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Gastrodiae Rhizoma and its active constituents are known to exhibit neuroprotective
effects in Alzheimer’s disease (AD). However, the effect of Rhizoma Gastrodiae water
extract (WERG) on AD and the detailed mechanism of action remain unclear. In this study,
the mechanism of action of WERG was investigated by the microbiome–gut–brain axis
using a D-galactose (D-gal)/AlCl3-induced AD mouse model. WERG improved the
cognitive impairment of D-gal/AlCl3-induced mice. The expression level of p-Tauthr231

in the WERG-H treatment group was decreased, and p-Tauthr231 was found negative in
hippocampal DG, CA1, and CA3 regions. Here, the diversity and composition of the gut
microbiota were analyzed by 16sRNA sequencing. WERG-H treatment had a positive
correlation with Firmicutes, Bacilli, Lactobacillus johnsonii, Lactobacillus murinus, and
Lactobacillus reuteri. Interestingly, the Rikenellaceae-RC9 gut group in the gut increased in
D-gal/AlCl3-induced mice, but the increased L. johnsonii, L. murinus, and L. reuteri
reversed this process. This may be a potential mechanistic link between gut
microbiota dysbiosis and P-TauThr231 levels in AD progression. In conclusion, this
study demonstrated that WERG improved the cognitive impairment of the AD mouse
model by enriching gut probiotics and reducing P-TauThr231 levels.

Keywords: Rhizoma Gastrodiae water extract, Alzheimer’s disease, P-Tau protein, gut microbiota, Lactobacillus
johnsonii, Lactobacillus murinus, Lactobacillus reuteri

INTRODUCTION

Along with the rapid increase in the elderly population (≥ 65 years) worldwide, Alzheimer’s disease
(AD) is now considered a major global public health threat and causes a huge economic burden
(Prince et al., 2015; Li et al., 2021). AD, a primary degenerative brain disease, is caused by synaptic
lesions and neuronal loss (An et al., 2017). The disease is clinically characterized by amyloid plaques
and neurofibrillary tangles (NFT), as well as progressive cognitive impairment and memory loss
(Prakash and Kumar, 2014). Intraneuronal accumulation of hyperphosphorylated tau is a hallmark
pathology shown in over 20 neurodegenerative disorders, which is collectively termed tauopathies,
including AD (Zheng et al., 2021). Numerous studies have shown that abnormal
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hyperphosphorylated tau protein plays an important role in the
occurrence and development of neurodegeneration and learning,
and memory impairment in AD (Sahara et al., 2010). Therefore,
selectively removing or reducing hyperphosphorylated tau is
promising for therapies of AD and other tauopathies.
However, due to the complex etiology and pathogenesis, there
is currently no strategy for specifically targeting tau
phosphorylation.

To date, the traditional Chinese herbal medicine has several
thousand years’ history as a drug for AD in oriental countries
(Chang et al., 2015). Rhizoma Gastrodiae is a perennial parasitic
herbal with neuroprotective activities (Zhan et al., 2016) and has
shown that it has positive effects on the central nervous system,
cardiovascular system, and immune system (Lee et al., 2012; Shu
et al., 2013). Some components from Rhizoma Gastrodiae, such as
gastrodin, have been reported to suppress inflammation and
attenuate liver injury by modulating gut microbiota (Liu et al.,
2021a; Ma et al., 2021). Homogeneous polysaccharide GEP-1 can
promote the growth of Akkermansia muciniphila (A. muciniphila)
and Lacticaseibacillus paracasei (L. paracasei) strains (Huo et al.,
2021). Rhizoma Gastrodiae water extract (WERG) modulates
neurotransmitters and alters the gut microbiota in a depression
mouse model (Huang et al., 2021). Multiple probiotics grew after
taking fresh Rhizoma Gastrodiae extract, including
Ruminiclostridium, Butyricicoccus, and Parvibacter (Hua et al.,
2019). It produced a positive regulation on the mouse gut
microbiota (Zhong-Yi et al., 2019). However, the anti-Alzheimer’s
effects of WERG in AD mouse models were little studied. This
study aimed to explore the health-promoting effects of long-term
WERG intervention on the AD mouse model.

