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Coronavirus disease 2019 (COVID-19) caused by the novel severe acute respiratory

syndrome coronavirus 2 (SARS-CoV-2) has spread globally and rapidly developed into a

worldwide pandemic. The sudden outburst and rapid dissemination of SARS-CoV-2,

with overwhelming public health and economic burdens, highlight an urgent need

to develop effective strategies for the diagnosis and treatment of infected patients.

In this review, we focus on the current advances in the diagnostics and treatment

for SARS-CoV-2 infection. Notably, we also summarize some antineoplastic drugs

repurposed for COVID-19 treatment and address the diagnostic and therapeutic

challenges for oncologists to manage cancer patients in this COVID-19 era. In addition,

we emphasize the importance of organoid technology as a valuable experimental virology

platform to better understand the pathogenesis of COVID-19 and assist rapid screening

of drugs against COVID-19.
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INTRODUCTION

In December 2019, coronavirus disease 2019 (COVID-19) caused by the novel severe acute
respiratory syndrome coronavirus 2 (SARS-CoV-2) emerged as a new world pandemic (1, 2).
As of 9 January 2021, more than 88.9 million cases and 1.91 million deaths have been reported
across 188 countries (3), indicating that the SARS-CoV-2 outbreak has become a serious public
health emergency of international concern. Coronaviruses, including four genera (Alpha-, Beta-,
Gamma-, and Deltacoronavirus), are enveloped, positive-sense, single-stranded RNA viruses
that cause infectious diseases in humans and mammals (4). According to phylogenetic analysis
of viral genomes, SARS-CoV-2 is a new member of the Beta coronavirus genus, which also
includes severe acute respiratory syndrome coronavirus (SARS-CoV). Viral entry into target cells
is facilitated by interactions between the spike (S) protein of coronaviruses and the host cell
receptor angiotensin-converting enzyme 2 (ACE2) (1, 5–7). Following receptor engagement, the
SARS-CoV-2 S protein is primed by cellular serine protease transmembrane protease serine 2
(TMPRSS2) before fusion of the viral and cellular membranes, which is a critical step for the entry
and spread of SARS-CoV-2 into host cells (5, 8) (Figure 1).
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Since accumulation of SARS-CoV-2 in the respiratory
tract is the most serious manifestation, fever and respiratory
symptoms, such as cough, shortness of breath, sore throat,
etc., are the most common initial symptoms of COVID-
19 (9). The impact of COVID-19 goes well beyond the
respiratory system to influence the heart and vessels. Several
clinical studies showed the correlation between COVID-19
and cardiovascular disease (10, 11). The presence of pre-
existing cardiovascular disease is associated with worse prognosis
and increased mortality in COVID-19 patients (9, 11, 12).
COVID-19 can result in cardiac and vascular complications
including acute cardiac injury, myocardial injury, arrhythmia
and venous thromboembolism (12, 13). A growing concern
over the potential drug-disease interactions in patients with
cardiovascular diseases and COVID-19 remains to be solved
(14, 15). In addition, SAR-CoV-2 also influences other tissues
and organs, such as the brain, eyes, nose, liver, kidneys and
intestines (16, 17) (Figure 1). The damage to these organs
may manifest specific symptoms, such as seizure, stroke
and brain damage, conjunctivitis, diarrhea, hematuria, and
oliguria (9).

Given the vast majority of people are still vulnerable
to SARS-CoV-2, the development of strategies to
diagnose and treat patients with COVID-19 is urgently
needed. In this review, we aim to summarize the clinical
manifestations of COVID-19 patients, current advances in
diagnostic methods and treatment strategies, and organoid
applications to fight against COVID-19. Of note, we
focus on some repurposing of antineoplastic drugs for
COVID-19 and the diagnostic and therapeutic challenges
in the management of cancer patients during the current
COVID-19 pandemic.

DIAGNOSTIC STRATEGIES FOR
SARS-CoV-2 INFECTION

Fever and respiratory symptoms are the most
common onset symptoms of COVID-19 (9, 18). After
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screening clinical symptoms and epidemiological
history, the highly suspected group required laboratory
testing or imaging tests to confirm the COVID-19
diagnosis (19).

After the nucleotide sequence of SARS-CoV-2 was identified
from patients’ respiratory tract samples by Chinese facilities via
deep sequencing analysis (20), a series of detection products
based on RT-PCR were obtained. The general process was to
sample RNA from the upper respiratory tract, extract RNA, and
determine whether it was positive after PCR with a specific
primer. There are also serological-based tests. In China, some
experts proposed the application of CT imaging to diagnose
typical cases in epidemic areas (21), but chest CT screening
is not suggested for populations with low infection rates
because of its low positive predictive value (22) but may be
considered a primary tool for the current COVID-19 detection
in epidemic areas (23). In addition to nucleic acid PCR testing
and serological testing, there are also tests based on other
principles, such as antigen-based testing (24), CRISPR-based
methods (25), and physics-based methods (26). One of the
main advantages of antigen detection is the fast detection speed.
However, antigen detection is very specific to viruses but not
as sensitive as molecular PCR tests. SHERLOCK SARS-CoV-
2 is short for Specific High-sensitivity Enzymatic Reporter
unLOCKing and is based on Cas13a protease and a guide
RNA (gRNA) used to recognize a specific new coronavirus
genomic sequence (27). No instrument is required, and a
simple test similar to a pregnancy test can quickly detect the
presence of a new coronavirus RNA sequence using a Sherlock
CRISPR SARS-CoV-2 Kit (27, 28). At present, the most widely
used detection method is the combination of nasopharyngeal
swab nucleic acid PCR and serological IgG/IgM detection (29).
Nucleic acid PCR test results are still the gold standard for
COVID-19 diagnosis, and serological tests can be used as a
supplement (30).

