2008).
DCP1a is involved in P-body formation, maintenance, and
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regulation (Franks and Lykke-Andersen, 2008). DCP1a also
induces translational arrest by activating double-stranded RNA-
dependent protein kinase (PKR) (Dougherty et al., 2014).
Furthermore, DCP1a has recently been identified as an ISG
(Schoggins et al., 2011, 2014). DCP1a can restrict poliovirus
infection by inducing translational arrest (Dougherty et al.,
2014). DCP1a has been demonstrated to inhibit PRRSV,
whereas the mechanism is unclear (Tao et al., 2018). By
counteracting DCP1a inhibition, PRRSV uses Nsp4 to cleave
DCP1a, and the cleaved site is at glutamic acid 238 (E238) of
porcine DCP1a; interestingly, this cleavage site is species-specific
(Tao et al., 2018).

Cholesterol 25-Hydroxylase (CH25H)
Cholesterol-25-hydroxylase (CH25H) is one of the ISGs
identified as a broadly antiviral ISG (Liu et al., 2013). CH25H is an
endoplasmic-reticulum-associated enzyme catalyzing cholesterol
oxidation to a soluble antiviral factor, 25-hydroxycholesterol
(25HC) (Holmes et al., 2011). 25HC broadly inhibits enveloped
viruses by blocking virus entry (Liu et al., 2013). For some viruses,
including PRRSV, CH25H could inhibit viral replication through
enzyme activity-dependent and independent mechanisms
(Lv et al., 2019; Li et al., 2020). CH25H restricts PRRSV
replication by inhibiting virus entry and degrading Nsp1α

via the ubiquitin-proteasome pathway with K169 in the
Nsp1 protein serving as the main ubiquitination location
(Ke et al., 2017). PRRSV has also evolved several strategies
to overcome the restriction of CH25H. First, PRRSV E
protein interacts with CH25H and then degrades it via the
ubiquitin-proteasome pathway, and the ubiquitination site
is identified at Lys28 (Ke et al., 2019). Second, Nsp1β and
Nsp11 mediate the degradation of CH25H via a lysosomal
pathway with His159 in Nsp1β and NendoU involvement in
Nsp11 playing critical roles in CH25H downregulation (Dong
et al., 2018). However, CH25H has no interaction with Nsp1β

or Nsp11, and the detail mechanisms by which Nsp1β and
Nsp11 mediates CH25H degradation need further exploration
(Dong et al., 2018).

FUTURE PERSPECTIVE

Viruses have evolved multiple strategies to evade innate immune
surveillance. This review summarizes how PRRSV engages
several strategies to evade the porcine RNA sensing pathway of
innate immune responses. However, the roles of DNA sensing
pathways in PRRSV infection are unclear. Although there is no
specific antagonism reported so far, the role of DNA sensors, such
as IFI16, are reported to have an anti-PRRSV activity (Chang
et al., 2019). There is emerging evidence showing the contribution
of damaged host DNA, such as mitochondrial DNA, to innate

immune responses against RNA viruses. Furthermore, PRRSV
is highly genetically variable. How the genetic variations affect
the immune modulation function of the viral proteins is the key
to understanding the difference in virulence of different PRRSV
strains, which needs further exploration in the future.

PRRSV has a potent spatiotemporal regulation ability to
immune response. First, it evades TLR and RLR signaling
to suppress the production of Type I IFNs, which are key
components that modulate the development and maturation of
adaptive immunity. Second, it also impairs antiviral response
by targeting the IFNAR-JAK-STAT pathway. Last, PRRSV also
evades ISGs and intrinsic antiviral proteins to promote viral
replication. We think there are other undiscovered strategies
for PRRSV to evade the innate immune response, and further
investigation is needed.

In addition to the innate immune signal pathways mentioned
above, unfolded protein responses, stress granules, and apoptosis
are key components of cellular innate immunity. However,
it seems that only UPR could be effectively counteracted by
PRRSV (Gao et al., 2019). For stress granules and apoptosis,
PRRSV infection induces but does not inhibit these responses
(Catanzaro and Meng, 2019; Ruedas-Torres et al., 2020).
Therefore, further studies focused on these directions will
help us to comprehensively understand how PRRSV evades
innate immune responses. Deciphering PRRSV evasion of
innate immune responses will enhance our understanding of
PRRSV’s pathogenesis and develop more effective methods to
control and eliminate PRRSV, especially for candidate vaccine
development that will potently induce both innate and adaptive
immune response.
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