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Abstract

Motivation

Single-cell Chromatin ImmunoPrecipitation DNA-Sequencing (scChIP-seq) analysis is chal-

lenging due to data sparsity. High degree of sparsity in biological high-throughput single-cell

data is generally handled with imputation methods that complete the data, but specific meth-

ods for scChIP-seq are lacking. We present SIMPA, a scChIP-seq data imputation method

leveraging predictive information within bulk data from the ENCODE project to impute miss-

ing protein-DNA interacting regions of target histone marks or transcription factors.

Results

Imputations using machine learning models trained for each single cell, each ChIP protein

target, and each genomic region accurately preserve cell type clustering and improve path-

way-related gene identification on real human data. Results on bulk data simulating single

cells show that the imputations are single-cell specific as the imputed profiles are closer to

the simulated cell than to other cells related to the same ChIP protein target and the same

cell type. Simulations also show that 100 input genomic regions are already enough to train

single-cell specific models for the imputation of thousands of undetected regions. Further-

more, SIMPA enables the interpretation of machine learning models by revealing interaction

sites of a given single cell that are most important for the imputation model trained for a spe-

cific genomic region. The corresponding feature importance values derived from promoter-

interaction profiles of H3K4me3, an activating histone mark, highly correlate with co-expres-

sion of genes that are present within the cell-type specific pathways in 2 real human and

mouse datasets. The SIMPA’s interpretable imputation method allows users to gain a deep

understanding of individual cells and, consequently, of sparse scChIP-seq datasets.
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Availability and implementation

Our interpretable imputation algorithm was implemented in Python and is available at

https://github.com/salbrec/SIMPA.

Introduction

The discovery of protein-DNA interactions of histone marks and transcription factors is of

great importance in biomedical studies because of their impact on the regulation of core cellu-

lar processes such as chromatin structure organization and gene expression. These interactions

are measured by chromatin immunoprecipitation followed by high-throughput sequencing

(ChIP-seq). Public data from the ENCODE portal, which provides a large collection of experi-

mental bulk ChIP-seq data, has been used for comprehensive investigations providing insights

into epigenomic processes that affect chromatin 3D-structure, chromatin state, and gene

expression, to name just a few [1, 2].

Recently developed protocols for scChIP-seq are powerful techniques that will enable in-

depth characterization of those processes at single-cell resolution. ChIP-seq was successfully

performed on single cells with sequencing depth as low as 1,000 unique reads per cell, reflect-

ing the low amount of cellular material that can be obtained from only one single cell [3]. Even

though this low coverage leads to sparse datasets, scChIP-seq data has enabled the study of bio-

logical systems that cannot be investigated with bulk ChIP-seq applied for many cells, for

example, the differences between drug-sensitive and drug-resistant breast cancer cells [4].

The analysis of single-cell assays is strongly affected by the sparsity of the data. In the con-

text of ChIP-seq, sparsity means no signal observed for numerous genomic regions without

the possibility to explain whether this is real or due to low sequencing coverage. Notably, spar-

sity may disable the investigation of functional genomic elements that could be of crucial inter-

est. Hence, an imputation method is needed to complete sparse scChIP-seq datasets while

preserving the identity of each individual cell.

The first published imputation method for bulk NGS epigenomic signals was ChromIm-

pute [5], later followed by [6], an improved method for the imputation of signal tracks for sev-

eral molecular assays in a biosample-specific manner (biosample refers to the specific tissue or

cell-type, not to single cell). The challenge of transcription factor binding site prediction was

approached, for example, using deep learning algorithms on sequence position weight matri-

ces [7] and more recently by the embedding of transcription factor labels and k-mers [8]. With

the aim to complete the ENCODE portal with imputed bulk experiments, Schreiber et al.
implemented the method Avocado, which extends the basic concept of PREDICTD by deep

neural networks [9]. Avocado was also validated on ChIP-seq data from both histone marks

and transcription factors [10]. Such methods show the successful application of machine learn-

ing algorithms and mathematical approaches in predicting epigenomic signals such as tran-

scription factor binding activity. However, their scope, being limited to either imputation of

missing bulk experiments or sequence-specific binding site prediction, hampers their applica-

tion to single-cell data.

The challenge of imputation for sparse datasets from single-cell assays has been extensively

approached for single-cell RNA-seq (scRNA-seq) used to quantify gene expression at single-

cell resolution e.g. [11–19]. In this context, similarly to scChIP-seq data, sparsity is described

by dropout events, which are transcripts having a transcription rate of zero without knowing if

the corresponding gene is not expressed at all or if the expression rate is not detected due to
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technical limitations [16]. The question arises if these methods can be easily adapted for impu-

tation of scChIP-seq data. However, there are crucial differences between the application of

RNA-seq and ChIP-seq techniques that must be considered regarding the development of a

method for scChIP-seq imputation.

First, in RNA-seq the set of relevant genomic regions, defined by the species-specific tran-

scripts, is more limited. For a ChIP-seq profile, the regions of potential interest may originate

from any position in the genome and cannot be defined in advance. To simplify the analysis,

in scChIP-seq imputation the genome can be organized in non-overlapping genomic windows

(bins) of a certain size. At 5 kb resolution, this binning concept results in more than 600,000

possible bins in the human genome, a number that is much higher than the number of tran-

scripts considered in the RNA-seq context.

The second main difference is that scChIP-seq interactions are usually represented by a

Boolean value (the value can be either “True” or “False”) describing the presence or absence of

a significant enrichment of sequencing reads defining a peak, while RNA-seq datasets contain

transcription rates. Consequently, the application of scRNA-seq imputation methods on

scChIP-seq data might be less appropriate.

In contrast, imputation methods for chromatin accessibility profiles from single-cell

ATAC-seq (single-cell Assay for Transposase-Accessible Chromatin using sequencing, scA-

TAC-seq) are potentially more transferable to scChIP-seq imputation as their data representa-

tion is more similar. A few methods exist that implement imputation for scATAC-seq, though

none of them was tested on scChIP-seq data so far. Methods such as SCALE which uses a com-

bination of Gaussian mixture models and variational autoencoder [20] have been shown to

outperform scRNA-seq methods to impute scATAC-seq data (see also FITs [21] and scOpen

[22]). These methods complement each other with respect to the different approaches they

implement, however, they share the common concept of imputing the missing values within a

sparse matrix defined by the single cells (rows) and the genomic bins (columns) of a given

experiment, and only bins are considered that were detected by at least one single cell if no fur-

ther filtering is applied. Consequently, such methods can offer imputation only on regions that

were observed in the single-cell dataset and it is likely that many important regions along the

whole genome will be missed.