In nucleic acid detection, the sampling site is also critical.
The virus can be detected in respiratory, stool, serum (31),
urine (32), and sperm samples (33). Saliva or nasopharyngeal
swabs are the most convenient to obtain. Doctors use
bronchoscopy to sample the lower respiratory tract (34).
However, this procedure increases the patient’s pain and reduces
the efficiency of the test. The kits developed later were mostly
nasopharyngeal swabs. At present, there are studies that show
that the accuracy of oropharyngeal swab sampling detection
may be higher than that of nasopharynx sampling, which
further reduces the difficulty of sampling and the patient’s
pain (35).

As the pandemic began, the requirements for detection
time and accuracy were greatly improved. As of 11 May
2020, the FDA had issued 67 individual emergency use
authorizations (EUAs) for test kit manufacturers and
laboratories for three types of testing (PCR-based testing,
serologic testing and antigen testing) (36). The testing time for
ID NOW COVID-19 provided by Abbott Laboratories is the
shortest at present. Here, we list several typical FDA-approved
testing kits and new testing methods in the laboratory stage
(Table 1).
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FIGURE 1 | Simplified depiction of SARS-CoV-2 lifecycle and extrapulmonary manifestations of COVID-19. SARS-CoV-2 enters host cells through interaction of its

surface spike protein with the ACE2 receptor on the membranes of host cells in the presence of TMPRSS2, which mediates virus–cell membrane fusion and following

viral entry. Then viral genomic RNA is released and translated into viral polymerase proteins. Viral RNA is assembled to form mature virions, followed by release of the

new virions from the host cells. In addition to the most common pulmonary manifestation of COVID-19, extrapulmonary manifestations derived from many other

injured organs have been observed.
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TABLE 1 | Diagnostic methods for COVID-19.

FDA approved Institution Specimen Testing time Notes

Virus RNA test

TaqPath SARS-CoV-2

Assay

YES Rutgers Clinical

Genomics Laboratory

(USA)

Oropharyngeal, nasopharyngeal,

anterior nasal, mid-turbinate nasal

swab, saliva

n. r RT-PCR, can detect

saliva specimen

TaqPathTMCOVID-19

Combo kit

YES Thermo Fisher Scientific

(USA)

Nasopharynx swab 4 h RT-PCR

Pixel YES Labcorp (USA) Nasopharynx swab n. r RT-PCR, the only

home collection kit

Cobas® SARS-CoV-2 YES Roche (USA) Nasopharynx swab 3.5 h RT-PCR

Xpert Xpress SARS-CoV-2 YES Cepheid (USA) Nasopharynx swab, nasal wash or

aspiratory specimen

45min RT-PCR, can run up to

2,000 samples per

day

ID NOW COVID-19 YES Abbott Laboratories

(USA)

Nasopharynx swab

throat swabs

13min ID NOW Instrument

based

Bio-Rad SARS-CoV-2

ddPCR Test

YES Bio-Rad Laboratories

(USA)

Nasopharynx swab 5.5 h RT-ddPCR

BioFire Respiratory Panel

2.1 (RP2.1)

YES BioFire Diagnostics

(USA)

Nasopharynx swab 45min Nested multiplex PCR,

a multiplexed nucleic

acid test

iLACO (isothermal LAMP

based method for

COVID-19)

NO Shenyang University

(China)

n. r 20min RT-LAMP

Sherlock CRISPR

SARS-CoV-2 Kit

YES Sherlock BioSciences,

Inc. (USA)

Upper respiratory specimens <1 h RT-LAMP+

CRISPR-Cas13 based

CRISPR-based DETECTR

assay

NO Mammoth Biosciences

(USA)

Respiratory swab <40min CRISPR-Cas12-

based, PPV: 95%,

NPV: 100%

Dual-Functional

Plasmonic Photothermal

Biosensors

NO Institute of

Environmental

Engineering

(Switzerland)

Respiratory swab ≈17min Plasmonic

photothermal

biosensor based

Serological test

Serology Test

qSARS-CoV-2 IgG/IgM

Rapid Test

YES Cellex (Japan) Serum and plasma 15–20min IgG/IgM

The first serological

test authorized

under EUA.

Platelia SARS-CoV-2 Total

Ab assay

YES Bio-Rad Laboratories

(USA)

Serum and plasma n. r IgM/IgA/IgG

specificity> 99%,

sensitivity 98%

SARS-CoV-2 IgG assay YES Abbott Laboratories

(USA)

Serum and plasma 29min IgG

Elecsys®Anti-SARS-CoV-

2

YES Roche (USA) Serum and plasma 18min IgG

Specificity> 99.8%,

sensitivity 100%

Antigen

Sofia 2 SARS Antigen FIA YES Quidel Corporation

(USA)

Nasopharynx swab <15min Test nucleocapsid

protein antigen

n. r, not reported; RT-LAMP, reverse transcriptional loop-mediated isothermal amplification; PPV, Positive predictive value; NPV, Negative predictive value.

THERAPEUTIC STRATEGIES AGAINST
COVID-19

Given the time-consuming process to develop new drugs
starting from scratch, several FDA-approved drugs indicated
for other diseases have been repurposed to treat COVID-19
because of their antiviral properties. Notably, some antineoplastic

medications have also shown capacities for severe COVID-
19 by mitigating hyperactive immune responses and are now
being investigated in ongoing clinical trials (Table 2). Here,
we summarize the ongoing therapeutic choices, including
antiviral drugs, convalescent plasma therapy, and repurposing
antineoplastic medications, that are promising to help us fight
against COVID-19.
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TABLE 2 | FDA-approved antineoplastic drugs repurposed for COVID-19 treatment.

