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Astrocytes have many functions in the central nervous system (CNS). They support differentiation and homeostasis of neurons
and influence synaptic activity. They are responsible for formation of the blood-brain barrier (BBB) and make up the glia limitans.
Here, we review their contribution to neuroimmune interactions and in particular to those induced by the invasion of activated T
cells. We discuss the mechanisms by which astrocytes regulate pro- and anti-inflammatory aspects of T-cell responses within the
CNS. Depending on themicroenvironment, theymay become potent antigen-presenting cells for T cells and theymay contribute to
inflammatory processes.They are also able to abrogate or reprogram T-cell responses by inducing apoptosis or secreting inhibitory
mediators.We consider apparently contradictory functions of astrocytes in health and disease, particularly in their interaction with
lymphocytes, which may either aggravate or suppress neuroinflammation.

1. Introduction

Within the central nervous system (CNS), astrocytes are
the most abundant cells. Their main task is to maintain the
physiological homeostasis of neurons by providing a stable
microenvironment and growth factors. Astrocytes formmul-
ticellular syncytia in vivo that ensure neuronal homeostasis
by taking up excess neurotransmitters and buffering the ionic
content of the extracellular medium in the brain. Astrocyte
membranes contain numerous neurotransmitter receptors
and transporters and can therefore sense and regulate forma-
tion, stability, and efficacy of synapses [1]. Recently, they have
been shown to play a role in synaptic activity and regulating
neuronal circuitry [2–4].

Astrocytes are dysfunctional in various neurological dis-
orders such as epilepsy, amyotrophic lateral sclerosis, hep-
atic encephalopathy, stroke, and focal cerebral ischaemia
(reviewed in [5]). Dysfunction is often accompanied by
astrocytic hypertrophy and an increased number of astrocytic

processes, termed astrogliosis [6]. Astrocytes also show these
signs of activation in Alzheimer’s disease [7, 8] and in Parkin-
son’s disease [9] as well as in its ratmodel (Figure 1) [10].Mas-
sive astrogliosis has been observed in postmortem tissue of
Parkinsonian patients [9, 11–13]. These tissues demonstrated
a lack of astrocyte-derived neurotrophins compared to con-
trol brains [14, 15]. Because astrocytes support and protect
dopaminergic neurons in vitro [16], a functional failure of
astrocytes may contribute to CNS pathology.

The potential for antigen presentation and production of
proinflammatory cytokines by astrocytes has been studied in
the neuroinflammatory disease multiple sclerosis (MS) and
its animalmodel experimental autoimmune encephalomyeli-
tis (EAE). They can protect against neuroinflammation by T
cells invading the CNS. Thus, they contribute to the immune
privilege of the CNS. The privilege is not simply the absence
of immune reactions but rather a complicated network of
passive and active barriers and of brain tissue. It can modify
immune reactions in the CNS so as to minimize the danger
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Figure 1: Astrocytes activated in a rat model of Parkinson’s disease. Astrocytes (arrows) in the globus pallidus of rats after unilateral striatalle-
sion of dopaminergic neurons by injection of 6-hydroxydopamine (6-OHDA). (a) Contralateral hemisphere; astrocytes have short cellular
processes. (b) Ipsilateral hemisphere; astrocytes are in an activated state characterised by long cellular processes and enlarged cell bodies with
an intense staining. Staining of glial fibrillary acidic protein (GFAP). For detailed information, see [10].

of destructive side effects in a tissue with limited ability to
regenerate [17]. In this review,we focus on astrocyte functions
in health and disease, particularly on their interaction with
lymphocytes.