Gut microbiota, also known as “the second brain,” can regulate
brain function (Hsiao et al., 2013). Growing evidence suggested that

there is an association between the gut–brain axis and AD
progression. The gut microbiota affects the brain and behavior
through pathways such as the vagus nerve, microbial metabolites,
immune stimulation, enteroendocrine cells, the enteric nervous
system, and neurotransmitters (Nagpal and Cryan, 2021). Gut
microbiota can promote AD pathology, cognitive impairment,
and microglial activation in AD mice (Chen et al., 2022).
Meanwhile, gut microbiota affects various complex behaviors,
including emotional, social, and anxiety-like behaviors (Hsiao
et al., 2013). Previous studies reported that the traditional
Chinese medicine prescription “Huanglian Jiedu Decoction”
could reverse the cognitive impairment of Tg mice, reshape the
gut microbiota structure of Tg mice, and enrich the population of
short-chain fatty acid-producing gut microbiota (Gu et al., 2021).
GV-971 is a new drug for Alzheimer’s disease originally developed in
China and the first in the world targeting the brain–gut axis. Studies
have shown that it can significantly improve the memory
dysfunction of animals caused by tau phosphorylation, Aβ
deposition, and neuroinflammation (Rao, 2020). Mannan
oligosaccharides alleviated cognitive and behavioral impairments
in 5xFAD Alzheimer’s mice by modulating the
gut–microbiota–brain axis (Liu et al., 2021b). However, the role
of gutmicrobiota in AD pathogenesis remains unclear. D-Galactose/
aluminum chloride (D-gal/AlCl3) can induce AD-like symptoms
(Zhang et al., 2016a;Wei et al., 2017). Animals exposed to long-term
D-gal show aging-related changes such as elevated oxidant levels and
cognitive impairment (Lei et al., 2011; Yang et al., 2013).
Furthermore, intraperitoneal injection (i.p) of D-gal resulted in
increased levels of acetylcholinesterase in the brains of rats (Gao
et al., 2016). Aluminum has been linked to the pathogenesis of AD
(Kaizer et al., 2008). Accumulating evidence showed that co-
administration of D-gal/AlCl3 to rats impaired their cognitive

FIGURE 1 | WERG-H improved cognitive impairment in AD mouse model. Control, D-gal 120 + AlCl3 10 mg/kg. bwt (D-gal + AlCl3), D-gal 120 + AlCl3 10 +
Oxiracetam 298 mg/kg. bwt (D-gal + Oxira), D-gal 120 + AlCl3 10 + Rhizoma Gastrodiae water extract 300 mg/kg. bwt (D-gal + WERG-H), D-gal 120 + AlCl3 10 +
Rhizoma Gastrodiae water extract 200 mg/kg. bwt (D-gal + WERG-M), D-gal 120 + AlCl3 10 + Rhizoma Gastrodiae water extract 100 mg/kg. bwt (D-gal + WERG-L).
Experimental protocols and prevention strategies (A); the escape latency during training (104–107 days) (B); escape latency (107 days) (C); after removal of the
platform, through the platform times (90 s) (D). Data were expressed asmean ± SD (n = 8). “*” presented significant difference at p < 0.05 levels, “**” presented significant
difference at p < 0.01 level, “***” presented significant difference at p < 0.001 level.
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functions, increased AChE activities, altered oxidative balance, and
induced neurodegeneration (Zhang et al., 2016b; Li et al., 2016;
Chiroma et al., 2018). As a consequence, this study evaluated the
health-promoting effects of WERG on D-gal/AlCl3-induced mice
via the microbiome–gut–brain axis, and provides a theoretical basis
and a new perspective for the development and utilization ofWERG.

MATERIALS AND METHODS

Chemicals and Materials
Rhizoma Gastrodiae comes from Yangba, Kang County, Gansu
Province, China. Yangba Town is located 84 km southeast of
Kang County. Accurately 10.0 g of Gastrodia elata was weighed,
the appropriate amount of distilled water soaked for 1 h was
added and boiled three times (each time for 30 min), frying was
stopped and the mixture was cooled to room temperature, gauze
was filtered, the filtrate was combined, and the filtrate was
concentrated to 1.0 ml of crude drug per ml of distilled water
decoction. Oxiracetam (99%) was purchased from McLean
Biochemical Technology Co., Ltd., Shanghai, China.

Animals
All mice were housed 10 per cage and maintained under 12 h
light–dark cycle, temperature (23 ± 1°C), humidity (60% ± 10%),
and SPF conditions with free access to food and water. The
protocol was approved by the guidelines of the Lanzhou Institute
of Animal Science.