Antineoplastic drugs Mechanism of action FDA approved cancer-specific

indications

COVID-19 clinical trial identifier

Tocilizumab Binds soluble and membrane bound IL-6

receptors, preventing IL-6 mediated

pro-inflammatory effect

Cytokine release syndrome NCT04361552, NCT04331795

Siltuximab Prevents the binding of IL-6 to both soluble

and membrane- bound IL-6 receptors

Multicentric Castleman’s disease NCT04329650, NCT04330638

Imatinib Multiple tyrosine kinase inhibitor CML; DFSPs; GIST; ALL; MDS NCT04357613, NCT04346147

Thalidomide Immunomodulatory and antiangiogenic

effect, suppression of tumor necrosis factor-α

Multiple myeloma NCT04273529, NCT04273581

Bevacizumab Monoclonal antibody inhibits the binding of

VEGF to its cell surface receptors

Colorectal cancer; Non-squamous

non-small cell lung cancer;

Glioblastoma; cervical cancer; Renal cell

carcinoma

NCT04305106, NCT04275414

CML, Chronic myelogenous leukemia; DFSPs, Dermatofibrosarcoma protuberans; GIST, Gastrointestinal stromal tumor; ALL, Acute lymphoblastic leukemia; MDS, Myelodysplastic

syndrome; VEGF, Vascular endothelial growth factor.

REMDESIVIR

Remdesivir (GS-5734) is a nucleotide analog prodrug that blocks
viral replication by inhibiting viral RNA polymerase (37). The
therapeutic effectiveness of remdesivir was first evaluated in
both cell-based assays and a rhesus monkey model against
Ebola virus, in which remdesivir exhibits potent suppression
of viral replication and protection from lethal disease (38).
However, the efficacy of remdesivir treatment failed to be proven
in a randomized controlled human clinical trial in response
to a recent Ebola outbreak in the Democratic Republic of
Congo (39). Interestingly, a recent in vitro study indicated that
remdesivir has antiviral activity against SARS-CoV-2 (40). In
the case report of the first patient with confirmed COVID-19
in the United States, the patient was intravenously administered
remdesivir on hospital day 7 based on the patient’s worsening
clinical status, including persistent fevers and severe pneumonia.
On the 8th day, the patient’s clinical condition improved without
any adverse events related to remdesivir treatment (41). In
a small cohort study of patients with severe COVID-19 who
underwent compassionate-use remdesivir treatment, improved
clinical outcomes were observed in 36 of 53 patients (68%).
However, one clinical trial (ClinicalTrials.gov: NCT04257656)
indicated that remdesivir did not exhibit statistically significant
clinical benefits compared with those of a placebo (42). But
this trial was underpowered due to incomplete full enrollment
of eligible patients. The most recent Adaptive Covid-19
Treatment Trial (ACTT-1) was a double-blind, randomized,
placebo-controlled trial administrating intravenous remdesivir
in 1,062 hospitalized COVID-19 patients (43). The result
of this trial showed that remdesivir significantly shortened
the time to recovery in COVID-19 patients compared with
placebo. However, remdesivir is not routinely recommended in
mechanically ventilated COVID-19 patients. Recently, the FDA
has approved remdesivir for the treatment of Covid-19 patients
requiring hospitalization (44). Because remdesivir alone fails to
improve survival rates of COVID-19 patients, several ongoing
trials are still awaited to confirm the efficacy and safety of

remdesivir combined with modifiers of the immune response for
patients with COVID-19 (43, 45).

CHLOROQUINE AND
HYDROXYCHLOROQUINE

Chloroquine (CQ) and hydroxychloroquine (HCQ) (an analog of
chloroquine) are two well-known medications used for treating
malaria and autoimmune diseases, such as rheumatoid arthritis
and lupus (46, 47). Both CQ and HCQ are able to exhibit broad-
spectrum antiviral effects by elevating the endosomal/lysosomal
pH essential for virus and host cell fusion (47, 48). CQ could also
suppress SARS-CoV entry by interfering with the glycosylation
of the ACE2 receptor (47, 49, 50). HCQ is typically preferred
over CQ due to its better clinical safety during long-term usage,
allowance for higher daily dose, and lower potential for drug-
drug interaction (51, 52).

Recent in vitro studies showed that both CQ and HCQ can
effectively control SARS-CoV-2 infection (40, 53). However, in
the early stage of the COVID-19 pandemic, there were not
enough medical evidence to prove the efficacy of CQ and HCQ
treatment for COVID-19, and the results from different small
sample studies were controversial (54). Some studies have gained
much attention, indicating that HCQ is effective in the treatment
of COVID-19 (55, 56). A small open-label non-randomized
clinical study from France reported that patients who received
600mg of HCQ daily had a significant reduction in the viral
load. The efficacy of HCQ was reinforced in combination with
azithromycin for virus elimination (56). However, the limitations
of this study are that comparisons were made between patients
at different clinical centers, and six patients (23%) among the
26 HCQ-treated patients were lost to follow-up due to early
cessation of treatment, which weakened the conclusion. The
same research group later published another study evaluating
the effectiveness of HCQ and azithromycin combination therapy
in 80 patients. The results showed that 93% of treated patients
were negative in nasopharyngeal viral load testing after 8 days
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(55). However, this study failed to include a control group. Thus,
it is unclear whether patients who did not receive HCQ and
azithromycin combination therapy would have similar results.
It is noteworthy that a prospective study from France failed
to obtain any evidence of obvious clinical benefits or strong
antiviral effects upon the combination treatment of HCQ and
azithromycin for hospitalized patients with severe COVID-19
(57). In their study, 11 patients received the combination therapy
of HCQ and azithromycin. However, eight of 10 patients (one
patient was not tested due to death) were still positive for SARS-
CoV-2 after 6 days. Two patients were transferred to the ICU,
and one had to discontinue treatment due to adverse cardiac
effects. This study also did not have a control group. Eight of
11 patients had severe comorbidities, including obesity, solid
cancer, hematological cancer, and HIV infection, which could be
potential confounding effects to influence the results. Similarly,
a retrospective study from the U.S. revealed that there was
no evidence that therapy with HCQ, either with or without
azithromycin, reduced the risk of mechanical ventilation. An
association of increased overall death rates was found in patients
treated with HCQ alone (58). However, the patients enrolled
in this study were all male and over 65 years old (median
age), which could introduce bias in this study. In addition, a
multicenter, open-label randomized controlled trial including
150 patients in China also concluded that the administration
of HCQ did not improve the condition of patients, with a
higher negative conversion rate (59). Although the U.S. FDA
issued an EUA for the use of HCQ to treat COVID-19 in
the United States, the FDA also cautioned against the use of
HCQ or CQ for COVID-19 outside of the hospital setting
or a clinical trial due to the risk of heart rhythm problems
raised by a recent study (60). Therefore, larger high-quality
randomized controlled trials are needed to provide a definitive
answer regarding the efficacy and safety of this combination.
Recently, the controlled, open-label Randomized Evaluation of
COVID-19 Therapy (RECOVERY) trial compared the effects
betweenHCQ and usual care in patients hospitalized for COVID-
19 (61). Unfortunately, patients who receivedHCQ treatment did
not have better clinical outcomes than those who received usual
care. The WHO SOLIDARITY trial also released preliminary
results on the efficacy of HCQ in hospitalized patients for
COVID-19, and the results were in accordance with the ones
from the RECOVERY trial (61). Therefore, HCQ is not an
effective treatment for hospitalized patients for COVID-19.
The living WHO guideline development panel made a strong
recommendation against the use of HCQ for people who are not
COVID-19 positive (62). But it remains unclear whether HCQ or
CQ could be used in mild-to-moderate COVID-19 cases.