2. Functions of Astrocytes at
the Blood-Brain Barrier (BBB)

The BBB limits exchange of solutes between capillaries and
the brain parenchyma. Brain capillaries are about 50 to 100
times tighter than peripheral capillaries. This is achieved by
complex tight junctions. Astrocytes influence tightness of the
BBB by soluble factors that affect endothelial cells [18]. The
perivascular space is separated from the brain parenchyma
by the basement membrane and the glia limitans, made up
of astrocytic end-feet, reviewed in [19]. Notably, it is not the
direct contact of astrocytic end-feet with endothelial cells
that induces the tightness but soluble factors secreted by
them. The presence of numerous astrocytic end-feet close to
the BBB allows for a rapid regulation of BBB permeability.
Humoural agents that are able to increase BBB permeability
and may be secreted by astrocytes include endothelin-1, glu-
tamate, interleukin- (IL-) 1𝛽, IL-6, tumour necrosis factor
(TNF), macrophage inflammatory protein- (MIP-) 2, and
nitric oxide [20]. Soluble astrocytic factors that induce tight
junction formation at the BBB are less well characterized. A
recent study has shown that sonic hedgehog, a member of
the hedgehog signalling pathway family, is produced by astro-
cytes. Sonic hedgehog promotes BBB formation and integrity,
and hedgehog-mediated signals induce immune quiescence
in the CNS [21]. Thus, inhibition of hedgehog signalling

exacerbates EAE by increasing demyelination, accumulation
of leukocytes in the CNS, and production of interferon-
(IFN-) 𝛾 and IL-17 by infiltrating T cells [21].

3. Pro- and Anti-Inflammatory Mediators
Produced by Astrocytes

Astrocytes are capable of producing a range of proinflam-
matory cytokines that have been found in the brain of
Alzheimer’s disease patients such as IL-1𝛼, IL-1𝛽, IL-6, and
TNF [22]. It has been shown that amyloid-𝛽

25–35 in combina-
tion with bacterial cell wall lipopolysaccharide (LPS) induced
a strong astrocytic production of IL-6 and TNF while neither
of the substances alone did [23]. Others found that LPS
induced the production of TNF, IL-6, and IL-1 in microglia
but not in astrocytes while astrocytes responded neither to
LPS nor TNF but to IL-1𝛽 by producing TNF and IL-6 [24].
This indicates that astrocytes may be regulated by microglial
IL-1𝛽. Microglial cells produce free radicals and proinflam-
matory cytokines such as TNF-𝛼 when exposed to amyloid-
𝛽
1–42 [25, 26]. TNF and superoxide anion production by

macrophages cocultured with amyloid-𝛽
1–42 was strongly

reduced in the presence of primary human astrocytes or
astrocytoma cells. Interestingly, astrocytes bound amyloid-
𝛽
1–42 and showed activation of the transcription factor NF𝜅B

in that study, but unlike in macrophages this activation did
not result in TNF production. This indicates that distinct
signal transduction pathways are activated in macrophages
and astrocytes by inflammation [27]. Indeed, astrocytes can
also downregulate microglial activation by the secretion of
anti-inflammatory substances such as transforming growth
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factor- (TGF-) 𝛽 and prostaglandin E
2
(PGE
2
) [28, 29] and

may thereby limit inflammation-induced neurodegeneration.
However, activated microglia can also reduce amyloid-𝛽
accumulation by phagocytosing and degrading it [30]. Thus,
the clinical relevance of both astrocytic and microglial acti-
vation has not yet been fully elucidated.

Glia maturation factor (GMF) is produced by astrocytes.
It is not only necessary for the growth and maturation of
neurons and glia cells, but can also induce the production
of proinflammatory cytokines. Overexpression of GMF in
astrocytes induces the production and secretion of granu-
locyte-macrophage-colony stimulating factor (GM-CSF), an
activation of microglia and the expression of proinflam-
matory genes including major histocompatibility complex-
(MHC-) II, IL-1𝛽, and MIP-1𝛽 [31]. Knockdown of GMF
reduces the production of the proinflammatory cytokines
and chemokines responsible for EAE [32, 33]. Interestingly, it
also inhibits growth of glioblastoma cells by inducing G0/G1
cell cycle arrest in vitro [34, 35]. In the brain of Alzheimer’s
disease patients, GMF is upregulated [36, 37]. However, what
drives astrocytes to upregulate GMF to a level where it con-
tributes to tissue damage is unknown.

Astrocytes produce or take up, store, and reexocytose a
range of neurotrophins neuroprotective in EAE [38–41],
dementia of the Alzheimer type [42], and Parkinson’s disease
[43, 44]. Astrocytes are the major source of nerve growth
factor (NGF) and glial cell line-derived neurotrophic factor
(GDNF) in the CNS [45–47]. In brain tissue of Parkin-
son’s disease patients, GDNF, NGF, and brain-derived neu-
rotrophic factor (BDNF) are deficient [14, 15], hence the
clinical trials of therapeutic GDNF injection into the brain of
Parkinson’s patients.While intraputaminal infusion ofGDNF
was safe and improved motor functions in a small group
of patients over one [48] and two years [49], a randomized
placebo-controlled trial found that motor function has not
improved [50]. Notably, from all the 32 genes associated with
astrocyte function described in this review, only GDNF was
found to be associated with a disease: “major depressive dis-
order.” For this, see the NCBI catalog of genomewide associa-
tion studies (GWAS) (http://www.genome.gov/gwastudies/).