Experimental Design and Drug Treatment in
D-gal and AlCl3-Induced Mice
SPF-grade two-month-old mice were divided into six groups with
eight mice in each group, the first two months: 1) control group

(distilled water + physiological saline solution); (2–6) treated
groups (120 mg/kg D-galactose + 10 mg/kg AlCl3 daily); three-
month: 1) control group (distilled water + physiological saline
solution daily); 2) D-gal + AlCl3 group (120 mg/kg D-galactose +
10 mg/kg AlCl3 daily); 3) D-gal + Oxira group (120 mg/kg
D-galactose + 10 mg/kg AlCl3 + 289.0 mg/kg oxiracetam
daily); 4) D-gal + WERG-L group (120 mg/kg D-galactose +
10 mg/kg AlCl3 + 100 mg/kg WERG daily); 5) D-gal + WERG-M
group (120 mg/kg D-galactose + 10 mg/kg AlCl3 + 200 mg/kg
WERG daily); 6) D-gal + WERG-H group (120 mg/kg
D-galactose + 10 mg/kg AlCl3 + 300 mg/kg WERG daily).
Oxiracetam was chosen as a positive control. Figure 1A
showed the experimental design and drug treatment schedule.

Morris Water Maze Test
MWMT conditions are as follows: diameter 1.5 m, water depth
21 cm, platform diameter 8 cm, height 20 cm, water temperature
25°C, and milky white water. Navigation test: Mice were
randomly placed into the pool and let to swim for 60 s to find
the hidden platform. The time required for the mouse to climb on
the platform was used as escape latency and stayed for 15 s. If the
platform could not be found within 60 s, the escape latency was
recorded as 60 s, and it was placed on the platform for 15 s.
According to this method, each animal was trained twice a day for
four consecutive days. Probe test: After the platform was
removed, mice were randomly placed into the water for 90 s,
and the number of original platform crossings was recorded.

Western Blot
Western blots were carried out as the previously described
method (Cui et al., 2019) with some modifications. Total
proteins were extracted from hippocampus tissues using RIPA
lysis buffer (MCE, Shanghai, China). The primary antibody was
purchased from Bioss (Bioss, Beijing, China, 1:500). Goat-anti-

FIGURE 2 |WERG decreased hippocampus neuron damage in an AD mouse model. Pathological changes in the hippocampus CA1, CA3, and DG regions were
detected by HE staining (400 ×) (A); the expression of p-TauThr231 was quantitatively analyzed by Western blotting (B). Data were presented as mean ± SD repeated
three times. “*” presented significant difference at p < 0.05 levels, “**” presented significant difference at p < 0.01 level.

Frontiers in Pharmacology | www.frontiersin.org July 2022 | Volume 13 | Article 9036593

Zhao et al. WERG Alleviates Cognitive Impairment

https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles


rabbit IgG secondary antibody was used as the secondary
antibody (Bioss, Beijing, China, 1:3000). The grayscale analysis
of Western blot results was evaluated by ImageJ software.

Hematoxylin and Eosin Staining and
Immunohistochemical Staining
Immunohistochemistry was carried out as the previously
described method (Zhang et al., 2020) with some

modifications. For immunohistochemical staining, the sections
were incubated with P-tau (Thr231) antibody (Bioss, Beijing,
China, 1:300) and GFAP antibody (Bioss, Beijing, China, 1:200)
overnight at 4°C. After washing, the sections were incubated with
the appropriate secondary antibody (Bioss, Beijing, China) for
60 min at 25°C. Finally, these sections were observed by using a
fluorescence digital photo microscope (OLYMPUS, Japan).

16S rRNA Sequencing
The genomic DNA of feces was extracted using the CTAB/SDS
method, and then the purity and concentration of DNA were
detected by agarose gel electrophoresis. An appropriate amount
of the sample was taken in a centrifuge tube, and the sample was
diluted to 1 ng/μl with sterile water. PCR products were detected
by electrophoresis on a 2% agarose gel. Equal amounts of samples
were mixed according to the concentration of PCR products, 2%
agarose gel electrophoresis was used to detect PCR products after
mixing thoroughly, and the target bands were recovered. The
TruSeq® DNA PCR-Free Sample Preparation Kit was used for
library construction. The constructed library was quantified by

FIGURE 3 | Th1e expressions of p-TauThr231 were measured by immunohistochemistry. The sections of the DG, CA1, and CA3 regions were acquired using a
fluorescence digital photo microscope (OLYMPUS, Japan) at × 400 magnification (scale bar, 100 μm).

TABLE 1 | P-TauThr231-positive structures in D-gal/AlCl3-induced AD-related
tauopathy.

Hippocampus D-gal + AlCl3 D-gal + Oxira D-gal +
WERG-

H

CA1 − + + − + − − −

CA3 − + + − + + − −

DG − − + − + − − −
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Qubit and Q-PCR. After the library was qualified, Illumina
HiSeq2500 PE250 was used for on-machine sequencing.

Statistical Analysis
Data are presented as mean ± SEM. The experimental data were
analyzed using SPSS version 22.0. A p-value < 0.05 was
considered to be statistically significant, and Duncan’s
statistical procedure was performed.