LOPINAVIR/RITONAVIR

Lopinavir, a human immunodeficiency virus (HIV) type 1
aspartate protease inhibitor, was identified as having an in vitro
inhibitory effect against SARS-CoV-1 by screening approved
drugs for treating severe acute respiratory syndrome (SARS) (63–
65). Lopinavir is administered in a fixed-dose combination with

ritonavir, a potent CYP3A4 inhibitor, to increase the plasma
concentration of lopinavir through the inhibition of cytochrome
P450 (64, 66). In an open-label clinical study, treatment with
a combination of lopinavir/ritonavir and ribavirin reduced the
risk of adverse clinical outcomes (ARDS or death) and viral load
among patients with SARS compared with that in a historical
control group treated with ribavirin only (64). However, the
efficacy of lopinavir/ritonavir was difficult to interpret in that
study due to lack of randomization and a contemporary control
group and the concomitant use of ribavirin and corticosteroid.
Lopinavir was also found to have anti-MERS-coronavirus (CoV)
activity both in vitro (67) and in a non-human primate animal
model (68). Although several clinical case reports indicated
that lopinavir/ritonavir (LPV/r)-based combination therapy with
ribavirin and interferon alpha led to virological clearance and
clinical resolution of infection (69–71), more convincing clinical
trial data about the efficacy of this combined therapeutic strategy
are needed (71). Therefore, a randomized controlled clinical trial
of LPV/r and recombinant interferon-β1b vs. placebo for MERS
is currently under way (ClinicalTrials.gov: NCT02845843) (72).
Intriguingly, recent research showed that SARS-CoV-2 leveraged
species-specific interferon-driven upregulation of angiotensin-
converting enzyme 2 (ACE2) to promote infection (the SARS-
CoV-2 receptor ACE2 is an interferon-stimulated gene in human
airway epithelial cells and is detected in specific cell subsets across
tissues). Thus, treatment involving interferon could enhance
SARS-CoV-2 infection instead, and caution should be applied
in the clinical treatment of patients with COVID-19. For the
treatment of severe COVID-19, an open-label, randomized,
controlled trial comparing lopinavir/ritonavir (400/100mg twice
daily) (n = 99) to standard care (n = 100) was performed.
The results revealed that lopinavir/ritonavir treatment failed to
significantly promote throat viral clearance, facilitate clinical
improvement, or reduce mortality in severe COVID-19 patients
(66). In addition, one recent study systematically evaluated
the clinical characteristics of COVID-19 in patients with liver
test abnormalities and found that the use of lopinavir/ritonavir
resulted in 4-fold enhanced risk of liver injury (73). The
RECOVERY trial is the first large-scale randomized clinical
trial to show the effects of lopinavir/ritonavir in patients
hospitalized for COVID-19 (74). The result indicated that
lopinavir/ritonavir treatment did not reduce duration of hospital
stay, risk of progression to invasive mechanical ventilation,
or 28-day mortality rate. The interim results of the WHO
SOLIDARITY trial also reported that lopinavir–ritonavir did
not improve clinical outcomes for COVID-19 patients who
require hospitalization (74). Based on the results of recent
high quality randomized clinical trials, lopinavir–ritonavir
monotherapy is not recommended for patients admitted to
hospital with COVID−19.

APN01

ACE2 has been identified as the key receptor for SARS-
CoV both in vitro and in vivo (75, 76). ACE2 not only
acts as the entry receptor of SARS-CoV but also protects
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against acute lung injury by reducing destructive inflammatory
reactions (77). The receptor-binding domain (RBD) of the spike
protein of SARS-CoV-2 is very similar to the RBD of SARS-
CoV, indicating that both viruses possibly use the common
host cell receptor ACE2. Recent studies confirmed that the
spike protein of SARS-CoV-2 directly contacts ACE2 to enter
cells, and SARS-CoV-2 recognizes human ACE2 even more
efficiently than SARS-CoV, suggesting an increased capacity
of person-to-person SARS-CoV-2 transmission (6, 78, 79).
Treatment with human recombinant soluble ACE2 (hrsACE2)
has been proposed to suppress SARS-CoV-2 infections because
excessive ACE2 can not only competitively bind with SARS-
CoV-2 to block the virus from entering the host cells but
also protect the lung from injury by recovering cellular ACE2
activity (80). hrsACE2 could effectively inhibit SARS-CoV-2
replication in Vero cells, engineered human blood vessels and
kidney organoids (77). Thus, APN01 (hrsACE2) developed
by Apeiron Biologics has undergone a placebo-controlled,
double-blinded, phase II clinical trial to evaluate its clinical
efficacy and safety in the treatment of COVID-19 patients
(ClinicalTrials.gov: NCT04335136).