To overcome this limitation, we developed SIMPA, an algorithm for Single-cell ChIP-seq

iMPutAtion, that uses bulk ChIP-seq datasets of the ENCODE project to train its machine

learning models [2, 23]. It was already shown that an additional bulk RNA-seq dataset can be

used to improve the imputation for a sparse scRNA-seq dataset [14]. Within SIMPA, publicly

available bulk ChIP-seq data is turned into a reference set used to define potential bins to be

imputed. Bins observed in the single-cell dataset are then used to derive training sets specified

by both the bulk reference data and single-cell data. This training set is then leveraged by

machine learning models to compute specific imputation probabilities. Moreover, these mod-

els are interpretable and can be used to gain insights into a given single-cell dataset, allowing a

more detailed investigation of individual cells. The interpretability is implemented by Inter-

SIMPA, an extension which takes a single cell as input together with a genomic position of

interest and trains one classification model for the position to derive a probability which can

be seen as an imputation score. More importantly, InterSIMPA ranks the genomic bins from

the sparse single-cell profile by their relevance for the model. The ranked bins are enriched by

detailed information and an importance score describing the strength of their relationship

with the given genomic position of interest. These relationships can be interpreted as depen-

dencies between genomic regions that could be part of the gene regulatory network (e.g.,

between enhancers and promoters).
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The basic reference-based imputation concept of SIMPA was first validated for human on

simulated data and then on a real scChIP-seq dataset of immune cells [4]. The simulated data

was used to demonstrate the single-cell specificity of the imputations on full data profiles. The

real dataset allowed us to investigate the algorithm’s capability of retaining the cell-type clus-

tering and furthermore to assess the biological relevance of the imputed regions based on a

pathway enrichment analysis. Results from InterSIMPA were validated using promoter

regions related to genes of the B- and T-cell signaling pathways in the human dataset and

regions related to brain functions in a mouse dataset [24].

Methods

Datasets

Preparation of the reference data (bulk ChIP-seq datasets). To create the reference set

that is used by SIMPA we downloaded all ChIP-seq experiments from the ENCODE portal

that comply with the following criteria: the status is released, the experiment is replicated (iso-

genic or anisogenic), no treatment to the biosample, without genetic modification, and the

organism is Homo Sapiens (human) or Mus Musculus (mouse). Experiments represent differ-

ent ChIP protein targets (antibody targets within the ChIP) and biosamples (either tissue or an

immortalized cell line). For all experiments, we downloaded fully preprocessed sets of protein-

DNA interacting regions as peak files: the replicated peaks for histone mark ChIP and the opti-
mal IDR thresholded peaks for transcription factor ChIP. For human, 2251 peak files of the

hg19 or hg38 assembly were downloaded and preprocessed as hg38 after converting hg19 files

with the UCSC LiftOver tool [25]. For mouse, 848 peak files of the mm10 assembly were

downloaded and preprocessed (data from other assemblies did not complement the selection).

For downloading, preprocessing, and updating the datasets we used a semi-automatic, SQL-

backend procedure that was already used in a previous project [26]. A list with all 3099 refer-

ence experiments is provided in S1 Table including information about the protein target, the

cell-type or tissue, the assembly, and the exact ENCODE accession IDs.

Data preprocessing. In order to limit computational complexity, all reference experi-

ments were converted from ChIP-seq peak sets to genomic bin sets (bins are defined as non-

overlapping regions on a genome). We provide on github the reference data in bin sizes (or

resolution) of 5 kb and 50 kb for hg38 (https://github.com/salbrec/simpa). We also provide the

reference data for mm10 for some of the main histone marks in different sizes. However, the

github repository also provides scripts and descriptions that enable the preparation of any tar-

get in the desired resolution (bin sizes). Bin sets for the reference ChIP-seq experiment are in

binary format to be more efficiently integrated by the main Python scripts. Given one refer-

ence experiment, a bin is said to be “present” if there is at least one ChIP-seq peak that overlaps

this bin, “absent” otherwise.

Preprocessing of scChIP-seq data for human (Grosselin et al., 2019). We downloaded

the count matrices for H3K4me3 and H3K27me3 available in GEO under accession number

GSE117309 in 5 kb and 50 kb binning resolution, respectively. From the matrices, we derived

bed files for every single cell excluding gender-specific chromosomes. SIMPA, InterSIMPA

and other imputation methods were then applied on 25% of the single cells randomly sampled,

1520 bed files for H3K4me3 and 1128 bed files for H3K27me3.

Preprocessing of scChIP-seq data for mouse (Zhu et al., 2021). We downloaded the

count matrices for H3K4me3 available in GEO under accession number GSE152020 in 1kb

binning resolution. From the matrices, we derived bed files for every single cell excluding gen-

der-specific chromosomes. The initial dataset provides 7465 cells for this histone mark; we

applied InterSIMPA on a subset of 1000 randomly sampled cells.
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The SIMPA algorithm

SIMPA is an algorithm implemented in Python 3.7.3 for “Single-cell ChIP-seq iMPutAtion”,

which is applied to one single cell represented by a sparse set of scChIP-seq genomic regions

(or peaks) provided by the user in bed format. Within the algorithm, the given single-cell bed

file is converted into a set of bins SC describing the single-cell input (Fig 1A). The user also

provides the protein target name for the histone mark or transcription factor targeted by the

antibody within the single-cell immunoprecipitation. The target name is needed to specify the

training set, which consists of experiments from the ENCODE reference set.

Given the sparse profile of one single cell as input, SIMPA aims to impute missing bins

based on predictive information within bulk data specified by the selected ChIP protein target

and further by the regions taken from the input single-cell profile. In order to make the bulk

data informative, first SIMPA collects all the ENCODE reference experiments available for the

given target that defines the rows of the reference set matrix (RS) where columns represent

bins (Fig 1A):

RS ¼ ai;j

� �
; 1 � i � n; 1 � j � m

with

ai;j 2 0; 1f g describing a cell of the matrix with value

¼ 1 when bin j in reference experiment i is present; 0 otherwise;

and where n is the number of experiments available for the given target, and m is the number

of bins that are present in at least one of the target specific experiments. As the rows are

defined by the given target, the target-specificity is induced within this step.