RESULTS

WERG Treatment Ameliorated D-gal/
AlCl3-Induced Cognitive Impairment and
Changes in p-TauThr231 Protein Expression
To investigate the improving effects of WERG on the D-gal/AlCl3-
induced mice, two cognition-related indicators were examined in
mice. The escape latency of each group was improved in a time-
dependent manner during the training process, and the D-gal/AlCl3
group was significantly different from the control group, indicating
that the AD mouse model induced by D-gal/AlCl3 was effective
(Figure 1B). After training, the escape latency at 107 days was
significantly different between the treated and D-gal/AlCl3
groups, especially in D-gal + WERG-H and D-gal + Oxira
groups (p < 0.001) (Figure 1C). The D-gal + WERG-H and
D-gal + Oxira groups also had an increased number of through
the platform times compared with the D-gal/AlCl3 group (p < 0.01)
(Figure 1D). As shown in Figure 2A, the results of HE staining
showed that a large number of swollen neurons with loosen
structure, karyopyknosis, and other morphological changes could

be observed in hippocampus neurons of CA3 and DG regions in the
D-gal/AlCl3 group.When comparedwith theD-gal/AlCl3 group, the
pathological changes of hippocampus neurons were ameliorated in
the D-gal + WERG-H group, and the tissue cells in the DG and
CA3 regions of the hippocampus were generally lighter in staining,
with clear cell boundaries and neat arrangement. In addition,
CA1 region hippocampus neurons had no obvious pathological
changes in the two groups. Western blot analysis indicated that the
levels of p-TauThr231 in the D-gal +WERG-H group were decreased
compared with those of the D-gal/AlCl3 group (p < 0.01); WERG
down-regulated the levels of p-TauThr231 in a dose-dependent
manner (Figure 2B). We further investigated the expression
levels of p-TauThr231 by immunohistochemistry, and a semi-
quantitative analysis was performed (Figure 3). The distribution
pattern of p-TauThr231 in the CA1, CA3, and DG regions of four
treatment groups was examined (Table 1). The number of
p-TauThr231-positive cells in the D-gal + AlCl3 group was
significantly increased compared with that in the control group,
and the arrangement was scattered, the overall staining was darker,
and the cytoplasm of the cells was brown. The plaques were
significantly increased and darker than those in the WERG-H
group. Compared with the D-gal + AlCl3 group, the number of
positive cells in the WERG-H group decreased, the brown plaques
became lighter, and the cells were compactly arranged.

The Diversity and Richness of Gut
Microbiota Was Changed by WERG
Given gutmicrobiota configurations relate to AD progression; the
effect of WERG on the alterations of the intestinal bacterial
structure was addressed in WERG-treated mice. Alpha

TABLE 2 | Effects of probiotics on neurological disorders and gut microbiota.

Probiotics Subject Effects Reference

Lactobacillus johnsonii BS15 Fluoride-induced mice Improved intestinal environment and improved memory impairment Xin et al. (2020)
Lactobacillus johnsonii BS15 Mice Modulated memory-related proteins and increased

neurotransmitter levels
Wang et al. (2021)

Lactobacillus, Helveticus R0052 Mice Reduce anxiety and improve memory Ohland et al. (2013)
Lactobacillus plantarum MTCC 1325 D-Galactosea-induced AD-like

rat model
Improved acetylcholine levels, prevented Aβ plaque formation, and
improved cognitive function

Nimgampalle and Kuna,
(2017)

Lactobacillus, Helveticus,
Lactobacillus Rhamnosus

Diabetic rat Improved spatial memory impairment Davari et al. (2013)

Lactobacillus casei strain Shirota (LcS) In vivo mouse model of EAE Reduced neuroinflammation Kobayashi et al. (2012)
Lactobacillus Aβ-Induced AD rat model Improved memory, learning abilities, and oxidative stress Everard et al. (2013)
Clostridium butyricum Mice Improved neuronal apoptosis and histopathological changes Liu et al. (2015)
Bifidobacterium breve strain A1 Aβ-Induced mice Blocked Aβ-induced cognitive impairment Kobayashi et al. (2017)
Lactobacillus johnsonii CJLJ103 Mouse Anti-colitic and memory ameliorating effects Lim et al. (2017)
Lactobacillus murine and Lactobacillus
reuteri

Mouse Depression-like symptoms caused by Dcf1 deficiency were relieved Zhou et al. (2022)