CAMOSTAT MESYLATE

Camostat mesylate (CM), a serine protease inhibitor of
TMPRSS2, was developed in Japan primarily for chronic
pancreatitis and postoperative reflux esophagitis (81). Since
TMPRSS2 is a serine protease that cleaves and activates
the spike protein of SARS-CoV-2, which is vital for SARS-
CoV-2 entry and viral transmission through interaction with
ACE2, CM has become a potential drug candidate for treating
COVID-19 (5). Camostat mesylate was validated to inhibit
SARS-CoV-2 infection of lung cells, indicating that the host
cell entry of SARS-CoV-2 can be effectively inhibited by the
clinically proven inhibitor CM. CM is currently undergoing
randomized clinical trials (ClinicalTrials.gov: NCT04374019,
NCT04355052) that aim to assess whether CM reduces viral
entry of SARS-CoV-2 and improves clinical outcomes of patients
with COVID-19.

BARICITINIB

Most viruses enter cells through receptor-mediated endocytosis.
One of the pivotal regulators of endocytosis is AP2-associated
protein kinase 1 (AAK1) (82). Richardson et al. found,
using the BenevolentAI machine learning method, a group
of AAK1 inhibitors that could suppress clathrin-mediated
endocytosis and thereby impair the ability of the virus to
infect cells (83). In this study, baricitinib, a Janus kinase
(JAK) inhibitor indicated for the treatment of rheumatoid
arthritis (RA) (84), was identified with a particularly high
affinity for AAK1. Unlike other AAK1 inhibitors, such as the
oncology drugs sunitinib and erlotinib, which have serious
side effects at the high doses required to inhibit AAK1
effectively, baricitinib can be administered with once-daily oral
dosing and trivial side effects (83, 85). In addition, baricitinib

has the potential for combination therapy with direct-acting
antivirals, such as lopinavir/ritonavir or remdesivir, currently
being used and investigated during the COVID-19 pandemic
because of its minimal interaction with the relevant cytochrome
P450 (CYP) drug-metabolizing enzymes (85). Cantini et al.
conducted a pilot study on the safety and clinical efficacy
of baricitinib treatment combined with lopinavir-ritonavir in
patients with moderate COVID-19 pneumonia (86). However,
the limitations of this study, including its open-label, non-
randomized feature, lack of properly designed control group, and
limited patient number treated with baricitinib, require larger
randomized controlled trials to further demonstrate the efficacy
of baricitinib treatment.

CONVALESCENT PLASMA THERAPY

As a classic passive immunotherapy, convalescent plasma
therapy has been used to prevent and treat many infectious
diseases since the 1890s (87). Convalescent plasma therapy
was successfully applied to the treatment of SARS, H5N1
influenza, 2009 H1N1 pandemic, and MERS, with improved
clinical conditions and reduced mortality (88–91). However, in
the Ebola virus disease setting, convalescent plasma therapy
failed to achieve significant survival improvement (92). Since
SARS, MERS, and COVID-19 share similar clinical and
virological features (93), convalescent plasma therapy could
be a potential treatment alternative for COVID-19 patients
(94). One recent laboratory study indicated that sera from
several patients can neutralize the COVID-19 virus isolated
from the bronchoalveolar lavage fluid of a critically ill patient
(1). A systematic review (95) was conducted to assess the
clinical efficacy of convalescent plasma therapy for patients
with COVID-19. Based on five available clinical studies (87,
96–99), convalescent plasma therapy seems to be promising,
with reduced mortality, improved clinical status, and virus
clearance. Several randomized clinical trials have been conducted
to evaluate the potential benefits of convalescent plasma therapy.
Li et al. found convalescent plasma therapy added to standard
treatment failed to result in statistically significant improvement
in the time to hospital discharge and clinical improvement within
28 days compared with standard treatment in severe or life-
threatening COVID-19 patients (100). Another randomized trial
in COVID-19 patients with severe pneumonia also observed no
significant differences in clinical conditions or overall mortality
rates between groups treated with convalescent plasma and
placebo (101). But it remains unclear whether convalescent
plasma treatment works as a treatment for certain COVID-
19 patients incuding mild-to-moderate COVID-19 cases. The
RECOVERY trial (Clinical Trials.gov: NCT04381936), the
world’s largest trial of convalescent plasma is still recruiting
COVID-19 patients who do not require invasive mechanical
ventilation or extra-corporalmembranous oxygenation (ECMO).
The completion of RECOVERY trial may provide further
evidence about the effectiveness and safety of convalescent
plasma treatment.

Frontiers in Medicine | www.frontiersin.org 7 March 2021 | Volume 8 | Article 606755

