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Abstract: Alzheimer’s Disease (AD) is a progressive neurodegenerative disorder and the most
common cause of dementia; however, early diagnosis of the disease is challenging. Research suggests
that biomarkers found in blood, such as microRNAs (miRNA), may be promising for AD diagnostics.
Experimental data on miRNA–target interactions (MTI) associated with AD are scattered across
databases and publications, thus making the identification of promising miRNA biomarkers for AD
difficult. In response to this, a list of experimentally validated AD-associated MTIs was obtained
from miRTarBase. Cytoscape was used to create a visual MTI network. STRING software was used
for protein–protein interaction analysis and mirPath was used for pathway enrichment analysis.
Several targets regulated by multiple miRNAs were identified, including: BACE1, APP, NCSTN, SP1,
SIRT1, and PTEN. The miRNA with the highest numbers of interactions in the network were: miR-9,
miR-16, miR-34a, miR-106a, miR-107, miR-125b, miR-146, and miR-181c. The analysis revealed
seven subnetworks, representing disease modules which have a potential for further biomarker
development. The obtained MTI network is not yet complete, and additional studies are needed for
the comprehensive understanding of the AD-associated miRNA targetome.

Keywords: Alzheimer’s disease; protein–protein interaction (PPI); biomarker; microRNA (miRNA);
miRNA–target interaction (MTI)

1. Introduction

Alzheimer’s disease (AD) is a complex, multifactorial, progressive neurodegenerative
disorder afflicting the central nervous system (CNS) and is the most common cause of
dementia. The disease’s clinical progression is variable with several contributing factors,
is irreversible and inevitably fatal [1]. The cause of the disease is mostly still unknown.
It has been associated with the accumulation of misfolded amyloid beta (Aβ) proteins,
hyperphosphorylation of tau proteins, inflammation, the formation of neurofibrillary
tangles, and single-nucleotide polymorphisms (SNPs) in certain AD-associated genes, such
as the APOE gene [2]. AD is characterized by the loss of neurons and synapses in the
brain, leading to a gradual loss of cognitive function. Disease progression is divided into
three clinical stages: preclinical, prodromal, and dementia stages. In the disease’s early
stages, this manifests through episodes of forgetfulness, such as forgetting the names
of family members and friends and confusion in unfamiliar situations. As the disease
progresses, more regions of the brain are affected, resulting in severe difficulties with speech,
thought, motor control, and other functions. Late-stage AD outcomes include irreversible
disruptions to visual and visuospatial perception, behavioral alterations, losing one’s
ability to care for oneself, and progressively worsening cognitive and memory faculties.
The formation of new memories becomes highly impaired, though older memories are
often retained [1]. In 2015, it was estimated that 29.8 million people worldwide were living
with AD [3].
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Diagnosing AD is often carried out by interviewing relatives about the person’s overall
health, medical history, drug use, and other relevant information. Cognitive tests can also
be performed along with blood and urine tests. Brain scans may be used to rule out other
causes of dementia; these include computed tomography (CT), magnetic resonance imag-
ing (MRI), and positron emission tomography (PET) scans. Modern diagnostic methods
are based on IWG-2 criteria, which rely on both biomarker and clinical phenotypes [4].
Despite these diagnostic methods, a definitive diagnosis can only be made after death with
the examination of brain tissue. This is changing, however, as advancements in biomarker
research are allowing more accurate assessment of the presence of AD. Three biomarkers
have been established and examined in depth: Aβ proteins, tau protein, and phospho-
rylated tau proteins. The current AD biomarker panel is categorized into three types of
biomarker evidence for pathology, known together as the ATN classification system. This
system allows individuals to be analyzed for three parameters: alterations of Aβ proteins
(in CSF or detected with PET scans; A), the hyperphosphorylation of tau proteins (in CSF
or PET scans; T), and neurodegeneration levels (PET, MRI, and others; N) [5]. Accumu-
lating evidence suggests that biomarkers found in blood (circulatory biomarkers) may be
promising in identifying cases of AD. These include microRNAs (miRNAs), inflammatory
markers, blood-based Aβ markers, and biomarkers for oxidative stress [2].

In recent years, progress has been made in the field of biomarker development for
AD. Analyzing Aβ proteins in plasma together with other blood biomarkers can accurately
detect cerebral Aβ. This method yields even more accurate results when combined with
APOE genotyping and thus reduces the cost of PET scans and need for lumbar punctures [6].
CSF and plasma p-tau181 and p-tau217 levels have also been studied as potential early
biomarkers of AD [7]. These biomarkers were identified to be present in significantly higher
concentrations in patients with early or mild AD. PET scans for tau proteins, on the other
hand, presented more accurate results when gauging disease progression [8]. It has also
been shown that plasma biomarkers, such as p-tau217, can be used to reduce the necessary
sample size for future clinical trials [9]. Blood assay for p-tau181 has been identified as a
promising biomarker for AD pathology. P-tau 181 has also been identified as a promising
AD biomarker and has been shown to provide high diagnostic accuracy and the ability to
differentiate AD from several other neurodegenerative diseases [10].

miRNAs are a class of short, non-coding RNA consisting of about 22 nucleotides. They
play a role in the post-transcriptional regulation of gene expression as they, along with their
associated proteins, bind to mRNA. This protein–miRNA complex then mediates either the
degradation, destabilization, or repression of the mRNA. miRNA have been shown to have
a wide array of targets, and one miRNA can target multiple mRNAs. It has also been shown
that over 60% of protein-coding genes in humans have been under selective pressure to
maintain sequences that would allow miRNA binding. Over 2000 human miRNA have so
far been identified, and they are involved in numerous physiological processes as well as
disease development [11–13].