Lactobacillus johnsonii 456 Mouse Anti-inflammatory and anti-genotoxic effects Davoren et al. (2019)
Lactobacillus brevis FP A3709 Sprague–Dawley rats Antidepressant effects Ko et al. (2013)
Lactobacillus helveticus Bar13 Healthy adults No increase in Clostridium cluster XI Rampelli et al. (2013)
Lactobacillus casei Healthy adults Altered the diversity and composition of the gut microbiota Zhang et al. (2014)
Lactobacillus paracasei DG Healthy adults Increased in Proteobacteria and Coprococcus; decreased in

Blautia
Ferrario et al. (2014)

Lactobacillus johnsonii L531 Pigs Salmonella colonization levels were significantly reduced He et al. (2019)
Lactobacillus salivarius UBLS22 Healthy adults Increase in lactobacilli and decrease in E. coli Rajkumar et al. (2015)
Lactobacillus casei NCDC 19 Mice Increase in bifidobacteria population Rather et al. (2014)
Lactobacillus reuteri Mouse Improve gut barrier function Li et al. (2019)
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diversity was used to analyze microbial community diversity,
which can reflect the richness and diversity of microbial
communities within a fecal sample. To assess the effect of
WERG on the gut microbiota of D-gal/AlCl3-induced AD-like
model mice, gut contents were analyzed by 16 S rRNAV3-4 gene
sequencing. After WERG treatment for a consecutive month, the
observed species number of WERG-H (p = 0.046) and D-gal +
Oxira (p = 0.035) groups were reduced significantly compared
with the D-gal + AlCl3 group (Figure 4A). The Shannon index of
control (p = 0.044) and D-gal +WERG-H (p = 0.016) groups were
lower than those of the D-gal/AlCl3 group (Figure 4B). The
Chao1 index of the WERG-H group also was significantly lower
than that of the D-gal + AlCl3 group (p = 0.046) (Figure 4C). The
Simpson index of the control group (p = 0.019), D-gal + Oxira
(p = 0.009), D-gal + WERG-M (p = 0.04), and D-gal + WERG-H
(p = 0.045) groups were significantly decreased compared with
that of the D-gal + AlCl3 group (Figure 4D). The species
accumulation curve (Figure 4F) showed that as the number of
samples increases, there will be a greater possibility of discovering
a large number of new species; it seems that WERG-H treatment
tended to correct the gut microbial disorder tendency. These
results indicated that WERG-H treatment could reduce the alpha
diversity and abundance of microbes in the D-gal/AlCl3-induced
ADmouse model and improve the disturbance of gut microbiota.

Next, the samples were assessed for beta diversity by using
PCoA to investigate differences in microbiota composition in the
control, D-gal + AlCl3, and D-gal + WERG-H groups
(Figure 4G), which showed that gut microbial community
among the three groups formed distinct clusters. The D-gal +
AlCl3 and D-gal + WERG-H groups were well separated with
36.39% and 15.67% variation by the principal components
PC1 and PC2, respectively. Weighted UniFrac analysis
revealed that D-gal + AlCl3 treatment drove a marked
difference in gut microbiota composition, whereas WERG-H
treatment (p = 0.035) significantly reduced the alterations
(Figure 4E). As shown in Figure 4H, the number of OTUs
shared by the six groups is 408, and the number of unique OTUs
in the D-gal + WERG-H group was 218. As expected, the petal
plot showed that the WERG-H treatment group had more
specific OTUs than the other treatment groups.

WERG Restores Gut Microbiome
Imbalances in the AD Mouse Model
The relative abundances at phylum and genus levels were analyzed.
The Phylum level analysis revealed that the relative abundance of
Bacteroideteswas significantly lower in the D-gal + AlCl3 group than
that in the control group, while the relative abundances of

FIGURE 4 | Diversity and richness analysis of WERG-H on gut microbiota in D-gal/AlCl3-induced AD mice. The observed species number (A); Shannon diversity
index (B); Chao1 diversity index (C); Simpson diversity index (D); weighted UniFrac analysis (E); the species accumulation curve (F); PCoA based on weighted UniFrac
distances (G); flower diagrams (H). n = 5 mice per group.
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Saccharibacteria, Actinobacteria, Cyanobacteria, Acidobacteria, and
Deferribactereswere significantly increased (Figure 5A). In addition,
the relative abundances of Bacteroidetes, Proteobacteria, and
Saccharibacteria in the D-gal + Oxira and D-gal + WERG-H
groups were significantly decreased compared to those in the
D-gal + AlCl3 group, while the relative abundances of Firmicutes
(p = 0.012) and Bacilli (p = 0.011) were significantly increased. The
Rikenellaceae-RC9 gut group (p< 0.001) was enriched in theD-gal +
AlCl3 group compared with the treatment group (Figure 5C). The
relative abundances at the genus levels were further analyzed
(Figure 5B), which showed that the relative abundances of
Lactobacillus, Turicibacter, Helicobacter, and Alloprevotella were
significantly decreased in the D-gal + AlCl3 group compared to
the control group, while the relative abundances of Bacteroides,
Ruminococcaceae_UCG-014, Candidatus_Saccharimonas,
Staphylococcus, unidentified_Erysipelotrichaceae,
Lachnospiraceae_NK4A136_group, Sporosarcina, Parabacteroides,
Streptococcus, Desulfovibrio, Sphingomonas, Serratia, Jeotgalicoccus,
Anaerotruncus, Roseburia, Rikenella, and Enteractinococcus were
increased. However, the relative abundances of Bacteroides,
Candidatus_Saccharimonas, Lachnospiraceae_NK4A136_group,
Sporosarcina, Parabacteroides, and Desulfovibrio have decreased
in the D-gal + Oxira and D-gal + WERG-H groups compared to
the D-gal + AlCl3 group, while the relative abundances of

