1 TGF-β signaling promotes eosinophil activation in inflammatory responses

- 3 Chen Zhu#, 1 Qingyu Weng#, 1 Shenwei Gao#, 1 Fei Li, 1 Zhouyang Li, 1 Yinfang Wu, 1
- 4 Yanping Wu, ¹ Miao Li, ¹ Yun Zhao, ¹ Yinling Han, ¹ Weina Lu, ² Zhongnan Qin, ¹ Fangyi
- 5 Yu, ¹ Jiafei Lou, ¹ Songmin Ying, ¹ Huahao Shen*, ^{1,3} Zhihua Chen*, ¹ Wen Li*¹
- 7 1 Key Laboratory of Respiratory Disease of Zhejiang Province, Department of
- 8 Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Zhejiang
- 9 University School of Medicine, Hangzhou, Zhejiang, 310009, China
- 2 Surgery Intensive Care Unit, The Second Affiliated Hospital of Zhejiang University
- 11 School of Medicine, Hangzhou, Zhejiang, 310009, China

2

6

13

12 3 State Key Lab for Respiratory Diseases, Guangzhou, Guangdong, 510120, China.

14 Supplementary Figure legend

- Fig. S1 Purity of isolated Eos from NJ1638 mice.
- 16 Fig. S2. Representative FACS gating strategies of Eos. (A) Human peripheral blood.
- 17 (B) Lung tissue of HDM model. (C) Colon tissue of DSS model.
- 18 Fig. S3. IL-12 cannot induce the expression of CD101 in eosinophils. CD101
- expression (as mean fluorescence intensity) of eosinophils by FACS. Sample size is
- 20 indicated as individual plots in column graphs. Data are triplicate by individual
- 21 experiments. *, p<0.05
- 22 **Fig. S4.** TGF-β cannot induce the expression of *Il4* and *Il13* in eosinophils. Left,
- relative mRNA expression of *Il-4*, Right, relative mRNA expression of *Il-13*. ns, not
- significant. Sample size is indicated as individual plots in column graphs. Data are
- 25 triplicate by individual experiments.
- 26 **Fig. S5.** TGF-β also activated bone marrow derived Eos. (A) Mean fluorescence
- intensity of CD101 in Eos. (B) Decrease EPX in Eos of Tgfbr2 specific knockout mice.
- 28 Left, relative mRNA expression of Epx. Right, representative images of
- 29 immunofluorescence of Eos. Sample size is indicated as individual plots in column
- graphs. Data are triplicate by individual experiments. **, p < 0.01; ****, p < 0.0001.
- 31 Fig. S6. Airway inflammation in a chronic HDM model. (A) Scheme of model
- establishment. (B) Cellularity of total cells in BALF. (C) Percentage of Eos in lung
- 33 homogenates. Sample size is indicated as individual plots in column graphs. Data are
- 34 triplicate by individual experiments. ns, not significant.
- Fig. S7. Single-cell analyses of asthma and colitis tissues. (A) UMAP plot of depicting

- 36 the subsets of asthmatic lung tissue, and expression analysis of Tgfb1 in single cell data.
- 37 (B) UMAP plot of depicting the subsets of colitis colon tissue, and expression analysis
- 38 of Tgfb1 in single cell data.

43

- 39 Fig. S8. Airway inflammation in HDM/LPS overlap model. (A) Cellularity of cells in
- 40 BALF. Left, total cells count in BALF. Middle, percentage of neutrophils in BALF.
- 41 Right, percentage of Eos in BALF. Sample size is indicated as individual plots in
- column graphs. Data are triplicate by individual experiments. ns, not significant.

Fig S1.

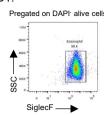
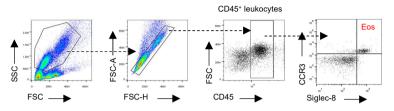
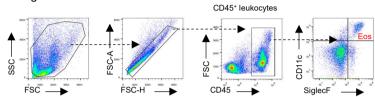




Fig S2.

A Human peripheral blood

B Lung tissue of HDM model

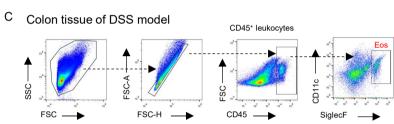


Fig S3.

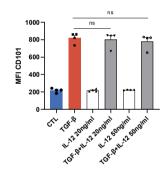
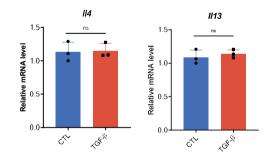



Fig S4.

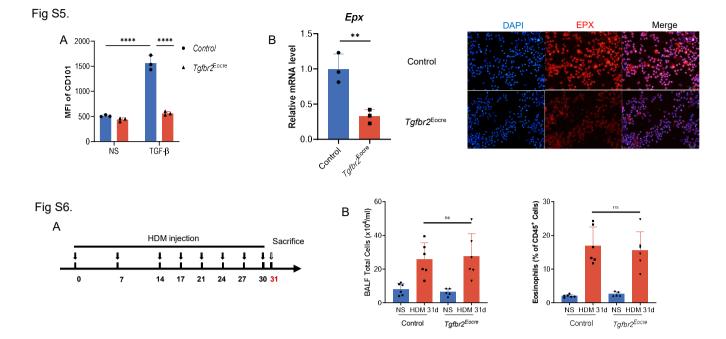


Fig S7.

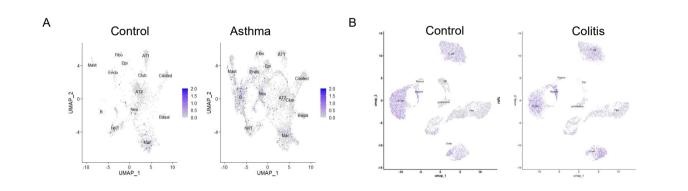


Fig S8.