https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/medicine#articles


Ye et al. Advances in COVID-19

REPURPOSING ANTICANCER
MEDICATIONS FOR COVID-19
TREATMENT

IL-6 or IL-6 Receptor Inhibitors
Interleukin-6 (IL-6) is upregulated in various solid tumors or
hematopoietic malignancies and plays a key role in the initiation
and progression of many cancers via the IL-6/JAK/STAT3
pathway (102). Inhibitors targeting IL-6 or the IL-6 receptor
have already been used for treating cancers, such as ovarian
cancer and metastatic renal cell carcinoma (103, 104). In
addition, overwhelmingly elevated IL-6 also plays a central role
in cytokine release syndrome (CRS), which can progress quickly
to ARDS (105–108). Emerging data indicate that up to 20%
of COVID-19 cases develop into ARDS, which is the main
cause of mortality in critical patients with COVID-19 (109,
110). Several studies reported that increased serum IL-6 levels
were detected in patients with COVID-19 (9, 18) and could
serve as an indicator for COVID-19 severity and in-hospital
mortality (19, 111, 112). Thus, targeting the IL-6 signaling
pathway is a potential therapeutic strategy to control CRS
in COVID-19 patients. Tocilizumab, a humanized monoclonal
antibody against the IL-6 receptor is currently being used
for treating COVID-19 cases with CRS. In one retrospective
study of 21 severe and critical COVID-19 patients, tocilizumab
effectively improved clinical symptoms and reduced patient
mortality without obvious adverse reactions (113). In another
study of 100 consecutive patients with COVID-19 pneumonia
and ARDS, tocilizumab produced rapid antihyperinflammatory
efficacy and remarkable clinical improvement (114). However,
the effectiveness of tocilizumab against CRS in the COVID-
19 patient setting still needs additional evidence from large
randomized, controlled clinical trials. Another humanized anti-
human IL-6 receptor monoclonal antibody, sarilumab, and
siltuximab, a chimeric antibody targeting IL-6, are currently
being evaluated for treating COVID-19 patients with cytokine
storm (110). In conclusion, a therapeutic strategy of blocking IL-
6 or the IL-6 receptor may be considered a promising choice for
the treatment of severe COVID-19 pneumonia and respiratory
failure (Table 2).

Imatinib
Imatinib is an oral anticancer medication used for treating
chronic myelogenous leukemia (CML), gastrointestinal stromal
tumor (GIST), dermatofibrosarcoma protuberans (DFSPs), and
acute lymphoblastic leukemia (ALL) (115). Imatinib plays an
inhibitory role in some tyrosine kinase activities, including the
oncogenic fusion protein BCR-ABL1 (whose overactivation can
result in CML), c-kit (whose mutations are involved in GIST
formation), platelet-derived growth factor receptor (PDGFR),
and ABL1 kinase (116). In addition, imatinib also displays in
vitro antiviral capacities against SARS-CoV and MERS-CoV,
which are phylogenetically related to SARS-CoV-2 (20, 117).
Therefore, imatinib has been postulated to possibly have antiviral
function against SARS-CoV-2. In fact, a recent study showed
that imatinib binds to the receptor-binding domain (RBD)
of SARS-CoV-2 spike protein and inhibits virus replication

in vitro, indicating imatinib as a potential repurposed drug
candidate for COVID-19 treatment (118). In a clinical case
report, a patient with COVID-19 pneumonia displayed clinical
improvement after receiving imatinib treatment, whereas the
clinical condition deteriorated upon hydroxychloroquine (HCQ)
and lopinavir/ritonavir (LPV/r) therapy (119). Currently, several
ongoing clinical trials are testing the value of imatinib as
a promising treatment option for COVID-19 (Table 2). One
clinical trial from France (ClinicalTrials.gov: NCT04357613)
aims to assess the use of imatinib in aged hospitalized patients
with COVID-19. One randomized double-blind trial from the
United States (ClinicalTrials.gov: NCT04357613) is evaluating
the safety and efficacy of imatinib compared with placebo
for the treatment of hospitalized COVID-19 patients. Another
randomized, double-blind, placebo controlled, clinical trial
from Netherlands (EudraCT2020-001236-10) tries to investigate
whether imatinib prevents pulmonary vascular leak in patients
with Covid19.

Thalidomide
Thalidomide was originally given to expectant mothers to
alleviate morning sickness between 1958 and 1962 but was
later removed from the market due to its serious teratogenicity
(120). However, research on the efficacy of thalidomide in other
conditions, including cancer, continued, and thalidomide was
recently approved by the FDA for treating multiple myeloma
(121, 122). In addition, preclinical animal studies showed
that thalidomide could alleviate lung injury, with reduced
inflammation status and improved survival in mouse models
of H1N1 influenza virus infection, indicating the potential
therapeutic merit of thalidomide in viral infection (123).
Intriguingly, a case report revealed that thalidomide presented an
antiviral effect on one patient with COVID-19 (124). The patient
with severe COVID-19 received oral thalidomide and low-dose
methylprednisolone due to deteriorated clinical manifestations
and limited response to other therapies. The patient achieved
significant clinical improvement within 1 week of thalidomide
treatment (124). However, since this is a single case report,
additional clinical studies are needed to confirm the effectiveness
of thalidomide and rule out any relevant severe side effects.
One clinical trial (ClinicalTrials.gov: NCT04273581) aims to
evaluate the efficacy and safety of thalidomide use in combination
with low-dose hormones in the treatment of severe COVID-
19. Another clinical trial (ClinicalTrials.gov: NCT04273529) is
investigating the use of thalidomide in the treatment of patients
with moderate COVID-19 pneumonia. Currently, these two
clinical trials are still underway evaluating thalidomide therapy
in patients with moderate or severe COVID-19 (Table 2).

Bevacizumab
Vascular endothelial growth factor (VEGF) has been identified
as a key molecule in the process of endothelial injury and
increases microvascular permeability (125). Higher VEGF levels
were observed in COVID-19 patients with ARDS than in
healthy people (126). Therefore, VEGF is considered a potential
therapeutic target in COVID-19 patients with acute lung injury
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(ALI) and ARDS. Bevacizumab, a recombinant humanized anti-
VEGF monoclonal antibody, is widely used to treat a number
of types of solid malignancies, including lung cancer, colon
cancer, glioblastoma, and renal-cell carcinoma (127), and is
now being evaluated for treating severe or critical patients with
COVID-19 pneumonia (Table 2). The result of one clinical trial
(ClinicalTrials.gov: NCT04275414) indicated that bevacizumab
plus standard care showed remarkable efficacy for treating severe
COVID-19 patients (128).