Second, a subset of RS is created by selecting only the columns for bins that are present in

the given single-cell profile SC to create the training features TF:

TF � RS;

TF ¼ ai;k

� �
; 1 � i � n; 1 � k � s;

where k indexes a selection of bins from RS that are present in SC and with s the number of

bins in SC (Fig 1B). Bins present in RS but not in SC are collected and named as candidate bins

c that are potentially imputed bins.

Third, SIMPA takes each candidate bin cg in c (c is the set of candidate bins; the number of

bins in c is P; thus 1� g� P) separately to compute an individual imputed probability ρg that

cg is present in the single cell. Given cg, SIMPA trains a classification model cmg based on TF
defining the features and cg the class vector. Because an individual model is trained for each

individual candidate bin, bin-specificity is induced for the whole approach. The imputed prob-

ability ρg is finally computed by cmg which takes as input an artificial instance vector b = (bk),
bk = 1, 1� k� s. Consequently, ρg is the probability of cg to be predicted for the imputed sin-

gle-cell result, given the fact that all bins in SC are observed. As we use a Random Forest imple-

mentation from the scikit-learn (version 0.21.3) Python’s library [27, 28] with default settings

to build classification models, the imputed probability is then the mean predicted class proba-

bility of the trees (by default 100) in the forest while the class probability of a single tree is cal-

culated by the fraction of samples of the same class in a leaf.

When applying this algorithmic strategy on a real sparse single-cell profile to impute candi-

date bins, the final step of receiving the imputed probability differs from any cross-validation

scenario as there is no hold-out sample that could be used to apply the model on. Instead, the
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Fig 1. SIMPA’s algorithm and cross validations. A. Identified ChIP-seq regions from bulk experiments were downloaded from ENCODE and

mapped to bins defined as non-overlapping and contiguous genomic regions of a defined length (5 kb for H3K4me3 and 50 kb for H3K27me3 in the

human dataset) and covering the whole genome (the table). A bin is given a value of 1 for a particular experiment if there is at least one ChIP-seq region

in this experiment that overlaps the bin, 0 otherwise. In total 2251 human and 848 mouse ChIP-seq experiments for several targets (histone marks or

transcription factors) performed in several biosamples (tissues and cell-lines) were downloaded from ENCODE portal and preprocessed. Depending on

the target specified by the user, the target-specific reference set RS is then created and contains all experiments related to this target (rows in red;

H3K4me3 is given as example) and all bins observed for at least one of those experiments. B. The single-cell specific training feature matrix TF is

created as a subset of RS by selecting only bins observed within the given single cell (green columns). All other bins from RS are the candidate bins (c;

blue columns) and define the class vectors consisting of the corresponding values in RS. For each candidate bin, a classification model is trained based

on the training features and the class vector identifying associated experiments. C. Cross-validated evaluations of SIMPA’s Random Forest

performances to predict values of candidate bins defined for real human single-cell data related to H3K4me3. For each candidate bin, a ten-fold cross-
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model is applied on a synthetic vector containing only 1s to receive the imputed probability.

Providing this vector in which the interaction is present for each bin, differs to the nature of

the reference data which usually describes a mixture of interaction and non-interaction. How-

ever, this strategy is applied in the same way for all candidate bins excluding a potential bias

regarding the ranking of candidate bins by the imputed probability. More crucially, by this

final step we force the Random Forest model to return an imputed probability based on the

knowledge that all bins captured by a single cell are present, thus, the outcome is highly spe-

cific to the given single cell. Moreover, this strategy allows us to keep focus on a cell while

interpreting the underlying model to gain more insights with high specificity to the given indi-

vidually single cell.

Finally, SIMPA creates two files: one file in bed format and the other in SIMPA format

described as a table listing the single-cell bins first, followed by the imputed bins sorted by the

imputed probability. A line represents a bin described by its ID, its genomic coordinates, its

frequency according to the target-specific reference experiments, and the imputed probability.

Note that the first bins on top of this file have no imputed probabilities as they represent the

original sparse single-cell input (a default value of -1 is assigned). The second file created by

SIMPA is the imputed bed file containing the original single-cell bins and the additional

imputed bins selected among those with the highest imputed probability. The number of bins

within this bed file is defined by the average number of bins present in the target-specific bulk

experiments, e.g. 32,584 for H3K4me3 (5 kb bin size) and 12,598 for H3K27me3 (50 kb bin

size) on the hg38 samples.

Cross validations

Stratified ten-fold cross-validations were done to verify if the Random Forest Classifier used

by SIMPA when applied to the real single-cell dataset is able to make use of statistical patterns

from the bulk data to train accurate models predicting the presence or absence of a protein-

DNA interaction in candidate bins. Hence, within this analysis, the performance of Random

Forest was cross-validated on the candidate bin values not used in the training set but still

defined in the reference set. We chose Random Forest as, by default, the algorithm never uses

all given features for training one decision tree and consequently smaller sets of genomic bins

are considered for a tree which agrees with the biological assumption that not all regions, cap-

tured by an individual single cell, are relevant for the imputation of a candidate bin. Given a

candidate bin, SIMPA trains a Random Forest with 100 decision trees (number of estimators)

and aggregating the votes from all trees results in a probability we use as imputed probability.

We applied the following cross-validation approach (results shown in Fig 1C and Fig S1 in

S1 File): given a protein target (either H3K4me3 or H3K27me3), 10 single cells were randomly

chosen from the real dataset for each cell type; for each single cell the training feature matrix

TF for SIMPA was created as explained above together with the set of candidate bins. Then,

for each candidate bin that defines the class vector, a Random Forest classification model was

trained and evaluated by the area under the ROC-curve within a stratified ten-fold cross-vali-

dation. In addition, we used the area under precision-recall curve to better study the class vec-

tor imbalance.

validation was applied and summarized as the mean Area under ROC-Curve (AUROC) or Area under Precision-Recall Curve (AUPRC) (y-axes).

Results for all bins are represented by boxplots subdivided by class balance in the candidate bins (percentage of “1” values in the bin) (x-axis). The

dashed lines describe the baseline performance expected from a random classification model: 0.5 for AUROC and equal to the class balance for

AUPRC.

https://doi.org/10.1371/journal.pone.0270043.g001
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Results

Algorithmic concept and cross-validations

Unlike many other single-cell imputation methods, SIMPA leverages predictive information

within bulk ChIP-seq data by combining the sparse input of one single cell and a collection of

bulk ChIP-seq experiments from ENCODE. In order to better compare bulk and single-cell

data, ChIP-seq regions (or significant signal/noise ChIP-seq peaks) are mapped to genomic

bins (Fig 1A; see Methods for details about bulk and single-cell data retrieval and

processing).