Lactobacillus, Turicibacter, and Staphylococcus were markedly
increased. As shown in Figure 5D, the effect of WERG
treatment on the relative abundance of gut microbial taxa in an
AD mouse model was analyzed according to MetaStat. The relative
abundances of Lactobacillus-mucosae, Lactobacillus-johnsonii, and
Lactobacillus-reuteri in the D-gal + WERG-H group were increased
compared with the other treatment group. Then, a linear
discriminatory analysis (LDA) effect size (LEfSe) analysis was
performed to further determine whether specific individual
bacterial taxa were differentially enriched in the D-gal + WERG-
H group. As shown in Figure 5E, this analysis identified nine genera,
which were differentially abundant between the D-gal + WERG-H
and D-gal + AlCl3 groups. The results showed that s-Lactobacillus-
murinus, g-Ruminococcus-torques-group, s-Lactobacillus-intestinalis,
o-Bacillales, f-Staphylococcaceae, g-Staphylococcus, and
s-Staphylococcus-lentus were enriched in the WERG-H treatment
group.

WERG-H Modulated Specific Phylotypes of
Gut Microbiome and Increased the
Probiotic Species in the AD Mouse Model
LEfSe analysis was further performed to identify statistically
significant biomarkers of gut microbiota in different groups.

FIGURE 5 |WERG-H alleviated gut microbiota dysbiosis in AlCl3/D-gal-induced AD mice. The relative abundance at the phyla level (A); the relative abundance at
the genus level (B); biomarker raw images in the sample (C); heatmap analysis of microbial composition (D); LEfSe analysis (E). n = 5 mice per group.
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The Linear discriminatory analysis (LDA) score distribution
histogram (based on LDA score > 4) and Cladograms analysis
were conducted, and a series of biomarkers were identified
as shown by the cladogram (Figures 6A,B). A total of
11 OUTs were notably different among all groups. In the
D-gal + Oxira group, there were two OUTs and the
p-Firmicutes and s-Lactobacillus-murinus were the obvious
difference. The three OUTs of f-Rikenellaceae, g-Rikenlla,
and g-Anaerotruncu showed remarkable differences in the
D-gal + WERG-M group. The most prominent different
features in the D-gal + WERG-H group were five
OUTs, namely, g-Ruminococcus-torques-group, o-Bacillales,
f-Staphylococcaceae, g-Staphylococcus, and s-Staphylococcus-
lentus. There was a g-Rikenellaceae-RC9 gut group that
exhibited a conspicuous difference in the D-gal + AlCl3
group. It can be seen from Figures 7A–D that there are
significant differences in colony distribution between the
control group and the D-gal + AlCl3 group (p = 0.048), the
D-gal + Oxira group and the D-gal + AlCl3 group (p = 0.017),
the D-gal + WERG-M group and the D-gal + AlCl3 group (p =
0.046), and the D-gal + WERG-H group and the D-gal + AlCl3
group (p = 0.046). Ternary plot analysis was used to display
common flora or OTUs in three groups. The distribution of
species in the D-gal + Oxira and D-gal + WERG-H groups was
further analyzed using ternary plots. The results showed that
the main enriched species include Lactobacillus-johnsonii,
Lactobacillus-murinus, Lactobacillus-reuteri, Staphylococcus-
lentus, Firmicutes-bacterium-M10-2, Lactobacillus-intestinalis,
Bacteroides-vulgatus, Bacteroides-acidifaciens, Helicobacter-sp-
MIT-01–6451, and Streptococcus-hyointestinalis. In general, the
three probiotics of Lactobacillus-johnsonii, Lactobacillus-

murinus, and Lactobacillus-reuteri were significantly
enriched in the D-gal + Oxira and the D-gal + WERG-H
groups, which were located in the upper part of the ternary
graph (Figures 7E,F). Multiple comparisons were further
corrected to show significant differences between D-gal +
AlCl3 and D-gal + WERG-H groups at the species levels
(Figure 7G). When compared with the D-gal + AlCl3 group,
the Lactobacillus-johnsonii (p = 0.022) and Lactobacillus-murinus
(p = 0.027) were significantly enriched in the D-gal + WERG-H
group.