Multiple miRNAs have thus far been associated with AD [2,14]. These miRNAs were
identified as downregulated or upregulated in AD patients compared to healthy controls,
and some have been shown to regulate AD-associated genes, such as APP and tau pro-
tein genes [14]. Plasma concentrations of miR-15b and miR-125b have been proposed as
biomarkers of AD pathophysiology, and the study proposes a pathway-based approach to
therapies for AD [15]. miRNA expression in AD is, similar to other contributing factors
to the disease, highly heterogenous. A precision medicine approach to AD diagnostics
has been proposed that includes: biomarker testing, and PET and MRI scans during the
prodromal period of AD. This approach would allow more accurate disease trajectory
predictions and treatment based on the individual patient’s genetic, epigenetic, and neu-
roimaging profile [1]. miRNAs are also involved in both of the leading hypotheses for
AD development—the amyloid cascade hypothesis and the tau hypothesis [16]. Nineteen
miRNAs have been identified as having diagnostic potential in human AD studies. Among
them, miR-206, miR-181a, and miR-146a from blood samples have shown the ability to
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predict whether mild cognitive impairment would progress to AD [17,18]. Anti-miRNA
(AM) treatments have also been proposed- using miRNA complementary strands of RNA.
The AM approach has shown promise in murine models and cell cultures [19,20]. AM
strategies for AD patients will likely require a more individual-focused approach to disease
treatment, tailored to the individual’s needs due to AD heterogeneity [21]. Potential thera-
peutic approaches are, however, not limited to AM strategies. Studies on cell cultures and
animal models have also identified compounds that affect miRNA expression [22]. Current
commonly used diagnostic methods are primarily based on CSF biomarkers. As circulatory
miRNAs can be assessed in blood and do not require a lumbar puncture, their usage as
biomarkers for diagnosis or potential treatment may be advantageous. While miRNAs
may prove to be the preferable AD biomarker, data on their interactions with targets are
fragmented, making it difficult for researchers to find a comprehensive overview of MTIs.

The aim of the present study was to: 1. review published data on the currently known
miRNAs associated with AD, 2. present this information as the miRNA–target network to
identify central molecules with potential for biomarker and therapeutic target development,
and 3. conduct a pathway enrichment analysis and protein interaction analysis.

2. Methods

AD-associated miRNAs were retrieved from the online database miRTarBase, release 7.0
(http://mirtarbase.mbc.nctu.edu.tw/php/index.php) (accessed on 21 September 2021) [23].
The database contains experimentally validated MTIs. These MTIs were validated by using
various methodologies, including reporter assay, Western blot, quantitative PCR (qPCR),
microarrays, next-generation sequencing (NGS), and pSILAC. All data obtained from the
database were manually reviewed. Each entry was also manually verified and only MTIs
reported to be associated with AD were included in the analysis. The visual represen-
tation of the MTI network was made using the Cytoscape tool (https://cytoscape.org)
(accessed on 24 September 2021) [24]. miRNA target genes were investigated for known
protein–protein interactions (PPI) using the STRING database (https://string-db.org/)
(accessed on 24 September 2021) [25]. AD-associated miRNAs were also analyzed for
enrichment in biological pathways using mirPath v.3 (http://diana.imis.athena-innovation.
gr/DianaTools/index.php) (accessed on 2 November 2021) [26]. MirPath is a prediction-
based bioinformatics tool that enables the identification of biological pathways in which
the query miRNAs’ target genes are enriched. The MirPath’s KEGG analysis tool was uti-
lized using the following parameters: p-value threshold of 0.05 and conservative estimates
applied to the MicroT-CDS search algorithm. The obtained enriched biological pathways
were manually reviewed for association with AD in previously published literature.