On the other hand, as mentioned above, astrocytes are
a major source of the proinflammatory cytokines IL-1𝛽 and
IL-6 in the brain [51, 52]. Transgenic mice that lack IL-6
production are resistant to EAE induction [53, 54].This is due
to a blockade of activation and differentiation of autoreactive
T cells in the peripherywith bothT helper (Th) 1 andTh2 cells
differentiation being affected [53]. Very recently, dendritic
cells have been identified as a sufficient and probably themain
source for EAE induction [55]. Whether astrocytic IL-6 plays
a decisive role in the etiogenesis of EAE has been ruled out
in animal models. Transgenic mice that overexpress IL-6 in
astrocytes but are otherwise deficient in IL-6 develop a mild
form of ataxia, but no symptoms of lymphocyte-driven EAE.
These mice had indeed cellular infiltrates in the cerebellum
independent ofMOG immunisation [56].Thus, the observed
ataxiamay be a result of a general inflammatory process in the
brain.

It is known that IL-1𝛽 plays an important role in MS and
EAE. Families with a high IL-1𝛽 over IL-1 receptor antagonist

(IL-1Ra) production ratio have a higher risk to have a patient
relative with MS than families with a low ratio [57]. Mice
deficient in IL-1 receptor type I (IL-1RI−/−) are resistant to
EAE induction [58, 59]. Apparently, IL-1𝛽 is necessary for the
induction of IL-17-producing T cells (Th17) [59]. IL-17 has
been shown to be crucial for the development of EAE [60, 61].
However, both IL-6 and IL-1𝛽 do not necessarily have only
detrimental effects. Recently, IL-6 has been demonstrated
to induce IL-10 in T cells and thus inhibit proinflammatory
responses of Th1 cells [62]. The production of IL-1𝛽 and IL-6
does not necessarily lead to neuronal damage because these
cytokines also induce upregulation of Fas ligand (FasL)
in astrocytes, which may induce T-cell apoptosis [63] (see
below). In addition, IL-1𝛽 and IL-6 are messengers between
the brain, particularly the hypothalamic-pituitary-adrenal
axis, and the immune system. Thus, IL-1𝛽 produced during
EAE upregulates glucocorticoid production which has a
downregulatory effect on inflammation [64].

4. Interactions of Astrocytes
and T Lymphocytes

4.1. Induction of Apoptosis in Activated T Cells. Activated T
cells can cross the BBB not only in neuroinflammatory dis-
eases but also in the healthy brain [65, 66]. Later, it has been
shown that in macrophage-depleted mice, activated T cells
which extravasate are not able to enter the brain parenchyma
via the basementmembrane but accumulate in the perivascu-
lar spaces [67]. Matrix metalloproteinases (MMP-) 2 and -9
are necessary to cross the basement membrane after local
digestion [68].These enzymes could be produced by perivas-
cular macrophages.

These infiltrating T cells may combat infection, but dam-
age to tissue needs to be avoided, and in particular that
mediated by Th1 and cytotoxic T cells and accompanied by
inflammation. Inflammatory cytokines such as TNF-𝛼 are
neurotoxic. Given that neurons have a very limited capacity
to regenerate in the mature brain, side effects could be detri-
mental. Onemechanism preventing damage is elimination of
T cells: astrocytes induce apoptosis in these cells [69–71].This
effect ismediated by the expression of FasL (CD95L) by astro-
cytes [63, 72, 73]. In EAE, FasL expressing astrocytes exist in
close vicinity to apoptotic T cells [74, 75]. The same mech-
anism of enforcing immune-privilege has been observed in
placenta [76–79], testes [80], and anterior chamber of the
eye [81]. A downside of this mechanism is that astrocytoma
express FasL and thus escape immune attack [82, 83].