SIMPA produces results for each single cell of a scChIP-seq dataset by using machine learn-

ing models trained on a subset of the ENCODE data related to a selected ChIP protein target,

that is the histone mark or transcription factor used in the single-cell experiment. Derived

from this target-specific subset, the classification features are defined by genomic bins detected

in the single cell, while the class to predict is defined by a bin observed in at least one target-

specific bulk ENCODE experiment, but not in the single cell (Fig 1B). In other words, by using

this particular data selection strategy, SIMPA searches relevant statistical patterns linking (i)

the bulk ChIP-seq data across single-cell-related bins and target-related experiments for differ-

ent cell types to (ii) the potential presence or absence of a bin in the given single cell.

Within a cross-validation scenario that compared the predicted probabilities to corre-

sponding candidate bin values, results show that the machine learning-concept of SIMPA is

able to provide accurate predictions (Fig 1C, Supplementary Note 1 in S1 File, and Fig S1 in

S1 File). Moreover, on the high-resolution H3K4me3 human dataset [4], SIMPA achieved

high recall rates for bins removed from single-cell profiles (Supplementary Note 2 and Fig S2

in S1 File).

Validation on simulated data

In order to evaluate the algorithm’s ability from few input bins (hundreds) to complete full

data profiles (thousands of bins) of different protein targets and cell-types, we simulated sparse

protein-DNA interaction profiles from the bulk ENCODE ChIP-seq experiments that are used

as reference data by SIMPA. For the simulation, we took human bulk experiments for different

cell-type-target combinations to define them as full single-cell profiles (origin) and down-sam-

pled those profiles to simulate sparse single-cell profiles (from 100 to 1600 randomly selected

bins) (see Supplementary Note 3 in S1 File for details). Each simulated sparse profile was used

as input for SIMPA and the output was compared to the origin (excluding bins used as input).

For the model training, the full origin profile was excluded from the reference training set in

order to apply the default validation, called leave-out origin (LOO). Additionally, a more chal-

lenging validation strategy was applied in which all reference profiles for the same cell-type

(biosample) were excluded, called leave-out cell-type (LOCT).

For H3K4me3, the most frequently investigated target in ENCODE, high area under ROC-

curve values confirm that SIMPA is able to accurately recapitulate the original data from the

simulated sparse profiles (Fig 2A). Even if the cell-type-specific information is completely

removed from the training set (LOCT), the performance is still high. Furthermore, these

observations are confirmed when using precision-recall curves as performance measure (Fig

2B), a relevant analysis given the imbalance in the validation sets (containing far fewer positive

than negative samples). We made similar observations in a ROC-curve and precision-recall

curve analysis for other cell-type-target combinations (Figs S4 and S5 in S1 File).

In order to assess the single-cell specificity of SIMPA in this simulation, we compared each

fully imputed profile to its origin profile and also to a consensus profile representing
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experimental datasets that are most similar to the origin (experimental profiles with same pro-

tein target and same cell-type, see Supplementary Note 3 in S1 File for details). All compari-

sons excluded bins used as input for SIMPA. Results show that for most of the simulations

(>95%) the imputed profile is closer to the origin profile, hence single-cell specific (Fig 3A).

Fig 2. Performance on simulated sparse profiles in different cell-types. A. For simulation, a full human single-cell profile (origin profile) is defined

by a full bulk profile and the corresponding sparse single-cell profile is defined by the down-sampled bulk profile. Compared to real data, the

simulations allows us to test SIMPA on full profiles related to a large variety of ChIP protein targets and biosamples. Using the origin profile as the

validation set of true binding interactions, the area under ROC-curve (AUROC in y-axis) describes the capability of SIMPA to accurately impute the

sparse profile and recapitulate the origin. The bars describe the mean AUROC and the error bars describe the standard deviation across multiple

applications on sparse sets with different sizes. SIMPA was validated with two strategies, the default leave-out origin (LOO; origin profile excluded from

the training set) and the extreme leave-out cell-type (LOCT; all experiments with the same cell type than the origin profile are excluded from the

training set). The x-axis labels indicate the cell-type of the origin profile and additionally the ENCODE accession to show which of the experimental

dataset was used as origin. B. Same as in A but using the area under precision-recall curve (AUPRC in y-axis) as performance measure. The pink bars

show the class balance (fraction of positives in the class feature) representing the random assumption as baseline to be expected from a primitive

classifier that randomly assigns the class values (according to [29]). Note, the sampled bins, that simulate a sparse single-cell profile and are expected to

be known before imputation, were completely excluded before computing area under the curve values.

https://doi.org/10.1371/journal.pone.0270043.g002

PLOS ONE Single-cell specific data imputation for scChIP-seq

PLOS ONE | https://doi.org/10.1371/journal.pone.0270043 July 1, 2022 9 / 23

https://doi.org/10.1371/journal.pone.0270043.g002
https://doi.org/10.1371/journal.pone.0270043


Fig 3. Single-cell specificity analysis. A. The Jaccard-Index is used to compare the imputed profiles from SIMPA with the origin

human bulk profile used to create a simulated sparse profile and the consensus profile representing the remaining experiments

available for the same biosample-target combination as the origin profile. The dashed line shows the balance line at which the

imputed profile from SIMPA is neither closer to the origin nor to the consensus. Cases above the dashed line are those in which the

imputed profile is single-cell specific, hence, closer to the origin than to the consensus. B. “Single-Cell Specificity” on the y-axis is

defined as the difference between the imputed-to-origin similarity (y-axis in A) and imputed-to-consensus similarity (x-axis in A).

Having the similarity between the origin and the consensus on the x-axis, this plot allows the visualization of the single-cell

specificity in relation to how specific the origin is. The higher the similarity between the origin and consensus, the less specific is the
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Moreover, we observed that the origin profiles can be more similar to the consensus profile

(less specific) or less similar (more specific). When the origin profiles are less specific, it is

harder for SIMPA to achieve an imputed profile specific to the origin (single-cell specific).

However, for such cases in which the origin is quite close to the consensus (Jaccard-

Index> 0.65) the imputation is still single-cell specific, although with a lower single-cell speci-

ficity value (Fig 3B).