CURRENT DIAGNOSTIC AND
THERAPEUTIC CHALLENGES IN CANCER
PATIENT CARE DURING THE COVID-19
PANDEMIC

Due to the current COVID-19 pandemic, healthcare
professionals are facing the overwhelming challenges of rapidly
increasing new infection cases, not only to effectively cope with
the COVID-19 crisis but also to do so without overlooking
the care of patients with other diseases, such as cancer. Cancer
patients are more vulnerable to COVID-19 infection and more
likely to develop serious events than non-cancer COVID-19
patients due to the immunosuppressive state caused by the
cancer itself and anticancer treatments (129–131). Specifically,
the rates of severe events in COVID-19-infected patients with
hematologic cancer, lung cancer, and metastatic cancers were
higher than those in patients without cancer (130). Cancer
patients who received surgical or chemotherapy treatments
exhibited higher mortality rates and a higher possibility of
developing critical symptoms (129, 130). Thus, it is important
for oncologists to determine how to properly diagnose and treat
cancer patients in this COVID-19 era.

It can be challenging to diagnose whether cancer patients
are infected with COVID-19 because some common symptoms
of SARS-CoV-2 infection, including fever, dry cough, and
shortness of breath, may also be caused by various kinds of
cancer. Patients with central-type lung cancer or multiple lung
metastases can develop respiratory distress, which often occurs
in severe and critical COVID-19 patients (132, 133). Notably,
interstitial infiltrate pneumonia displayed by cancer patients
who underwent radiotherapy or immune-checkpoint inhibitor
treatment could overlap with the symptoms and CT scan
characteristics of COVID-19 patients (134–136). Intriguingly,
recent studies showed that the levels of some cancer markers,
including carcinoembryonic antigen (CEA), carbohydrate
antigens (CA) 125 and 153, squamous cell carcinoma antigen
(SCCA), and cytokeratin-19 fragment (CYFRA21-1), were
elevated in COVID-19 patients and were correlated with the
severity of COVID-19 (137, 138).

During the COVID-19 epidemic, medical resources focused
on combating COVID-19, fear of nosocomial infection and
social distancing led to delay of the daily treatment for cancer
patients. For uninfected cancer patients, most nonemergency
surgery, intravenous chemotherapy and radiotherapy have been
suspended (139). Nonetheless, it is pivotal to maintain medical
and surgical treatments for cancer patients (140). Modified

management including thorough COVID-19 screening for every
cancer patient scheduled for operations, reduced hospital stay,
and establishment of virtual connection between patients and
their relatives can help reduce cross infection and facilitate
safe surgical treatments (140). Many oncologists also use
online follow-ups, and switch to oral chemotherapy rather than
intravenous administration (141). For elective cancer surgery,
COVID-19-free surgical pathways were related with lower
pulmonary complication rates, SARS-CoV-2 infection rates,
and mortality rates compared with no defined pathway (142).
The establishment of COVID-19-free surgical pathways, which
provides elective surgery, critical care, and inpatient ward care
with no shared areas with COVID-19 patients, is paramount
during COVID-19 pandemic (142). Of note, Silvia Fiorelli et al.
highlighted the importance that lung cancer patients should
continue to receive prompt surgical treatment, and upgraded
management strategy is needed for the surgical treatment,
patient selection and perioperative management (143). Based
on appropriate patient screening and improved precautions, no
COVID-19 positive cases were recorded among the medical staff
or the hospitalized patients during their hospital stay. Their
high-volume thoracic surgery center has successfully maintained
safe surgical treatment for lung cancer patients (143). For
cancer patients with COVID-19 coinfection, whether to continue
antitumor therapy is still controversial. A stable lung cancer
patient died rapidly with a history of long exposure to nivolumab
immunotherapy (144), but it has also been reported that it is
safe to continue targeting in mild cases (145). However, because
antitumor therapy will further weaken the immune system and
the short-term risk brought by COVID-19 is much higher than
the risk of tumors, antitumor therapy for COVID-19-positive
cancer patients still needs to be very cautious.

APPLICATIONS OF ORGANOID
TECHNOLOGY IN COVID-19

Organoids are 3D structures that can be generated from adult
tissue-specific stem cells, embryonic stem cells, or induced
pluripotent stem cells and recapitulate pivotal features of original
tissues (146, 147). Organoids provide unique opportunities for
modeling and studying human diseases, including congenital
and acquired conditions, to establish paradigms for pathogenesis
research, high-throughput drug screening, and living organoid
biobanks of specific diseases, facilitating personalized treatments
(148–150). Cancer patient-derived organoids have been widely
used to investigate the mechanism of tumorigenesis and for
personalized medicine approaches (151). More importantly,
organoids have proven to be ideal models to investigate infectious
diseases and the related pathogenic mechanisms (148). Ettayebi
et al. successfully modeled human norovirus (HuNoV) infection
and propagation using human small intestinal organoids and
identified that bile acts as a critical factor for HuNoV replication
(152). Similarly, intestinal, lung, gastric, and brain organoids
have been applied to model infectious diseases, including
Cryptosporidium (153), Middle East respiratory syndrome
coronavirus (154), Helicobacter pylori (155, 156), influenza virus
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(157), and Zika virus (158, 159) infections, enabling a better
understanding of virus-host interactions, virus pathogenesis and
virus transmission.

Currently, limited knowledge of SARS-CoV-2 pathogenesis
and transmission is mainly based on clinical features,
bioinformatic analysis, and rare autopsy reports (9, 160, 161),
in part due to the lack of appropriate in vitro cell research
models that faithfully resemble host tissues. Therefore, human
organoids have been recently adopted by several research groups
to investigate the mechanisms of SARS-CoV-2 infection and
virus-induced tissue damage (17, 77, 161, 162). Human liver
ductal organoids were employed to investigate the infection and
liver damage of SARS-CoV-2 and have enabled the identification
of liver damage caused directly by viral infection (161). Along
the same lines, it has been proven that SARS-CoV-2 can readily
infect human intestinal enterocytes, and the host cell membrane-
bound serine proteases TMPRSS2 and TMPRSS4 promote the
infection process, which indicates that human small intestinal
organoids serve as a faithful experimental model for the study
of SARS-CoV-2 infection and relevant biology, facilitating
future drug testing (17, 162–164). Remarkably, SARS-CoV-2
has been shown to directly infect engineered human blood
vessel organoids and kidney organoids, which can be blocked by
human recombinant soluble ACE2 (hrsACE2) at early stages of
SARS-CoV-2 infection (77).