4.2. Astrocytes as Antigen-Presenting Cells in Neuroinflamma-
tion. In neuroinflammation, astrocytes can act as antigen-
presenting cells (APCs) [84, 85]. While microglia express
MHC-II readily upon activation in vivo and in vitro, astrocyte
MHC-II expression occurs only during prolonged inflamma-
tion in vivo [86] or in vitro under stimulation by interferon-
(IFN-) 𝛾 [87]. This MHC-II induction may be suppressed by
neurons via a mechanism that has not fully been elucidated.
One study claims that cell-cell contact is required [88]
while another one found that secreted glutamate and nore-
pinephrine could inhibit IFN-𝛾 induced MHC-II expression
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in astrocytes [89]. In keeping with this, neuronal loss induces
MHC-II expression in astrocytes [88, 90], supporting the
view that astrocytes can present antigen only during severe
neuroinflammation. The expression of costimulatory B7
molecules by astrocytes both in vivo and in vitro has been
controversially discussed. While some authors found B7
expression on astrocytes [91–94], others did not [95, 96].
Functioning as APCs in vitro, astrocytes have been found to
stimulate differentiated T cells; and interestingly, they stimu-
lateTh2 cells more efficiently thanTh1 cells [87, 97].Th2 cells
may be less damaging than the cellular immune responses,
and hence the preferred agents of protection against infection
in the CNS.Thus, astrocytes from transgenic mice expressing
MS-associated MHC-II human haplotypes HLA-DR2 and
HLA-DR4 induced a mixed Th1/Th2 cytokine response in
MOG-specific T cells, whereas dendritic cells induced a Th1
response [98]. One can only speculate about the biological
relevance of an astrocyte-mediated Th2 bias. In EAE, T cells
typically enter the CNS as activated, differentiated Th1 cells.
However, the T-cell population may not consist exclusively
of Th1 cells. If astrocytes preferentially restimulate Th2 cells
[87, 97], the proportion of these cells could increase, thus
favouring an anti-inflammatory microenvironment. Also,
memory T cells are recruited to the CNS during EAE [99].
Memory cells are heterogeneous and part of the population
is not biased for a certain Th subpopulation, yet. Thus, it is
tempting to speculate that astrocytes may prevent induction
of a Th1 cytokine profile of memory cells in the CNS
[100]. The astrocyte-mediated bias towards Th2 responses
cannot be explained by their cytokine secretion as astro-
cytes do not produce IL-4, which is the main inductor of
Th2 responses, but might rather reflect the signal strength of
the MHC-II-T-cell receptor (TCR) interaction. Lowering the
signal strength has been found to favour Th2 differentiation
[101]. For instance, the surface density of MHC-II expression
determines the cytokine profile of T cells with low MHC-
II expression levels favouring Th2 responses [102]. Astro-
cytes do not readily express MHC-II molecules and are thus
likely to deliver a weaker TCR signal than “professional”
APCs with higher density of MHC-II molecules on their
surface.

4.3. Suppression of T-Cell Functions. In EAE, infiltrating T
cells do not proliferate in the target organ [103]; this has
been ascribed to the influence of astrocytes [104]. In vitro,
astrocytes can either suppress [105–107] or stimulate [87, 97,
108] T-cell functions. In coculture studies, astrocytes induce
hyporesponsiveness in T cells.This was interpreted as a result
of downregulation of the TCR [105] and insufficient stimula-
tion by low levels of ICAM-1 on astrocytes [106]; this would
limit adhesion of T cells to astrocytes, so that the two cells
ignore each other. As this would not silence invading T cells
in the CNS, othermechanismsmay have been involvedwhich
are not fully understood, yet.

T-cell activation is tightly regulated by surface molecules,
providing scope for immunotherapy [109–111]. While the
primary costimulatory molecule CD28 and its homo-
logue CTLA-4 (cytotoxic T-lymphocyte-associated antigen-
4, CD152) onT cells engage the same ligands B7-1 (CD80) and