3. Results

A total of 37 unique miRNAs associated with AD were extracted from miRTarBase.
The network consists of 37 miRNAs and 43 target genes, which are connected through
66 MTIs and experimentally validated by 45 unique articles. A list of MTIs is presented in
Table 1 [27–71]. All MTIs presented in these results have been previously experimentally
validated. The MTI network was visualized using Cytoscape software and is shown in
Figure 1. miR-9, miR-107, miR-125b, and miR-146a were among miRNAs with the highest
number of interactions, with four MTIs each. miR-16, miR-34a, miR-106a, and miR-181c
were also highly connected, with three MTIs each. The most prominent miRNA targets
were BACE1, APP, and NCSTN, which were the target of seven, seven, and four miRNAs,
respectively. miRNAs and targets connected by multiple edges represent interactions
confirmed by multiple independent experiments, such as the connections between BACE1
and hsa-miR-107. The results revealed a larger subnetwork consisting of 18 miRNA and
15 targets. Additionally, six smaller subnetworks of up to four MTIs were also identified.
Twelve reported MTIs were between pairs of a single miRNA and target and were not part
of a larger network. The targets of these 12 MTIs were: ATG5, BAX, BDNF, FKBP5, FOXO1,
LRP1, MFN2, RARA, RCOR1, SNX6, SORL1, and UBE2A (Figure 1). The complete table of
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MTIs, which includes miRTarBase IDs and experimental validation methods for each MTI,
is available in Supplementary Data (Supplementary Table S1).

Table 1. Experimentally validated MTIs associated with AD obtained from miRTarBase and
literature [27–71].

miRNA Target Gene Symbol Target Gene (Entrez Gene ID) Reference (PMID)

hsa-miR-20a-5p E2F1 1869 19110058 [39]

hsa-miR-146a-5p CFH 3075 18801740 [51]

hsa-miR-106b-5p APP 351 19110058 [39]

hsa-miR-101-3p APP 351 20395292 [59]

hsa-miR-101-3p APP 351 21172309 [67]

hsa-miR-29b-3p SP1 6667 23435408 [32]

hsa-miR-146a-5p IRAK1 3654 23952003 [43]

hsa-miR-107 BACE1 23621 18234899 [57]

hsa-miR-107 BACE1 23621 20489155 [42]

hsa-miR-29b-3p BACE1 23621 18434550 [60]

hsa-miR-29b-3p BACE1 23621 26818210 [62]

hsa-miR-146a-5p ROCK1 6093 27221467 [48]

hsa-miR-205-5p LRP1 4035 19665999 [40]

hsa-miR-9-5p BACE1 23621 18434550 [60]

hsa-miR-29a-3p BACE1 23621 18434550 [60]

hsa-miR-520c-3p APP 351 18684319 [63]

hsa-miR-106a-5p APP 351 19110058 [39]

hsa-miR-106a-5p APP 351 18684319 [63]

hsa-miR-34a-5p BCL2 596 19683563 [49]

hsa-miR-20a-5p APP 351 19110058 [39]

hsa-miR-17-5p APP 351 19110058 [39]

hsa-miR-125b-5p CDKN2A 1029 20347935 [50]

hsa-miR-107 GRN 2896 20489155 [42]

hsa-miR-125b-5p PPP1CA 5499 25001178 [34]

hsa-miR-34a-5p SYT1 6857 22160687 [54]

hsa-miR-34a-5p STX1A 6804 22160687 [54]

hsa-miR-29a-3p NAV3 89795 20202123 [27]

hsa-miR-375 SP1 6667 23435408 [32]

hsa-miR-181c-5p TRIM2 23321 21720722 [37]

hsa-miR-181c-5p SIRT1 23411 21720722 [37]

hsa-miR-9-5p SIRT1 23411 21720722 [37]

hsa-miR-9-5p TGFBI 7045 21720722 [37]

hsa-miR-181c-5p BTBD3 22903 21720722 [37]

hsa-miR-22-3p RCOR1 23186 23349832 [47]

hsa-miR-29c-3p BACE1 23621 21565331 [70]

hsa-miR-29c-3p BACE1 23621 25973041 [29]

hsa-miR-16-5p APP 351 26440600 [46]

hsa-miR-138-5p RARA 5914 25680531 [64]
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Table 1. Cont.

miRNA Target Gene Symbol Target Gene (Entrez Gene ID) Reference (PMID)

hsa-miR-125b-5p BCL2L2 599 25001178 [34]

hsa-miR-106a-5p STAT3 6774 23399684 [31]

hsa-miR-132-5p FOXO1 2308 24014289 [53]

hsa-miR-96-5p SLC1A1 6505 24304186 [56]

hsa-miR-96-5p SLC6A6 6533 24304186 [56]

hsa-miR-195-3p MFN2 9927 27693395 [71]

hsa-miR-26b-5p RB1 5925 24027266 [33]

hsa-miR-339-5p BACE1 23621 24352696 [69]

hsa-miR-214-3p BAX 581 23408966 [35]

hsa-miR-455-5p NCSTN 23385 25100943 [30]

hsa-miR-186-5p NCSTN 23385 25100943 [30]

hsa-miR-24-3p NCSTN 23385 25100943 [30]

hsa-miR-125b-5p DUSP6 1848 25001178 [34]

hsa-miR-107 SH3GL2 6456 27038654 [65]

hsa-miR-511-5p FKBP5 2289 27334923 [66]

hsa-miR-299-5p ATG5 9474 27080144 [52]

hsa-miR-98-5p SNX6 58533 27541017 [28]

hsa-miR-16-5p BACE1 23621 26440600 [46]

hsa-miR-16-5p NCSTN 23385 26440600 [46]