DISCUSSION

Currently, amyloid plaques (Aβ) and neurofibrillary tangles
(p-Tau) are two typical pathological features in AD
pathogenesis (West and Bhugra, 2015). However, the
pathogenesis of AD remains unclear. In this study, our
main findings are the associations between gut microbiota
composition and p-TauThr231 status. To our knowledge, we are
the first to report an association between this microbe and AD
biomarkers. Tau hyperphosphorylation causes most tau
lesions including AD (Mazanetz and Fischer, 2007).
Hyperphosphorylated tau was accumulated in the
intracellular region and caused neurofibrillary tangles,
dysregulated neuronal excitability (Hatch et al., 2017),
impaired synaptic plasticity, and neurotransmittance, thus
inducing learning and memory impairments. Due to the
limited efficiency of new drugs for clearing β-amyloid in
AD, tau protein has received more attention as a promising
therapeutic target (Panza et al., 2019).

Gut microbiota composition was associated with amyloid and
p-tau status. For instance, the abundance of SCFA-producing
microorganisms is inversely proportional to the positive rate of
amyloid and p-tau status (Verhaar et al., 2021). Animal studies
have reported significantly reduced SCFA-producing microbes in
AD mice when compared to wild-type mice (Zhang et al., 2017;
Sun et al., 2019). Transplantation of fecal microbiota from wild-
type mice to APP/PS1 and ADLPAPT mice resulted in a
reduction in amyloid, suggesting a causal link between gut
microbes and AD (Sun et al., 2019; Kim et al., 2020). In
addition, an SCFA, sodium butyrate intervention can reduce
AD pathology (Fernando et al., 2020). In this study, we
developed a novel tau-based therapeutic strategy, which may
provide early treatment of AD and related tau lesions before
abnormal tau accumulation.

Inflammation and oxidative damage, two potential triggers for
AD symptoms, can cause brain damage and induce impairments
in synaptic function and memory (Zheng et al., 2019). D-gal/
AlCl3 can cause oxidative stress damage, and further develop
many other dysfunctions of the central nervous system by
generating ROS and inducing neurodegeneration (Rehman
et al., 2017; Wang et al., 2019). Previous studies have shown
that D-gal/AlCl3 can cause decreased memory and learning
abilities, Aβ deposition, and enhanced p-tau expression, and
provide an effective non-transgenic AD-like injury model
(Zhang et al., 2016a; An et al., 2017; Chiroma et al., 2018).

FIGURE 6 | Gut microbiota differences. Cladograms reveal microbial
phylogenetic branches associated with treatment groups status in the AD
mouse model (A); linear discriminant analysis (LDA) (B). Statistical significance
reflects both p < 0.05 for Student’s t test and LDA score threshold >
4 was listed, n = 5 mice per group.
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This study mainly investigated the neuroprotective effect of
WERG in D-gal/AlCl3-induced AD mice. Substantially,
WERG-H significantly alleviated D-gal/AlCl3-stimulated
cognitive impairment, p-TauThr231 protein formation, and
pathological changes. Consistent with the present study,
gastrodin significantly inhibited lead-induced p-Tau
accumulation in the mouse brain (Liu et al., 2020). Similarly,
another study confirmed that gastrodin suppressed the
deposition of p-Tau in the brain of the unilateral
intracerebroventricular injection of the Aβ1-42 mouse model
(Luo et al., 2022). Moreover, WERG treatment reduced
corticosterone, adrenocorticotrophic hormone, hypothalamic
corticotropin-releasing factor, and glucocorticoid receptor
levels, and decreased plasma interleukin-1β, interleukin-6, and
tumor necrosis factor-α concentrations (Wang et al., 2020a).
Rhizoma Gastrodiae powder can significantly improve the
learning and cognitive ability of mice in the radiation water
maze, and the learning and memory impairment in aluminum
chloride-induced rats (Shuchang et al., 2008; Mishra et al., 2011).
Rhizoma Gastrodiae water extract (WERG) can improve the
learning and memory impairment caused by forced swimming
in rats and shorten the dark avoidance latency and platform-
seeking time of rats in the MWMT (Chen et al., 2011).