B7-2 (CD86) on APCs, CTLA-4 binds with 10–100-fold
higher affinity than CD28 [110, 112]. CD28 signaling initi-
ates, sustains, and enhances T-cell activation while CTLA-
4 signaling inhibits T-cell activation and attenuates ongoing
responses [110, 113, 114]. The relevance of this has been
demonstrated by genetic inactivation of CTLA-4 in mice,
which leads to lymphoproliferative disease and early death
[110, 112]. T cells of this mouse strain proliferate sponta-
neously ex vivo and show an activated phenotype stressing
the central role of CTLA-4 in attenuating unwanted T-
cell responses. In contrast to CD28, which is constitutively
expressed on the surface of T cells, CTLA-4 is not detectable
on resting T cells [114]. Expression of CTLA-4 mRNA and
CTLA-4 protein on the T-cell surface is induced upon activa-
tion. CTLA-4 is stored intracellularly, and its surface expres-
sion is strictly controlled with a peak after 48 h–72 h after
T-cell stimulation [114, 115]. Blockade of CTLA-4 in mouse
models of autoimmune diseases increases the incidence of
EAE [111, 116]. Short blockade of CTLA-4 during priming
of the immune response has lasting effects, suggesting that
failure in the regulation of CTLA-4 would have long-lasting
impact on immune responses including autoimmunity [117].
Thus, giving agonistic CTLA-4 signals might be a promising
strategy for controlling inflammatory responses in the CNS,
particularly as CTLA-4 is highly expressed on the T cells
which accumulate there [118].

Our own study showed that astrocytes inhibit T-cell pro-
liferation, production of IL-2 and IL-10, and expression of the
IL2R 𝛼-chain (CD25) [107]. Functionally, astrocytes medi-
ated these effects by upregulating CTLA-4 on Th1 and Th2
cells. Although inhibition did not require astrocyte contact
with T cells, the mechanism was independent of the major
inhibitory cytokine TGF-𝛽.The study provided optimal stim-
ulation for T cells by having professional APCs and antigen
in the cultures when astrocytes were added. Thus, astrocytic
inhibitory or stimulatory effects could be discerned from
baseline effects occurring during T cell-APC interaction.
In this way, we also avoided differences in the stimulatory
capacity of astrocytes towards Th1 versus Th2 cells [87, 97].
The interpretation is supported by a recent study showing
that astrocytes inhibited proliferation and IFN-𝛾, interleukin-
(IL-) 4, IL-17, and TGF-𝛽 secretion levels of encephalitic T
cells in vitro unless they were pretreated with IFN-𝛾. They
even promoted T-cell proliferation, presumably by additional
antigen presentation [119]. The inhibitory effect of astrocytes
could be ameliorated by IL-27 neutralisation [119]. IL-27 has
been shown to suppress Th17 cells and thereby EAE [120,
121]. Also, it negatively regulates Th17 cells during chronic
inflammation of the CNS resulting from chronic infection
with Toxoplasma gondii [122]. Coculture of astrocytoma cell
lines with CD3/CD28-activated T cells revealed suppression
of T-cell proliferation. The effect was more pronounced
when direct contact was allowed between astrocytes and T
cells but remained strong when astrocytes and T cells were
separated by cell culture inserts [123]. The finding that T-cell
proliferation was still inhibited by astrocytes when astrocytes
and T cells were separated by a cell culture insert or a tran-
swell-membrane showed that a soluble factor produced by
astrocytes is responsible for this inhibition [107, 123, 124].
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However, astrocytes might conceivably have protruded cellu-
lar nanotubes through the cell culture inserts so as to contact
the T cells. The separating membranes had pore sizes of
200 nm [123] or 400 nm [107, 124]. An electron-microscopical
study of astrocytes growing on engineered surfaces showed
that astrocytes extend nanotubes with a diameter below
100 nm to make contact with other cells and may even
exchange substances via these nanotubes [125].This may be a
mechanism which allowed astrocytes to contact the T cells
physically. Cell-cell contact did not bear sole responsibil-
ity for the control of T-cell proliferation, since astrocyte-
conditioned supernatant also inhibited T-cell proliferation
[124].Despite being of interest for immunotherapy, the nature
of this soluble inhibitory factor remains unclear. Blockade
of TGF-𝛽 had no [124] or only a minor effect [107] on the
inhibition of T-cell proliferation. Inhibition of nitric oxide
production also did not reverse the inhibitory effect [123,
124]. Furthermore, inhibition of indoleamine-2,3 dioxyge-
nase (IDO) by methyltryptophan did not affect astrocyte-
mediated inhibition of T-cell proliferation [123].