hsa-miR-106b-5p FYN 2534 27520374 [58]

hsa-miR-26b-5p IGF1 3479 26847596 [55]

hsa-miR-302a-3p PTEN 5728 26890744 [41]

hsa-miR-9-5p CAMKK2 10645 27394443 [45]

hsa-miR-200c-3p PTEN 5728 28008308 [68]

hsa-miR-146a-5p LRP2 4036 27241555 [38]

hsa-miR-7-5p UBE2A 7319 27929395 [61]

hsa-miR-613 BDNF 627 27545218 [44]

hsa-miR-1229-3p SORL1 6653 27328823 [36]
Legend: APP: amyloid beta precursor protein, ATG5: autophagy related 5, BACE1: beta-secretase 1, BAX: BCL2
associated X, apoptosis regulator, BCL2: BCL2 apoptosis regulator, BCL2L2: BCL2 like 2, BDNF: brain derived
neurotrophic factor, BTBD3: BTB domain containing 3, CAMKK2: calcium/calmodulin dependent protein
kinase 2, CDKN2A: cyclin dependent kinase inhibitor 2A, CFH: complement factor H, DUSP6: dual specificity
phosphatase 6, E2F1: E2F transcription factor 2, FKBP5: FKBP prolyl isomerase 5, FOXO1: forkhead box O1,
FYN: FYN proto-oncogene, Src family tyrosine kinase, GRN: granulin precursor. IGF1: insulin like growth
factor 1. IRAK1: interleukin 1 receptor associated kinase 1. LRP1: LDL receptor related protein 1, LRP2: LDL
receptor related protein 2, MFN2: mitofusin 2, NAV3: neuron navigator 3, NCSTN: nicastrin, PPP1CA: protein
phosphatase 1 catalytic subunit alpha, PTEN: phosphatase and tensin homolog, RARA: retinoic acid receptor
alpha, RB1: RB transcriptional corepressor 1, RCOR1: REST corepressor 1, ROCK1: Rho associated coiled-coil
containing protein kinase 1, SH3GL2: SH3 domain containing GRB2 like 2, endophilin A1, SIRT1: sirtuin 1,
SLC1A1: solute carrier family 1 member 1, SLC6A6: solute carrier family 6 member 6, SNX6: sorting nexin 6,
SORL1: sortilin related receptor 1, SP1: Sp1 transcription factor, STAT3: signal transducer and activator of
transcription 3, STX1A; syntaxin 1A, SYT1: synaptotagmin 1, TGFBI: transforming growth factor beta induced,
TRIM2: tripartite motif containing 2, UBE2A: ubiquitin conjugating enzyme E2 A.
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KEGG Pathway p-Value Number of Genes Number of miRNAs PMID (Reference) 
Axon guidance 2.03 × 10−8 94 35 33675023 [103] 
Glioma 2.38 × 10−8 51 36 30560246 [75] 
ErbB signaling pathway 3.03 × 10−8 71 37 21829755 [96] 
Adherens junction 3.23 × 10−8 61 35 27141420 [78] 
Hippo signaling pathway 5.39 × 10−8 110 34 32232042 [113] 
Endocytosis 4.19 × 10−7 142 37 15639316 [108] 
TGF-beta signaling pathway 1.05 × 10−6 57 33 26578886 [100] 
Rap1 signaling pathway 3.20 × 10−6 143 36 12819788 [115] 
Focal adhesion 9.32 × 10−6 141 37 17215111 [81] 

Figure 1. Network of experimentally validated MTIs associated with AD visualized using the Cytoscape software. Orange-
colored nodes represent target genes while blue-colored nodes represent miRNAs. Each edge represents an experimentally
validated interaction between a miRNA and its target. (a) The largest subnetwork identified in the data set, consisting of
18 miRNAs and 15 target genes, with a total of 37 MTIs. (b) Smaller subnetworks and miRNA–target pairs identified in the
data set.

Target genes (n = 43) were then explored for PPIs using the STRING tool (Figure 2).
A total of 41 of the 43 targets were part of a large PPI network; only two targets, UBE2A and
CFH, had no known interactions with the rest of the proteins in the network. The network
includes 43 nodes with 110 interactions, which is significantly more interactions than
expected (PPI enrichment p-value: <1.0−16). Some proteins had notably more interactions
than others, representing hubs. The five proteins with the most PPIs were: PTEN, SIRT1,
APP, STAT3, BACE1, with 19, 16, 16, 9, and 7 PPIs, respectively. These five proteins are
therefore present in 67 of the 110 PPIs in the network, thus representing central hub proteins.