Taken together, the simulation results show that models trained from a few bins accurately

impute thousands of bins and show that completed profiles can be single-cell specific on real

data even if the investigated cell-type is not represented by any of the bulk datasets in the refer-

ence set (leave-out cell-type validation).

Model interpretability on real data

Addressing one main aim of this study to make models interpretable, we implemented an

extension called InterSIMPA. Here we define interpretability as the possibility of obtaining

information of potential biological relevance from the relationships observed between the

training features (genomic bins) and a genomic position of interest. These relations can be

expected to be part of the genomic regulatory network.

The training features are derived by InterSIMPA in the same way as for SIMPA but a sin-

gle machine learning model is trained for a selected genomic position of interest defined by

the user. Accordingly, one imputed probability is returned for genomic position of interest

with information about the genomic bins most important for the machine learning model.

Finally, the algorithm reports the genes closest to these bins (Supplementary Note 4 in S1

File).

To demonstrate how interpretable imputation models can be used to expose more informa-

tion from the sparse ChIP-seq profile of individual single cells, we use the human single-cell

ChIP-seq dataset of H3K4me3 interactions in B-cells and T-cells from Grosselin et al. [4].

According to the given cell types, we focused on promoter regions of genes that are involved

within the B-cell and T-cell receptor signaling pathways. The two gene sets contain 67 and 97

genes for the B-cell receptor and T-cell receptor signaling pathways, respectively, with an over-

lap of 44 genes. To focus on the genes that could be more specific to the cell-types under inves-

tigation, from the union of the two gene sets we selected 24 genes with frequency of their

promoter regions lower than 20% in the corresponding H3K4me3-specific reference set,

which means that their promoter has no detected interaction site for more than 80% of the

ENCODE reference experiments for H3K4me3 in different cell-types and tissues (Supplemen-

tary Note 4 in S1 File).

As H3K4me3 is an activating histone mark, we expected to observe interaction sites in the

promoter regions of these genes. However, for many of those promoter regions, the H3K4me3

binding is missing for most of the single cells in the sparse data (Fig 4A). Our expectation that

SIMPA is able to impute such regions at least in a cell-type-specific manner, is confirmed by

comparing the imputed probabilities calculated by SIMPA for promoter regions of the 24

selected genes in single B- and T-cells (Fig 4B). For most of the genes, the imputed probability

is higher when SIMPA is applied on single cells that are from the pathway-related cell-type.

Finally, we evaluated the interpretability of the 24 imputation models by comparing feature

importance values and co-expression values of the feature-related genes with the gene of the

origin profile and the harder the challenge to capture its specificity. Profiles above the 0 line are single-cell specific as they are closer

to the origin than to the consensus. Before computing the Jaccard-Index values, the sampled bins, which simulate a sparse single-cell

profile and are expected to be known before imputation, were removed from all the sets, origin, imputed, and consensus.

https://doi.org/10.1371/journal.pone.0270043.g003
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imputed promoter (Fig 4C). Co-expression data from the STRING database was used [30].

The observed high correlations suggest that InterSIMPA is capable to describe biologically rel-

evant promoter-promoter relations by the predictive information hidden within sparse histone

mark profiles of an activating mark. Consequently, our approach not only completes the sparse

scChIP-seq dataset, but its interpretability-extension is even capable of providing deeper

insights into the data.

Fig 4. Pathway related gene analysis using the interpretation of imputation models. A. Fraction of single cells for which H3K4me3 binding is

observed within the gene’s promoter region in the human single-cell dataset (orange and blue bars representing B-cells or T-cells, respectively). Y-axis

labels show the gene names and if the gene belongs to the B-cell or T-cell receptor signaling pathway or to both. B. Imputed probability computed by

SIMPA for the gene-related promoter regions shown in A. The imputation was applied on numerous single cells from the cell-types B-cell (orange) and

T-cell (blue). The error bars represent the standard deviation across the imputation runs on different cells. For the majority of genes, the imputed

probability is higher within the cell-type that corresponds to the gene’s pathway. C. Correlation of feature importance and co-expression values. For

each model used to impute a promoter (y-axis), the training features (genomic bins) were extracted together with their importance value provided by

the Random Forest algorithm and annotated with the nearest gene on the genome. Co-expression values, derived from transcriptomic and proteomic

measurements, of those genes with the gene related to the imputed promoter were retrieved from the STRING database. The Pearson correlation

coefficient of feature importance and co-expression values is shown (x-axis).

https://doi.org/10.1371/journal.pone.0270043.g004
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Performance on cell-type clustering and functional analysis

After the evaluation of the InterSIMPA extension, here, we evaluate how SIMPA enhances sin-

gle-cell data corresponding to different cell types. For the imputation of a full single-cell data-

set, SIMPA was applied for each cell individually. The resulting imputed profiles were then

analyzed within two validations, to examine if (i) cell-type clustering was retained after impu-

tation and (ii) if the imputed single-cell profiles are significantly associated with genes of the

corresponding cell-type-specific pathway. Following the investigations of Schreiber et al. [31],

we also compared bin probabilities from SIMPA to a simple imputation approach that uses

bin frequencies in the reference set (experiments with same protein target) as a probabilistic

model without using any machine learning model, called the average interaction method.

Additional imputations and randomization tests were applied and compared to better analyze

the basic concept of SIMPA (see Supplementary Note 5 in S1 File).

Because of the better resolution available for H3K4me3 processed as genomic bins of size 5

kb in the human dataset, we present below results on this histone mark and refer to supple-

mentary material for H3K27me3 processed at 50 kb bins (Fig S6 in S1 File). For benchmark-

ing, we used a single-cell ATAC-seq imputation method, SCALE, solely based on the single-

cell dataset itself (reference-free) in contrast to SIMPA, which takes advantage of information

from the reference bulk dataset. After applying a two-dimensional projection on the sparse

and imputed datasets, we observed that the separation between the cell types was retained by

SIMPA and by the reference-free method, contrary to the average interaction method (Fig

5A). Moreover, three T-cell outliers were successfully associated to the related cell-type cluster

by SIMPA, which achieved a slightly better homogeneity of the clusters in comparison to

SCALE which did not handled correctly the outliers (Fig S6 in S1 File). Dimensionality reduc-

tion was done by a combination of principal component analysis (PCA) and t-stochastic

neighbor embedding (t-SNE) as suggested by Grosselin et al. on their analysis of sparse data

[4]. Unlike the suggested procedure, we did not perform cell filtering, as we were interested to

observe outliers after imputation.