IDO is a tryptophan-degrading enzyme and as such
inhibits T-cell proliferation. It has been proposed as a major
player in the immune privilege of the placenta [126]. Astro-
cytes and microglia are capable of expressing IDO in vitro
and in vivo upon activation with IFN-𝛾 [127]. IDO blockade
in EAE mediates disease exacerbation, suggesting that IDO
induction by Th1-derived IFN-𝛾 may play a role in self-lim-
iting autoimmune inflammation during EAE and MS [128].
IDO can also induce tolerance of tumours in the CNS [129].
PGE
2
induces IDO in dendritic cells [130, 131]. Systemic

administration of cytosine-phosphate-guanine dinucleotide
(CpG), a frequent dinucleotide in bacterial DNA and there-
fore detected by pattern recognition receptor Toll-like recep-
tor-9 (TLR-9), upregulates IDO in plasmacytoid dendritic
cells, where it is required for activation of regulatory T cells
(Tregs), and blocks their conversion into Th17 cells [132].
Although likely, whether IDO induction in astrocytes by
PGE
2
or CpG plays a role in the CNS and whether astrocytes

can induce Treg activation is one of the open questions con-
cerning astrocytes so far. IDO-deficient mice develop exacer-
bated EAE with enhanced Th1 and Th17 responses [133]. In
this model, not only tryptophan depletion was responsible
for the effect on T cells but also a downstream tryptophan
metabolite from the kynurenine pathway, 3-hydroxyanthran-
ilic acid (3-HAA), was. The kynurenine pathway starts with
tryptophan degradation by IDO or tryptophan-2,3 dioxyge-
nase (TDO) leading to 3-HAA. 3-HAAwas shown to increase
the percentage of Tregs and inhibited Th1 and Th17 cells
leading to EAE amelioration [133]. 3-HAA has been shown to
be neuroprotective in cytokine-mediated inflammation in
vitro [134] while othermetabolites of the kynurenine pathway
such as 3-hydroxykynurenine and quinolinic acid (QUIN)
appear to be neurotoxic [135]. Another metabolite of the
IDO-kynurenine pathway is kynurenic acid (KYNA) which
has been shown to be neuroprotective [136]. Interestingly,
activated human astrocytes have been shown to produce large
amounts of KYNA but almost no QUIN [137]. Thus, astro-
cytic IDO activation may lead to various effects which are
mostly beneficial.

Astrocytes in a rat EAEmodel could induce development
of Tregs, as has been shown in a study where T cells that
had been cocultured with astrocytes not only lost ability to
proliferate and inhibit proliferation of antigen-stimulated T
cells but also markedly alleviated the disease [138]. Also in
this study a heat-sensitive soluble factor was implicated, other
than IL-10 or TGF-𝛽 [138].

Another surface molecule, B7-H1 (PD-L1), might down-
regulate T-cell responses in the CNS; it is a member of the
B7-family known to downmodulate T-cell activity [139]. In
a model of fiber tract injury in the hippocampus of adult
mice, it is strongly upregulated on astrocytes while T-cell
recruitment to the site of injury was not accompanied by
autoimmune demyelination [140].

4.4. Astrocyte-Released Signals That May Influence T-Cell
Influx. Astrocytes are efficiently activated by the IFN-𝛾 pro-
duced by Th1 cells (see above). Under the influence of IFN-
𝛾, astrocytoma cells upregulate expression of chemokines
including CCL3, CCL5, CXCL8, and CXCL10, as well as
proinflammatory cytokines such as IL-6 and IL-1𝛽 (but also
an anti-inflammatory IL-1 receptor antagonist) [123]. Most
of these chemokines attract Th1 cells more than Th2 cells,
thus aggravating neuroinflammation. Thus, astrocytes may
inhibit and delay neuroinflammation, but in case of sustained
inflammation accompanied by high IFN-𝛾 levels, they may
switch to become potent APCs and even promotors of
inflammation [119].