To identify pathways in which 37 AD-associated miRNAs were enriched, we con-
ducted an analysis with the mirPath tool. The analysis conducted using mirPath identified
enrichments of the 37 unique AD-associated miRNAs in 68 biological pathways. Biological
pathways were manually reviewed for association with AD based on literature. A total of
44 of the 68 biological pathways were associated with AD in previously published literature
(Table 2) [69–112]. Thus, a total of 87 articles were reviewed for MTIs and enriched biologi-
cal pathways. Supplementary Data (Supplementary Table S2) includes the full results of
the pathway enrichment analysis.
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Figure 2. Protein–protein interaction network of 43 AD-associated miRNA targets using STRING software. The colors of
connections between nodes represent the type interaction between the two proteins. The most reliable of these connections
are “known interactions” from curated databases and experiments. Common gene neighborhoods, fusions, and co-
occurrences as well as textmining, co-expression, and protein homology are considered less reliable connections and tend to
require independent verification.

Table 2. Results of the pathway enrichment analysis using mirPath tool. The table includes pathways associated with AD in
previously published literature. A total of 37 AD-associated miRNAs were enriched in 68 pathways. This table includes
44 pathways, which were associated with AD in previously published literature. The PMID (Reference) column includes
references to publications associating the KEGG pathway with AD [72–115].

KEGG Pathway p-Value Number of
Genes

Number of
miRNAs

PMID
(Reference)

Axon guidance 2.03 × 10−8 94 35 33675023 [103]

Glioma 2.38 × 10−8 51 36 30560246 [75]

ErbB signaling pathway 3.03 × 10−8 71 37 21829755 [96]

Adherens junction 3.23 × 10−8 61 35 27141420 [78]
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Table 2. Cont.

KEGG Pathway p-Value Number of
Genes

Number of
miRNAs

PMID
(Reference)

Hippo signaling pathway 5.39 × 10−8 110 34 32232042 [113]

Endocytosis 4.19 × 10−7 142 37 15639316 [108]

TGF-beta signaling pathway 1.05 × 10−6 57 33 26578886 [100]

Rap1 signaling pathway 3.20 × 10−6 143 36 12819788 [115]

Focal adhesion 9.32 × 10−6 141 37 17215111 [81]

Neurotrophin signaling pathway 1.16 × 10−5 88 36 22654716 [99]

PI3K-Akt signaling pathway 1.45 × 10−5 216 37 33258115 [97]

ECM-receptor interaction 1.93 × 10−5 54 33 25410365 [79]

Ras signaling pathway 1.93 × 10−5 142 36 28374012 [106]

Phosphatidylinositol signaling system 2.28 × 10−5 59 35 28847278 [77]

Adrenergic signaling in cardiomyocytes 2.28 × 10−5 97 36 24001898 [85]

Acute myeloid leukemia 2.53 × 10−5 45 37 25762156 [93]

Mucin type O-Glycan biosynthesis 2.54 × 10−5 20 26 33218200 [89]

MAPK signaling pathway 2.54 × 10−5 168 37 12566928 [90]

Estrogen signaling pathway 6.29 × 10−5 67 36 32297302 [101]

Regulation of actin cytoskeleton 8.73 × 10−5 141 37 21276817 [76]

Wnt signaling pathway 0.000213 96 33 31191253 [91]

AMPK signaling pathway 0.000262 86 35 30776001 [110]

Colorectal cancer 0.000271 47 34 30323761 [80]

mTOR signaling pathway 0.000283 47 37 22202101 [94]

Oxytocin signaling pathway 0.000283 103 37 30990880 [92]

Prolactin signaling pathway 0.000645 49 37 34126620 [109]

FoxO signaling pathway 0.001453 90 36 29149835 [83]

Hepatitis B 0.001453 90 36 34398003 [102]

cGMP-PKG signaling pathway 0.001614 108 36 32715279 [111]

Tight junction 0.00311 87 36 30770921 [104]

Long-term potentiation 0.004575 48 34 27377368 [107]

Sphingolipid signaling pathway 0.006623 75 36 20571935 [88]

T cell receptor signaling pathway 0.006678 69 36 23534386 [98]

Insulin signaling pathway 0.008818 90 37 31275108 [112]

Protein processing in endoplasmic reticulum 0.009068 102 35 24832819 [87]

Gap junction 0.012445 58 35 33117125 [95]

Inositol phosphate metabolism 0.016986 42 32 15746379 [72]

Inflammatory mediator regulation of TRP channels 0.018347 64 33 32351395 [105]

Platelet activation 0.018347 80 36 9561982 [86]

Glycosaminoglycan biosynthesis—heparan sulfate/heparin 0.02388 16 24 25157361 [74]

cAMP signaling pathway 0.024452 121 36 10556645 [84]

Type II diabetes mellitus 0.031105 33 34 24526623 [82]

p53 signaling pathway 0.03515 46 35 22042001 [73]

Fc gamma R-mediated phagocytosis 0.040459 59 36 31901293 [114]
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4. Discussion

In the present study, we formed an MTI network based on data on AD-associated
miRNA, extracted from miRTarBase. This network contained seven MTI subnetworks and
12 MTI pairs. Nodes in the network with the highest number of edges include APP, BACE1,
NCSTN, SIRT, and SP1, as well as the following miRNAs: miR-9, miR-16, miR-34a, miR-
106a, miR-107, miR-125b, miR-146, and miR-181c. We also investigated the miRNA targets
for their interactions with other proteins, and visualized a PPI network, using STRING
software. Furthermore, we conducted an enrichment analysis for AD-associated miRNAs.