In order to validate further the algorithmic concept of SIMPA, we implemented two ran-

domization tests in which either the ENCODE reference information was shuffled (Shuffled

Reference) or the sparse single-cell input was randomly sampled (Randomized Sparse Input).

Additionally, we applied SIMPA on the same data but with models trained for different related

or unrelated histone marks. The selected histone marks were H3K36me3, a histone mark func-

tionally different to H3K4me3, and H3K9ac and H3K27ac, a group of two histone marks func-

tionally related to H3K4me3. These two marks were used together to increase the training data

size. From this comparison, we observed that (i) the separation on the projection is lost after

removing statistical patterns through shuffling or randomization, (ii) separation quality is

moderate with an input mark functionally different from the real mark, and (iii) separation

quality stays high using SIMPA with target histone marks functionally similar to the real mark

(Fig 5B). Thus, the most relevant statistical patterns from the reference dataset are identified

by both the selection of single-cell-specific regions and the selection of target-specific experi-

ments. Similar observations were made for H3K27me3 although a more compact clustering

could be achieved on the SIMPA profiles compared to those from the reference-free method

(Fig S6 in S1 File). Across several dimensionality reduction procedures applied for the

H3K4me3 dataset, SIMPA and the reference-free method were both stable in retaining the

cell-type clustering (Fig S7 in S1 File). From these analyses we additionally conclude that the

UMAP method using the Jaccard-Index distance achieves reasonable results when applied

directly on the sparse data (in comparison to the common approach in single-cell analysis that

uses first a PCA to select dimensions).
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Fig 5. Cell-type specificity validation. A + B Separation of single cells according to cell type. A. Dimensionality reduction analysis applied on the

human H3K4me3 data derived from (i) the sparse single-cell data and three different imputation methods, (ii) SIMPA, (iii) reference-free imputation,

and (iv) average interaction based on expected frequencies in the reference set. Results from SIMPA and from the reference-free method achieve the

best clustering by separating the single cells (points) by cell types (colors). B. Effects of input modification on SIMPA, (i) using a shuffled reference set

or (ii) randomized sparse input data, or using other histone marks as reference instead of H3K4me3, either (iii) the functionally different histone mark

H3K36me3, or (iv) the functionally similar histone marks H3K9ac and H3K27ac. Only SIMPA used with relevant protein targets was able to correctly

cluster all single cells (no outliers). C. Pathway enrichment analysis. Boxplots show the significance of pathway enrichment analyses of genes

annotated by single-cell regions as log-transformed false discovery rate (FDR; x-axis). Each dot represents the FDR of one single cell from the results of

the different analysis experiments shown in A+B (y-axis). The dashed lines represent the log-transformed significance threshold of an FDR equal to

0.001. Only SIMPA achieves significant results by imputing preferably genomic regions associated with relevant pathway-related genes.

https://doi.org/10.1371/journal.pone.0270043.g005
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As pathway enrichment analysis is a common step in ChIP-seq data exploration, we next

investigated if enrichment analyses of cell-type-specific pathways for individual single cells

improve after applying imputation. We analyzed the sparse profiles and different imputed

results with the KEGG pathway analysis function of the Cistrome-GO tool [32]. As reported in

Fig 5C, the original sparse data did not provide enough interaction sites to show a significant

pathway enrichment for any of the two cell types. Results from the reference-free strategy

showed an improvement but not significant. However, with regions imputed by SIMPA, it was

indeed possible to achieve significant enrichment scores and recover the cell-type-specific

pathways for most of the cells. These results show that SIMPA is able to integrate functionally

relevant information from the reference data in order to impute additional biologically mean-

ingful bins, in contrast to the reference-free method, which is limited to the single-cell dataset.

Optimal size of the imputation sets

As described, SIMPA computes the imputed probabilities for numerous genomic bins, and

sorts and prioritizes those accordingly for imputation. In the previous validations, as a default,

we imputed a number of bins equivalent to the average number of bins observed across all

bulk ChIP-seq profiles from the target-specific reference set. On 5 kb resolution, the average

number of bins of the H3K4me3 experiments is 32,584. However, once the bins are ranked by

the imputed probability it is up to the user to alternatively create imputed sets of different

sizes. With the next analysis we address the question about the optimal number of bins needed

to improve the cell-type clustering at the same time enabling the detection of the relevant bio-

logical function by a significant enrichment of the correct pathway (for details see Supplemen-

tary Note 6 in S1 File).

The best cell-type clustering quality, evaluated by the Davies-Bouldin score [33], is reached

when adding ~11,000 bins (Fig 6A). At this level, SIMPA slightly improves the clustering qual-

ity compared to the reference-free method.

Considering the amount of cells in which the cell-type related pathway is significantly

enriched, we observed that in ~50% of the cells the related pathway is associated when adding

~28,000 bins (Fig 6B). After adding more than 32,000 bins, almost all cells have a significant

enrichment for the cell-type related pathway, however, it seems to be also the limit for avoiding

the association of the unrelated pathway. For this analysis the same pathways and settings are

used as in Fig 5C; the unrelated pathway is the T-cell receptor signaling pathway when analyz-

ing a B-cell and vice versa.

InterSIMPA applied on mouse scChIP-seq data (Zhu et al., 2021)

New technologies allow to obtain the joint profiling of histone modifications and transcrip-

tome in single cells as used by [24]. From this dataset we chose H3K4me3 profiles from mouse

brain cells available on 1kb binning resolution to further validate the concept of InterSIMPA.

As each single-cell dataset is very specific to the investigated cell-types, we focused on four

genes also used within the original study to analyze the difference between excitatory and

inhibitory neurons, as well as non-neurons. We first annotated the promoter regions of these

genes based on 1000 randomly selected sparse single-cell profiles and observed a very low cov-

erage of the promoter regions ranging from 0.0 to ~2.0% (Fig 7A). Despite the low single-cell

coverage, the patterns agree with those from the original study (see Fig 1F in [24]); note that

we focus on the promoter only and do not consider the full gene body. We then analyzed the

imputed probabilities from InterSIMPA for these four genes (Fig 7B). For the three genes

Snap25, Neurod6, and Gad2, the imputed probability is higher for the neurons compared with

the non-neurons, and no difference can be observed between cell types for Slc1a3. Similarly
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for Snap25, Neurod6, and Gad2, a moderate positive correlation could be observed between

feature importance values and STRING co-expression data, but not for Slc1a3 (Fig 7C). By

using the appropriate parameter of the tool, we restricted the InterSIMPA output to regions

within the proximity of 10kb or 5kb, respectively. As shown in Fig 7C this has a positive impact

on the results from InterSIMPA as it increased substantially the correlation calculated for the

three genes.