Accumulating research suggested that WERG can improve
memory and learning cognitive dysfunction (Hu et al., 2014;
Park et al., 2015; Liu et al., 2018).

Gut microbiota exerted an important influence on the
progression of AD. Gut barrier permeability may be altered
by exogenous or endogenous factors as a consequence of the
inflammatory process in AD (Wang et al., 2020b). In short, a
decreased number of beneficial bacteria and an increased
number of pathogenic bacteria led to a disturbance in the
composition of the gut microbiota in AD mice. LEfSe can be
used to find biomarkers of differences between groups in high-
dimensional data. In this study, the D-gal/AlCl3 treatment
group had differential biomarkers in the g-Rikenellaceae-
RC9 gut group (p < 0.001) and c-Gammaproteobacteria
(p < 0.05) at the genus level. A previous study suggested
that several specific differential biomarkers were found to be
significantly associated with improvements in host
parameters, and linolenic acid ameliorated HFD-induced
multi-tissue metabolic disorders and gut microbiota
disorders. Among them, the Rikenellaceae-RC9 gut group
was positively correlated with HFD-induced harmful
indicators and negatively correlated with a beneficial
indicator (Gao et al., 2020). At the genus level, the

FIGURE 7 | WERG-H treatment increased the probiotic species. Anosim analysis results (A–D); ternary plot (E,F); t-test analysis (G). Significant statistical
difference by Student’s t-test (p < 0.05). n = 5 mice per group.
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Rikenellaceae-RC9 gut group was more abundant in fecal
samples from PD patients (Yan et al., 2021). In addition,
another study showed that c-Gammaproteobacteria gradually
increased from healthy control patients to amnestic mild
cognitive impairment patients and then AD patients (Liu
et al., 2019). These results provide a preliminary basis for
the mining of biomarkers in AD. It has been reported that the
abundance of pathogenic bacteria is increased, while the
abundance of beneficial bacteria is decreased in Aβ42-
induced AD mice (Xu et al., 2020). In the present study,
our results showed that the WERG-H treated group had
differential biomarkers in L. johnsonii (p = 0.022) and
Lactobacillus murine (p = 0.027), and enriched in
Lactobacillus-reuteri. The above results showed a
stimulatory effect of water extracts from Gastrodiae
Rhizoma on probiotic growth at optimal dosage. The D-gal
+ Oxira group is also mainly enriched in Lactobacillus-
johnsonii, Lactobacillus-murinus, and Lactobacillus-reuteri.
Studies have reported that the traditional Chinese medicine
prescription “Huanglian Jiedu Decoction” can reverse the
cognitive impairment of Tg mice and increase Bacteroides
S24-7 and Lactobacillus in Tg mice (Gu et al., 2021). As shown
in Table 2, many studies have reported the beneficial effects of
probiotics on neurological disorders and gut microbiota. A
previous study showed that L. johnsonii BS15 intake can
improve intestinal inflammation, neuroinflammation, and
fluorine-induced and restraint stress-induced memory

dysfunction by improving inflammation and permeability
(Xin et al., 2020; Wang et al., 2021). In addition, L.
johnsonii CJLJ103 was able to alleviate colitis and memory
impairment by inhibiting NF-jB activation and intestinal
lipopolysaccharide production (Lim et al., 2017). L.
johnsonii 456 is associated with reduced inflammation and
genotoxicity in vertebrate models (Davoren et al., 2019).
Furthermore, probiotic L. johnsonii L531 can promote
SCFA production to control Salmonella infection (He et al.,
2019). L. murine and L. reuteri intestinal transplantation
improved depression-like symptoms caused by
Dcf1 deficiency (Zhou et al., 2022). These results suggest
that WERG-H treatment can ameliorate intestinal
metabolic disturbances by increasing the abundance of
probiotics, thereby exerting anti-AD effects by remodeling
the gut microbiota and reducing p-tau levels (Figure 8).
Regrettably, this study has not yet explored the active
ingredients that play a major role in WERG, and will focus
on the research on the active ingredients and their mechanism
of action on AD later.

CONCLUSION

Gut microbiota composition was associated with p-tau status.
Our study showed observed associations between L. johnsonii, L.
murine, and Lactobacillus-reuteri levels and AD biomarkers by

FIGURE 8 | Beneficial effects of WERG-H against ADmodel mouse may be due to inhibition of p-TauThr231 protein expression, amelioration of p-TauThr231-induced
toxicity, and alleviation of gut microbiota dysbiosis by enriching probiotics. Finally, through the microbiota–gut–brain axis to improve D-gal/AlCl3-induced cognitive
impairment.
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showing that higher abundances of probiotic microbes were
associated with lower odds of positive p-tau status.
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