Previously published literature indicates that miRNAs are an important regulatory
mechanism for AD-associated gene expression [14]. So far, several miRNAs have been
shown to regulate AD-associated genes [14]. As the main miRNA mechanism of action is
the downregulation of target genes, it is important to assess whether they are being over-
or under-expressed in patients. Additionally, miRNA expression can be tissue-specific or
bound to a specific mechanism, such as the regulation of extracellular vesicles, which are
involved in cell communication [116]. As the understanding of the AD genetic background
is not yet complete, observing miRNAs as a contributing factor may prove valuable.

The methods used for the validation of miRNA–target interactions are not all equally
reliable and have different validation statuses. The miRTarBase methods are divided into
strong and less strong based on the validation status. Methods such as Western blot, qPCR,
and reporter assay are considered to give more reliable information and are marked as
methods with strong validation status. Microarrays, NGS, pSILAC, and other methods
are, by contrast, considered to generate less strong evidence. Consensus on the validation
strength of methods has not yet been achieved as studies use different definitions of what
constitutes strong and less strong evidence when it comes to MTIs. The edges between tar-
gets and miRNAs in Figure 1 do not distinguish between strong and less strong validation.
In the future, these data could be accounted for in the graphical network.

The study results identified MTI subnetworks of varying sizes. The largest MTI sub-
network identified consists of 18 miRNAs and 15 target genes. The most prominent miRNA
targets in the MTI network are APP, BACE1, NCSTN, SIRT, and SP1 as they are the targets
of multiple miRNAs. The six smaller networks are composed of three to five nodes with
two to four MTIs. In one subnetwork, two miRNAs regulate the same gene; where hsa-
miR-302a-3p and hsa-miR-200c-3p both target PTEN. From Figure 1, it is also apparent that
there are 12 MTI pairs not connected to the other subnetworks.

As previously mentioned, five genes had the largest number of edges in the MTI
network. Among these is the BACE1 gene, regulated by seven AD-associated miRNAs in
the MTI network. Beta-secretase 1 is a protease encoded by the BACE1 gene. Its main role
is the extracellular cleavage of the amyloid precursor protein (APP). It cleaves APP into
two components, one of which is known as C99. This component is then further cleaved
by γ-secretase, releasing an amyloid beta peptide (Aβ), which is the primary component in
amyloid plaques. These plaques are commonly found in the brains of AD patients. Due
to the correlation of amyloid plaque formation and AD, BACE1 has been closely studied.
Inhibiting BACE1 would prevent the formation of Aβ, and it has been speculated that
BACE1 inhibitors may prevent the development of the disease [117].

Another miRNA target with multiple MTIs is APP. Like BACE1, APP is also regulated
by seven miRNAs in the MTI network. As seen in Figure 1, BACE1 and APP are both
targeted by miR-16. As previously mentioned, APP is cleaved by proteases and is the
precursor for Aβ. Despite being of great interest in connection to AD, its function is not
completely known. Evidence shows that increased APP expression could promote the
production of Aβ, leading to a negative impact on neurons and synapses [118].

Nicastrin is a protein encoded by the NCSTN gene. NCSTN is targeted by four miR-
NAs in the MTI network, making it the gene with the third-highest number of interactions
with AD-associated miRNA. It is part of the γ-secretase protein complex and is thus con-
nected to the formation of Aβ. No solid evidence has so far been found that would connect
it to the development of AD, though this does not exclude it as a potential contributing



J. Pers. Med. 2021, 11, 1275 10 of 18

factor [119]. As seen in Figure 1, miR-16 regulates three highly interconnected genes in the
MTI network—APP, BACE1, and NCSTN.

The SIRT1 gene encodes the enzyme NAD-dependent protein deacetylase sirtuin-1
(SIRT1). In the MTI network, SIRT1 is a target for two miRNAs: miR-181c and miR-9.

The roles and functions of human sirtuins are still largely unknown; however, SIRT1
has a known interaction with hypoxia-inducible factors 1α and 2α (HIF1A and EPAS1,
respectively). HIF-1α and EPAS1 are important for proper brain development as they
are crucial for cell adaptation to hypoxia [120]. In murine models, all gene expression
alterations in EPAS1-deficient mice have previously been associated with AD and memory
loss [121]. SIRT1 was found to deacetylate the tau protein in some cell cultures. Among
other interactions, it was also observed that it has a protective role in microglia-dependent
Aβ toxicity [122].

SP1 is a transcription factor and is targeted by two miRNAs in the MTI network:
miR-29b and miR-375. SP1 may be involved in the development of AD as it can regulate
the expression of several genes previously associated with AD, such as APP and tau protein
genes. SP1 has also been shown to be significantly upregulated in the frontal cortex of AD
patients [123].