Fig 6. Clustering quality and pathway enrichment for different sizes. A. Clustering quality (y-axis) evaluated with the Davies-Bouldin score (the

lower the better) applied on the imputed data after dimensionality reduction as described for Fig 5A+5B. While the reference-free method derived only

one imputed set for all the single cells (dashed black line), we could derive several imputed sets of different sizes using the imputed probabilities from

SIMPA (x-axis). B. The pathways under investigation are the B-cell and T-cell receptor signaling pathways. In this way we analyze two pathways surely

related or unrelated with the cell-types present in the dataset, B-cell and T-cell. The y-axis describes the percentage of imputed profiles for which a

significant enrichment of the aforementioned pathways could be achieved. The dashed lines represent cases for which the unrelated pathway is

significantly enriched, which is the T-cell receptor signaling pathway when analyzing a B-cell and vice versa. The significance level used is 0.001 similar

to the analysis shown in Fig 5C. To reduce the computational resources spent on the pathway enrichment, this was done for ten imputation set sizes

(highlighted in blue on the x-axis).

https://doi.org/10.1371/journal.pone.0270043.g006
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Discussion

After confirming the presence of statistical patterns within the ENCODE bulk ChIP-seq refer-

ence data, we show that machine learning models can leverage those patterns for the accurate

inference of interaction sites in sparse single-cell ChIP-seq profiles from individual single cells.

The investigation of protein-DNA interactions on single-cell resolution emerged more

recently compared to gene expression (single-cell RNA-seq) or chromatin accessibility (single-

cell ATAC-seq) and consequently, less datasets are available for scChIP-seq. The human

Fig 7. Gene analysis using the interpretation of imputation models. A. Fraction of single cells for which H3K4me3 binding is observed within the

gene’s promoter region in the mouse single-cell dataset. Dark green and yellow bars representing excitatory (ExNeu) and inhibitory (InNeu) neurons,

respectively. Red bars represent non-neurons (NonNeu). y-axis labels show the gene names. B. Imputed probability computed by SIMPA for the gene-

related promoter regions shown in A. The imputation was applied on 1000 single cells in total and the error bars represent the standard deviation across

the imputation runs on different cells. C. Correlation of feature importance and co-expression values. For each model used to impute a promoter (y-

axis), the training features (genomic bins) were extracted together with their importance value provided by the Random Forest algorithm and annotated

with the nearest gene on the genome. As indicated by the figure legend, the selection of genomic bins was either not restricted (none), or restricted by a

maximum distance to the transcription start site (TSS) of the nearest gene. Co-expression values, derived from transcriptomic and proteomic

measurements of those genes with the gene related to the imputed promoter were retrieved from the STRING database. The Pearson’s correlation

coefficient of feature importance and co-expression values is shown (x-axis).

https://doi.org/10.1371/journal.pone.0270043.g007

PLOS ONE Single-cell specific data imputation for scChIP-seq

PLOS ONE | https://doi.org/10.1371/journal.pone.0270043 July 1, 2022 17 / 23

https://doi.org/10.1371/journal.pone.0270043.g007
https://doi.org/10.1371/journal.pone.0270043


dataset we chose for our analysis includes profiles for H3K4me3 in 5kb resolution and

H3K27me3 in 50kb resolution in human B-cells and T-cells. This dataset is appropriate as it

provides a clear cell-type annotation which enabled an analysis based on the pathways we

would expect to be assigned to B-cells and T-cells, respectively. Contrary to the human dataset

from Grosselin et al., we observed that a very complex procedure was applied in the study pre-

senting the mouse dataset from Zhu et al. to reveal the different cell clusters [24]. From this

study we chose the only profile available on a higher resolution (1kb), which describes the his-

tone mark H3K4me3. Using common dimension reduction methods for single-cell datasets,

we were able to reproduce clustering results for the Grosselin dataset (Fig S7 in S1 File) but it

was not possible to recapitulate the mouse cell types, neither before nor after imputation

(results not shown). This could be explained by the complexity of the joint profiling of differ-

ent histone marks within single cells and by the fact that the Zhu and colleagues could not

apply a barcoding strategy to annotate the cell-types as it was done for the Grosselin dataset.

Therefore, we extensively used the human dataset together with simulations to validate SIMPA

and limited the use of the mouse dataset to the validation of the model interpretability offered

by the InterSIMPA extension.

Based on the simulations, we could show that the imputed results obtained by SIMPA are

single-cell-specific for several cell-type-target combinations even if the experiments related to

the cell-type were completely excluded from the training set. In both types of validation (leave-

out origin and leave-out cell-type validations), SIMPA was able to capture cell-type-specific

patterns even though the reference set was composed of profiles from many different cell-

types and tissues, or the cell-type related data was completely excluded. Because the number of

available bulk experimental profiles (ENCODE datasets) differs between targets, different

training set sizes are available for different targets, with the smallest training set for H3K9ac

(49 biosamples). Even for training sets of smaller size, the predictive performance remained

high, although we expect models to be more reliable the larger the training set. Given that data

portals such as ENCODE are still growing, we expect that the model reliability will increase in

the future for many targets with a growing number of available reference datasets.

The interpretation of the SIMPA models, done with InterSIMPA applied on a real scChIP-

seq dataset published by Grosselin and colleagues, allows us to reveal additional information

from the ChIP-seq profiles measured within individual cells regarding regions responsible for

the imputation. Importantly, leveraging reference data allows us to impute regions that were

not present in the single-cell dataset at all, in contrast to a reference-free strategy. Considering

for example the promoter regions of the T-cell receptor signaling pathway genes CTLA4 and

ICOS, these promoter-regions are not detected in any of the cells from the Grosselin et al. data-

set, however, both have a high imputed probability from SIMPA. Moreover, for both promot-

ers a high correlation coefficient was achieved within the validation by STRING co-expression

values, confirming that our implementation not only answers the question about whether

these promoters should be imputed or not, but it additionally reveals valuable information

about regulatory relations implied by the single-cell dataset.