4.5. T-Cell-Mediated Induction of Nerve Growth Factor.
Nerve growth factor (NGF) is a member of the neurotrophin
family. Growth, differentiation, survival, and maintenance of
peripheral and central neurons are facilitated by NGF [143].
NGF administered intracerebroventricularly into marmosets
delays the onset of EAE and reduces lesion formation [41].
Subsequent to induction of EAE, mice treated with NGF by
intraperitoneal injection exhibited a delayed onset of disease
in combinationwith lower clinical disease scores [144].More-
over, myelin basic protein- (MBP-) specific T cells retrovirally
transduced to secrete high levels of NGF are unable to
mediate clinical EAE and suppress induction of EAE by
nontransducedMBP-specific T cells in rats [40]. Astrocyte-T-
cell interaction results in increasedNGF production by astro-
cytes. This upregulation was found to be dependent on anti-
gen recognition as blockade of MHC-II abrogated the effect,
and resting astrocytes whichwere not able to present antigens
did not show an upregulation of NGF production. Neutrali-
sation of the cytokines IFN-𝛾, IL-4, and IL-10 produced in
the cocultures did not affect NGF production [142]. This
finding suggests a neuroprotective role of astrocytes during
T-cell-mediated inflammation in the CNS. Conversely, cells
of the immune system carry NGF receptors, and NGF sig-
nalling modulates immune function. Perivascular infiltrates
of NGF-treated marmosets decrease IFN-𝛾 and increase IL-
10 expression [145]. NGF inhibits the MHC-II inducibility of
microglia, thereby limiting antigen-presentation in the CNS
[146].



6 Mediators of Inflammation

Inflammation

Postcapillary venule

FasL
(1)

Apoptosis IFN-𝛾
CTLA-4

(2)
(3)

IL-27
IFN-𝛾

(4) NGF

Brain parenchyma

Endothelial cells
Basement membrane

Glia limitans

Figure 2: Astrocytes enforce the immune privilege of the CNS (left) at multiple checkpoints employing various mechanisms (right).
Astrocytes in the glia limitans are responsible for the exceptional tightness of endothelial tight junctions by producing soluble factors [18].
Despite theBBB, activatedT cells (yellow) are able to enter the brain parenchyma (grey) [65]. (1)At the same time, astrocytes in the glia limitans
and in the parenchymamay express FasL while activated T cells may express Fas [63, 72, 73].The ligation of Fas and FasL induces apoptosis of
T cells [71]. (2) As this does not fully eradicate infiltrating T cells, the surviving T cells may be restimulated by activated microglia presenting
CNS-specific antigens on MHC-II. In the presence of astrocytes, T cells upregulate CTLA-4 [107] which upon ligation of B7 molecules
induces a stop of proliferation and anergy of the T cells. (3) IFN-𝛾 produced by invading T cells stimulates astrocytic IL-27 production which
suppresses Th17 cells [120, 121, 141]. (4) During sustained T-cell-mediated inflammation, IFN-𝛾 secreted by T cells activates astrocytes to
gain the ability to present antigen on MHC-II and costimulate T cells. While this cognate interaction may exacerbate neuroinflammation, it
simultaneously leads to an upregulation ofNGF production that counteracts neuroinflammation [142]. Also, astrocytes acting as APCs appear
to promoteTh2 responses and the formation of regulatory T cells [138]. Astrocytes: orange cells; pink: effects leading to CTLA-4 upregulation;
green: effects of NGF; dark red: blood; grey: brain parenchyma.

Mechanisms by which astrocytes maintain immune priv-
ilege or limit inflammation-induced damage are summarised
in Figure 2.

5. Conclusions

For a long time, the CNS has been considered immune-
privileged. However, the initial explanation of a strictly sealed
BBB weakened when activated T cells were found to cross
the BBB in the healthy brain. Clearly, various cells contribute
to the phenomenon, including astrocytes, the most abundant
cells of the CNS. Astrocytes mediate neuronal differentiation
and homeostasis, and evidence is increasing that astrocytes
interact with the immune system. The concept of immune
privilege of the CNS may be weakening, but it is clear that
astrocytes dampen inflammation and have beneficial, neu-
roprotective effects on the healthy brain. Astrocytes need
activation by IFN-𝛾 to unfold their anti-inflammatory poten-
tial, in forms such as IL-27 production [141]. Even when
unable to prevent T-cell responses in the brain after pro-
longed provocation (e.g., by IFN-𝛾), their function does not
become purely detrimental. When activated, astrocytes har-
bour mechanisms of damage limitation, such as production
of neuroprotective NGF and preferential restimulation of
Th2 over Th1 cells. When this is not sufficient to prevent
autoimmune damage to the CNS, it may still control tissue
damage to some extent. The overall picture of astrocytes is

as CNS-intrinsic cells that combat local inflammation and
maintain immune privilege, thus minimising damage.
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