PTEN is a gene that translates into the phosphatase and tensin homolog (PTEN)
protein. PTEN is a target of miR-200c and miR-302a in the MTI network. Mutations in
this gene are primarily associated with different types of cancer; however, they are also
associated with AD through its role in synaptic and cognitive functions [124]. The gene also
acts as a tumor suppressor, and its involvement with AD has been studied in mice [125].

Along with an MTI network, we also conducted a PPI analysis for AD-associated
miRNA targets (Figure 2). Both the PPI and MTI network contained nodes with a large
number of interactions, either with other targets (proteins) or miRNAs. The two networks
share some nodes with multiple interactions. APP, BACE1, PTEN, SIRT1, and SP1 are
targets that have the highest number of interactions in both networks. However, the PPI
networks also include other highly connected proteins, such as STAT3, CDKN2A, E2F1,
MFN2, RB1, and IGF1. The PPI network is highly interconnected: 41 of the 43 genes
currently have at least one known or predicted interaction within the network. This level
of interconnectedness of miRNA targets further points to the complex nature of AD.

A total of 37 AD-associated miRNAs were identified to be enriched in 68 biological
pathways using the mirPath tool. For these 68 pathways, we conducted a secondary review
of previously published literature and identified 44 pathways which have previously
been described in association with AD. These 44 AD-associated pathways also include
five pathways associated with other diseases: glioma, acute myeloid leukemia, colorectal
cancer, hepatitis B, and type II diabetes mellitus. For example, glioma and AD share some
common biological pathways associated with their development as well as genetic and
environmental risk factors but are as of yet not causally related [75]. Common pathways
with AD were also identified for acute myeloid leukemia [126] and colorectal cancer [80].
Interestingly, research has discovered an inverse correlation between AD risk and lung
cancers [127] as well as other types of cancers [128–130]. Further studying the shared
pathways between these diseases may yield additional insight into the role played by
individual pathways in the development of AD.

Among the 44 AD-associated pathways, 39 pathways were not associated with dis-
eases. These pathways are involved in inter- and intracellular signaling, gene regulation,
cell adhesion, endocytosis, phagocytosis, and inflammation, which is expected, as these
mechanisms have been shown to be involved in AD pathology [131]. The results of the anal-
ysis indicate that AD-associated miRNAs are involved in a variety of biological pathways.
Based on the number and variety of pathways miRNA target genes are enriched in, miRNA
appear to play a role in AD on multiple levels. Observing the disease at its endpoint,
however, as is the tendency of study designs for AD-associated factors, has drawbacks.
Due to the complexity of cellular regulatory mechanisms, observing dysregulations at the
end point of a disease may not necessarily answer questions regarding its etiology. The
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interconnected nature of biological pathways means that the dysregulation of one pathway
can cause the dysregulation of a second pathway. Though the second pathway is now
dysregulated, studies observing the end-point of a disease’s progression will not be able to
discern between the cause and effect [132]. Therefore, longitudinal studies spanning from
the preclinical stage of disease development to its endpoint are vital for the understanding
of AD and consequently identifying therapeutic approaches.

MTIs acquired from miRTarBase do not include all genes whose variants are commonly
associated with increased risk of AD. Their absence may be due to the incomplete initial
data set, the current lack of knowledge about the role of miRNA in the contribution to
AD development, or an indirect mechanism through which these risk variants contribute
to the disease. Some genes commonly associated with AD, such as APOE, are currently
not included in the database. APOE is considered one of the most influential genetic risk
factors for late-onset AD—specifically, one of its three major isoforms, APOE-E4. The full
extent of interactions between APOE and miRNA is not yet understood; however, it has
been shown that levels of miR-1908 were negatively correlated with APOE expression [133].
Other known genetic AD risk factors include PSEN1 and PSEN2, specifically for early-onset
AD [134]. PSEN1 is regulated by miR-193a [135] while PSEN2 knockout microglia cells
exhibited the downregulation of miR-146 [43]. Further research into the involvement of
APOE, PSEN1, and PSEN2 is required in order to acquire a better understanding of their
role in AD. Future research is needed to reveal complete understanding of the role of
miRNA in APOE, PSEN1, and PSEN2 regulation.

Different methods have been used both for the identification of novel biomarkers
and for diagnostic purposes. For example, a cell culture reporter assay was used to
determine that miR-107 regulates the expression of BACE1 [57]. Cell culture reporter assays,
ELISA, xMap Luminex, shotgun proteomics, and other methods are commonly used to
perform biomarker assays. The methodology on AD biomarker detection, however, is not
entirely consistent among laboratories. For example, individual laboratories have different
concentrations of Aβ that are considered low or high for the purpose of assays [136].
Blennow and Zetterberg (2018) have evaluated a large number of studies on miRNAs
associated with AD and highlighted the need for a standardized analytical protocol among
research centers [2]. A standardized approach for determining whether AD-associated
molecules are present in low or high concentrations for the purpose of diagnostics is
necessary for reliable, reproducible studies on AD.