Regarding the full data imputation analysis, we observed further advantages of SIMPA’s ref-

erence-based imputation strategy compared to the reference-free imputation method. While

both algorithms achieve a good separation of the cell types, only with the imputed profiles

from SIMPA it was possible to determine the relevant biological function of single cells as

shown by the pathway enrichment analysis. This suggests that SIMPA imputes biologically

meaningful genomic bins which are of functional relevance and confirms that, even though

the training set involves a variety of different tissues and cell-types, SIMPA can find statistical

patterns that belong to the correct cell-type. For single-cell datasets which reveal unknown

subpopulations of cells, SIMPA could be used to identify active pathways for those cells after
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imputation. Interestingly, the quality of those results was maintained to some extent when not

exactly the same scChIP-seq histone-mark target but functionally related targets were used to

define the reference set. This suggests a valuable strategy to be applied for targets with a low

availability of public bulk reference profiles.

Given the results achieved by InterSIMPA on H3K4me3 single-cell profiles for mouse brain

cells, we see a difference in performance compared to those achieved on human B-cells and T-

cells that might be explained by the more complex cell type identification in the original study

from Zhu et al. [24]. However, we still see higher imputed probabilities of Snap25, Neurod6
and Gad2 in excitatory and inhibitory neurons compared to non-neurons, which confirms the

relevance of those genes to a cell-type-specific study. This could not be observed for Slc1a3.

The validation analysis based on the STRING co-expression data also highlighted the potential

involvement of the three genes in regulatory networks. This analysis, which is also integrated

within InterSIMPA, provides information about the reliability of the imputed probabilities.

The gene Slc1a3 serves as an example for which the non-specificity of the imputed probabilities

agrees with the low correlation coefficient between the InterSIMPA feature importance and

STRING co-expression.

SIMPA integrates solely datasets from bulk ChIP-seq in order to build the reference set.

However, in the future, it will be relevant to integrate other types of data in order to comple-

mentarily extend the reference set. For example, SCRAT is an analysis tool that summarizes

single-cell regulome data using different types of public datasets such as genome annotations

or motif databases that could be of interest for the application of SIMPA to transcription factor

scChIP-seq profiles [34]. The scATAC-seq analysis tool SCATE performs imputation of miss-

ing regions integrating different types of public datasets (e.g. co-activated cis-regulatory ele-

ments and bulk DNase-seq profiles) [35]. For future work, such approaches suggest the

development of a reference-based method, allowing the imputation for both scChIP-seq and

scATAC-seq data, integrating both types of reference data from the corresponding bulk assays

and further complementary datasets.

In the current version, SIMPA and InterSIMPA use all bulk profiles as selected by the target

(s) specified by the user. Yet, there is no parameter that allows a user to further restrict the ref-

erence set by cell-types or tissues. We expect that this is not necessary as the machine learning

algorithm can find the relevant patterns in the training set due to the additional specification

induced by the given single-cell profile, which provides enough information about its cell-type

despite its sparsity. Especially the pathway enrichment analysis supports this assumption since

the imputed regions are related to the true biological function of the given cell-types. Never-

theless, for a future extension of the algorithm, it might be beneficial to investigate the impact

of further specifying the reference set by tissues or cell-types related to the single-cell dataset.

We demonstrate that the usage of bulk reference data can be beneficial in scChIP-seq impu-

tation, especially when the single-cell data set leaves genomic regions uncovered. Given a sin-

gle cell as input, its profile is used to specify the underlying training set to receive a result

individual for the cell. Thus, single-cell and bulk information are combined in the imputation

concept we propose. However, the imputation might improve for one individual cell by incor-

porating information from other, maybe similar, cells from the single-cell dataset. Recently, it

was shown by the method scAND that the concept of network diffusion can successfully be

applied in scATAC-seq imputation [36]. In this study a bipartite network is created in which

the edges describe if a region is accessible in a cell; no bulk reference is involved in this con-

cept. However, considering the integration of bulk data, it might be possible to expand such a

network by patterns detected in a bulk reference set. Edges could then describe different states

for genomic regions depending on their occurrence in the single-cell and bulk datasets. Such

networks would describe a complex composition of information and concepts from multi-
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graph theory might be helpful to extract patterns from these networks relevant for imputation

[37].

SIMPA’s strategy, to train a model for each candidate bin and each single cell, results in its

capability to produce highly relevant results and at the same time in its main limitation which

is the requirement of a large amount of computational resources. Using a high-performance

cluster, the results presented in this manuscript could be obtained within 1–2 days. However,

if computational resources are limited, SIMPA offers the opportunity to run the imputation

for a selection of cells which, for instance, represent a certain cluster to be analyzed. As shown,

cell clusters can be identified even on the sparse profiles using the appropriate method for

dimensionality reduction. Importantly, InterSIMPA can also be applied for individual cells,

providing interpretable results within seconds of runtime.

On two datasets we demonstrated the potential of the concept of involving bulk data espe-

cially for ChIP-seq imputation, a topic less covered by other studies so far. The application of

the proposed methods is possible as we provide the source code with comprehensive explana-

tions in a github repository. However, our study might additionally serve as a guideline to be

considered for the development of new imputation methods. As applied in the study from Zhu

and colleagues [24], it is possible to profile several histone marks and the transcriptome of sin-

gle cells simultaneously and we expect that such techniques will be further improved in the

near future. The resulting new datasets are expected to come up with a high level of sparsity,

and imputation methods will be needed; though, there will be new requirements for imputa-

tion methods as single cells are then described by a variety of profiles describing a variety of

biological functions. The complexity of information available for each single cell should be

included in a novel imputation method applicable for such datasets. We therefore expect that

future steps in single-cell imputation will involve the development of methods able to incorpo-

rate several protein-DNA interaction profiles and the transcriptome of single cells to integrate

all these data for more robust imputation results. Based on the findings of this study we suggest

to consider the integration of corresponding bulk data as well. Moreover, interpretability con-

cepts for the imputation models should also be included within the development of future

methods as it reveals detailed insights into the single-cell dataset under investigation.

Conclusion

The strategy of SIMPA leveraging bulk ChIP-seq datasets for single-cell sequencing data impu-

tation, is able to complete specifically sparse scChIP-seq data of individual single cells. In com-

parison to the non-imputed data and a reference-free imputation method, SIMPA was better

at recovering cell-type-specific pathways. Furthermore, the interpretability of the machine

learning models trained for the imputation can be used to reveal biologically important infor-

mation from a sparse single-cell dataset. Conclusively, we developed an ensemble of computa-

tional methods to extract more information from a sparse dataset and impute missing data to

better handle data sparsity of scChIP-seq datasets.
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