Since SARS-CoV-2 was reported to affect multiple human
organs and the underlying mechanisms are still unclear
(16), human organoids of the intestinal, lung, kidney, liver,
stomach, retinal, brain, and cardiac systems can be leveraged
to study pathogenesis in an organ-specific manner (146, 165).
In addition, organoid platforms have facilitated personalized
drug screening for cancer (146, 166, 167); hence, organoids
can also be applied for high-throughput drug screening to
discover potential candidates against COVID-19 (Figure 2).
Recently, several groups have used organoid-pathogen-immune
cell coculture systems to study host–pathogen interactions
(168, 169). Organoids were infected with microorganisms (viral
or bacterial) before culturing together with immune cells in
the triple coculture system (170). In this setting, organoids
provide great opportunities to probe the interaction between
the epithelium, immune system and SARS-CoV-2 and enable
potentially new therapeutic targets for treatment. Further
organoid studies for dissecting the pathogenesis of COVID-19
are bound to enable improved understanding and potential drug
discoveries (Figure 2).

COVID-19 VACCINES

Vaccination can efficiently elicit human immunity to prevent
infection and disease dissemination, thus helping restrain the
SARS-CoV-2 crisis. Multiple methods have been used to generate
clinical vaccine candidates for SARS-COV-2, including mRNA
vaccines, DNA vaccines, viral vector vaccines, and inactivated
virus vaccines (171). Several studies have shown promising
immune response inductions and no adverse safety events in

Phase III clinical trials (172–175). Currently, over sixty COVID-
19 vaccines are being tested in clinical trials, with eleven approved
for at least limited use (176). Food and Drug Administration
(FDA) have granted three highly effective COVID-19 vaccines
for EUAs, including two mRNA vaccines from Pfizer-BioNtech
and Moderna, and one adenovirus type 26 (Ad26) vaccine from
Johnson & Johnson (177, 178). The two mRNA vaccines require
two doses, and second dose should be given within 3 weeks
of the first dose for the Pfizer-BioNtech vaccine and within 4
weeks for theModerna vaccine. Both twomRNA vaccines require
ultracold storage, making it harder to distribute. The Ad26
vaccine from Johnson & Johnson is the first single-dose COVID-
19 vaccine, and has the advantage of being stable at refrigeration
temperature (178). Nonetheless, it still takes time for most people
to receive the COVID-19 vaccines. And questions also arise
around the safety and effectiveness of COVID-19 vaccines in
the setting of cancer patients and elderly population. More
researches addressing these unclear issues are needed to identify
whether cancer patients and elderly people could benefit from
COVID vaccines.

LIMITATIONS OF THIS REVIEW

Several limitations also exist in this review. Firstly, we have
cited some preprints in the references, because these papers
are still under review or awaiting for publication in official
journals. Since these preprints have not been peer reviewed,
some interpretations and conclusions from them may need
further validation. Secondly, we only discussed the diagnostic
and therapeutic challenges in cancer patient care in the COVID-
19 era. But some patients with autoimmune diseases or organ
transplants are also more vulnerable than healthy people. The
diagnostic and therapeutic management of these patients is
also noteworthy. Lastly, although there are a great number of
important papers, ongoing clinical studies and trials, we can only
refer to the most important ones in this review based on our
limited knowledge.

CONCLUSIONS AND FUTURE
PERSPECTIVES

How to appropriately manage patients with COVID-19 remains
a rapidly evolving preventative and therapeutic challenge. And
the efficacy and safety of vaccination in cancer patients or
elderly people remain unclear. Therefore, doctors are still
urgently seeking existing drugs repurposed for treating COVID-
19. Although several therapeutic agents mentioned above
in this review are encouraging for treating patients with
COVID-19, the clinical trials evaluating definite efficacy and
risk of adverse events are still underway. Several guidelines
of COVID-19 including IDSA (Infectious Diseases Society
of America) guidelines, WHO living guidance, COVID-19
rapid guideline, and CDC (Centers for Disease Control and
Prevention) guidelines are important references in terms of
diagnosis, treatment, prevention of COVID-19 (62, 179–181).
In addition, clinical doctors should continually monitor and
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FIGURE 2 | Promising applications of organoid technology in COVID-19. Organoids can be established from adult tissue stem cells, induced pluripotent stem cells, or

alternatively, from embryonic stem cells. Organoids can be utilized for pathogenesis investigation via organoid-pathogen-immune cell coculture system and RNA

sequencing. Organoids can also facilitate high-throughput drug screening for COVID-19 treatment. ECM, extracellular matrix.

adjustmanagement strategies as new literature becomes available.
However, caution should be taken when interpreting the available
clinical data, since many studies are uncontrolled and have not
been peer reviewed.

The COVID-19 outbreak challenges oncologists to properly
protect cancer patients, who are assumed to be vulnerable to
SARS-CoV-2 infection, without jeopardizing the management of

cancer treatment. However, there are still multiple unknowns
about how to manage cancer patients who might be exposed
to potential infection or may have been infected with SARS-
CoV-2. It is important to determine whether COVID-19
would negatively influence active cancer therapies and whether
antineoplastic treatments might prevent the cytokine storm
caused by SARS-CoV-2. Additionally, data about whether tumor
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stages and disease status have an impact on COVID-19’s
interactions with cancer and cancer treatments are lacking.
Thus, well-designed, multicentered, prospective cohort studies
are required to solve these complex COVID-19 puzzles for
cancer patients.

Management of highly contagious and potentially fatal
COVID-19 has underscored the urgent need to develop efficient
diagnosis methods, specific antiviral therapies or vaccines to fight
against SARS-CoV-2. In the current era in which cutting-edge
technological methods are available, it is pivotal for us to make
collaborative efforts to translate basic and innovative science into
the discovery of optimal diagnostic and therapeutic options for
clinical applications.
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