Despite several important contributions to the development of the study field, there
are also some limitations inherent to the present study. The study is limited by data
available in the miRTarBase and mirPath databases, as these databases do not include all
miRNAs and their targets currently known to be associated with AD. MirTarBase is one of
the most extensive miRNA databases, but due to the rapid pace of the developments in this
field, it may be challenging to keep a database up to date. Additionally, our initial dataset
did not include expression levels and tissue specificity for miRNA and targets. The stage of
AD during which measurements were taken was also not included, though these data could
be taken into account in the future. The focus of the present study is the identification of
interactions between known AD-associated miRNA and targets, their visualization, and the
analysis of their enrichment in biological pathways. Through this, the study contribution
is an overview of the interplay between miRNAs and AD-associated genes.

miRNAs have been extensively studied for their use as AD biomarkers in previously
published literature [137]. A study by Lugli et al. (2015) assessing exosomal miRNAs as
potential AD biomarkers has observed the differential presence of miRNAs in the plasma
of AD patients. Twenty miRNAs showed notable differences, and seven of those were used
for AD status prediction of patients using machine learning. The machine learning model
predicted the patient’s AD status based on samples with an 83–89% accuracy; however, the
authors recommend a replication with a larger cohort. The addition of miRNA expression
data into other AD biomarker diagnostic tests is likely to further increase the diagnostic
accuracy [138]. The results of a study by Leidinger et al. (2013) showed that a panel of
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12 blood-based miRNAs can be used to differentiate between AD patients and healthy
controls with 93% accuracy. This panel of 12 miRNAs can also differentiate between AD
and other CNS disorders with 74–78% accuracy [139]. Other studies testing circulatory
miRNAs as biomarkers have also shown 75–95% accuracies in identifying AD [140]. These
studies are, however, focused on the late stages of AD. Integrating blood or plasma miRNA
biomarkers with other biomarkers, such as Aβ40 and Aβ42, are likely prospective methods
of early disease detection.

In the present study, miR-9, miR-16, miR-34a, miR-106a, miR-107, miR-125b, miR-146,
and miR-181c were miRNAs present in the highest number of MTIs in the network. These
miRNAs present promising components of regulation of AD-associated genes. miR-16 and
miR-34a are involved in processes key to the amyloid cascade hypothesis model of AD
development [14]. miR-16 inhibits APP expression while miR-34a inhibits the expression
of proteins connected with Aβ clearance [14]. miR-125b, meanwhile, is involved in the
tau cascade hypothesis model, where its role is the inhibition of kinases responsible for
tau hyperphosphorylation [14]. These miRNAs are differentially expressed in the brain
and CSF; however, as diagnostic methods aim towards blood-based biomarkers, studies
are necessary to elucidate whether they are also viable as circulatory biomarkers. Studies
have shown the potential for blood-based miRNA biomarkers [137–140]. However, studies
involving miRNA as circulatory biomarkers have, in the majority of cases, been performed
with participants at the dementia stage of AD. Longitudinal studies with larger sample
sizes are necessary to identify a combination of robust early detection biomarkers. As for
therapeutic targets, research in the topic remains incomplete, being performed predomi-
nantly on cell cultures and murine models. Anti-miRNA (AM) approaches are challenged
by an imperfect drug delivery system and unwanted effects on the expression of non-AD-
associated genes, due to the multi-target nature of miRNAs. An anti-miR-146a (AM-146a)
approach has shown a regained miRNA-associated homeostasis in murine models of AD.
In cell cultures, AM-34a has returned overexpressed TREM2 [141] and SHANK3 [21] levels
back to expected, normal levels, and thus, homeostasis. miRNAs as therapeutic targets
should therefore not be ruled out, but more research is necessary to identify their level of
potential for this purpose.

miRNAs play a prominent role in the regulation of AD-associated gene expression,
with vast research potential into targets for screening, diagnosis, or treatment. Our analy-
sis revealed seven subnetworks of MTIs, representing disease modules, which have the
potential for network-based biomarker development. Further investigation into the cause
of the upregulation or downregulation of miRNA may also prove useful in the search for
the cause of AD. As there are a large number of miRNAs to consider in AD development,
research, or screening, lab-on-a-chip technology is likely to be an efficient and cost-effective
method to utilize.

5. Conclusions

In the present study, we conducted a synthesis of heterogenous results extracted from
88 unique studies; MTIs were obtained from 45 articles and AD-associated pathways from
43 articles. MTI data were visualized in the form of a network. A visual representation of
experimentally validated MTIs has revealed potential novel network-based biomarkers.
The miRNAs, their targets, MTIs, and associated biological pathways identified in this study
hold potential for understanding AD progression. They also hold potential for additional
circulatory biomarker development and therapeutic targets, as they are involved in multiple
key molecules and mechanisms associated with AD. As research in the field grows, it is
becoming more apparent that the role of miRNA in the development of AD is substantial
and holds potential for the development of improved future diagnostics and therapeutic
approaches. The results identified miRNAs and target genes representing central molecules,
which will enable the formation of new hypotheses in the future. Research involving
longitudinal studies and incorporating both miRNAs and other known biomarkers would
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allow the development of a more complete view of AD for advancements in disease
screening, diagnosis, and treatment.
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